Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2324-2337.doi: 10.3864/j.issn.0578-1752.2022.12.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia

LI HongYan1(),XUE Jun1(),WANG YongHong2,WANG KeRu1,ZHAO RuLang2,MING Bo1,ZHANG ZhenTao3,ZHANG WenJie2,LI ShaoKun1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750105
    3College of Resources and Environment, China Agricultural University, Beijing 100193
  • Received:2021-09-09 Accepted:2021-12-01 Online:2022-06-16 Published:2022-06-23
  • Contact: ShaoKun LI E-mail:Lhy200_1@163.com;xuejun5519@126.com;lishaokun@caas.cn

Abstract:

【Objective】 In this study, the date when the kernel moisture content of different types of maize variety dehydrates to a suitable level for mechanical grain harvesting was predicted for different sowing dates in the Ningxia Hui Autonomous Region of China, in order to provide a basis for the variety selection at the regional scale, the determination of a suitable harvest period, and the development of the mechanical harvesting of maize varieties with a low moisture content. 【Method】Using the average kernel moisture content at physiological maturity (30.1%) and the average accumulated temperature (3 274.3 °C·d) required for sowing to physiological maturity ≥0 ℃·d as indicators, 38 common maize varieties were classified into four types by the two-way average method: type I varieties were characterized by late maturity and slow dehydration; Type II were characterized by early maturity and slow dehydration; type III varieties were characterized by early maturity and fast dehydration; type IV varieties were characterized by late maturity and fast dehydration. According to the production practice in Ningxia, the varieties with medium kernel moisture content and accumulated temperature requirement at physiological maturity stage were selected as the representative variety of each type. Then, the Logistic Power nonlinear growth model was used to predict the dehydration of the 38 maize varieties base on 10 years of recent meteorological data (2008-2017). Based on these data, the kernel moisture characteristics of each type of variety were predicted for various regions of Ningxia with different heat resources for three different sowing dates (initial sowing, peak sowing, and initial sowing). 【Result】The results showed that, initial sowing could obtain an accumulated temperature of 162.2-229.8 °C·d in crop growth more than that of final sowing. The accumulated temperatures required for kernel dehydration to a moisture content of 25% from sowing for Type I, Type II, Type III, and Type IV cultivars were 3 615.2, 3 290.6, 3 138.0, and 3 426.6 °C·d, respectively. In northern and central Ningxia, all types of varieties could meet the requirement that the kernel moisture content be reduced to 25%, while in the southern regions, Type III varieties could meet the requirement that the kernel moisture content be reduced to 25% for sowing at the initial and peak sowing times. The predicted accumulated temperatures from sowing to dehydration required for kernel dehydration to a moisture content of 16% for Type I, Type II, Type III, and Type IV cultivars were 4 320.6, 3 816.4, 3 632.9, and 4 023.6 °C·d, respectively. For the Type III varieties, in northern Ningxia on the initial sowing date and final sowing date, the kernel moisture content of both could be reduced to 16%; in the central region on the initial sowing date and peak sowing date, the accumulated temperature required for dehydration to 16% could be satisfied. 【Conclusion】 The heat resources of Ningxia could be used rationally through the selection of maize varieties with appropriate dehydration characteristics and early planting, thereby help to achieve high-quality mechanical maize kernel harvesting in this region. In northern and central Ningxia, it was recommended to select early-maturing, fast-dehydrating (Type III) varieties in order to achieve the mechanical harvesting of maize with a low kernel moisture content and thus convert regional heat resources into economic benefits.

Key words: Ningxia, heat distribution, kernel dehydration, maize variety, sowing date, prediction of harvest date

Table 1

Growth stages, kernel moisture content at physiological maturity, and lodging rate at harvest of different maize varieties"

年份
Year
品种
Variety
播种期
Sowing date
(M-D)
出苗期
Emergence date (M-D)
吐丝期
Silking date
(M-D)
生理成熟期
Physiological maturity period (M-D)
生育期
Period of duration
(d)
生理成熟期籽粒含水率
Kernel moisture content at physiological maturity (%)
收获期倒伏率
Lodging rate at harvesting (%)
2017 M751 04-20 05-01 07-07 09-20 142 30.1
MC670 04-20 05-01 07-06 09-11 133 30.3
登海105 Denghai105 04-20 05-01 07-08 09-13 135 33.7
登海618 Denghai618 04-20 05-01 07-05 09-11 133 30.0
登海739 Denghai739 04-20 05-01 07-04 09-17 139 30.2
登海769 Denghai769 04-20 05-01 07-05 09-15 137 29.4
登海786 Denghai786 04-20 05-01 07-01 08-28 119 33.64
和育187 Heyu187 04-20 05-01 07-05 09-05 127 31.8
联创808 Lianchuang808 04-20 05-01 07-08 09-18 140 29.4
联创825 Lianchuang825 04-20 05-01 07-08 09-22 144 31.6
辽单575 Liaodan575 04-20 05-01 07-07 09-17 139 31.6
辽单585 Liaodan585 04-20 05-01 07-09 09-24 146 31.60
辽单586 Liaodan586 04-20 05-01 07-07 09-23 145 33.1
农华213 Nonghua213 04-20 05-01 07-06 09-13 135 32.4
陕单620 Shaandan620 04-20 05-01 07-07 09-11 133 32.7
陕单628 Shaandan628 04-20 05-01 07-09 09-23 145 35.7
增玉1572 Zengyu1572 04-20 05-01 07-07 09-17 139 31.7
郑单1002 Zhengdan1002 04-20 05-01 07-06 09-23 145 27.3
郑单528 Zhengdan528 04-20 05-01 07-07 09-17 139 33.6
2018 M751 04-28 05-08 07-11 09-23 138 27.4 7.16
KX9384 04-28 05-08 07-01 09-04 119 27.7 0
德美亚1号Demeiya-1 04-28 05-08 06-28 08-24 108 26.7 1.19
德美亚2号Demeiya-2 04-28 05-08 06-27 08-18 102 29.5 1.28
登海739 Denghai739 04-28 05-08 07-08 09-13 128 32.49 5.22
登海769 Denghai769 04-28 05-08 07-08 09-07 122 30.7 6.83
登海786 Denghai786 04-28 05-08 07-01 09-01 116 29.7 0.61
迪卡517 Dika517 04-28 05-08 07-11 09-20 135 28.8 1.85
迪卡519 Dika519 04-28 05-08 07-13 09-21 136 27.6 0
东单1331 Dongdan1331 04-28 05-08 07-13 09-16 131 34.9 4.91
东单6531 Dongdan6531 04-28 05-08 07-12 09-09 124 29.5 1.26
富友968 Fuyou968 04-28 05-08 07-13 09-17 132 28.0 21.33
华美1号 Huamei-1 04-28 05-08 07-05 09-05 120 28.9 24.83
吉单66 Jidan66 04-28 05-08 07-08 09-11 126 26.6 10.36
京农科728 Jingnongke728 04-28 05-08 07-10 09-03 118 29.2
利单295 Lidan295 04-28 05-08 07-13 09-15 130 30.7 4.09
联创825 Lianchuang825 04-28 05-08 07-14 09-18 133 31.1 15.69
辽单575 Liaodan575 04-28 05-08 07-11 09-15 130 27.3 25.36
辽单585 Liaodan585 04-28 05-08 07-13 09-20 135 31.3 4.95
辽单586 Liaodan586 04-28 05-08 07-14 09-21 136 34.0 7.35
农华213 Nonghua213 04-28 05-08 07-13 09-11 126 25.4 32.08
瑞普909 Ruipu909 04-28 05-08 07-10 09-12 127 29.3 20.74
陕单620 Shaandan620 04-28 05-08 07-10 09-16 131 30.6 1.98
先玉1321 Xianyu1321 04-28 05-08 07-15 09-25 140 30.9
先玉335 Xianyu335 04-28 05-08 07-09 09-20 135 26.0 16.33
银玉123 Yinyu123 04-28 05-08 07-12 09-21 136 28.6 1.25
银玉274 Yinyu274 04-28 05-08 07-09 09-06 121 29.1 1.83
银玉439 Yinyu439 04-28 05-08 07-11 09-27 142 27.9 25.55
增玉1572 Zengyu1572 04-28 05-08 07-14 09-25 140 31.5 1.88
郑单958 Zhengdan958 04-28 05-08 07-13 09-22 137 32.0 11.81

Table 2

Sowing dates of local farmers in different regions of Ningxia"

种植区
Plant site
纬度
Latitude (°)
经度
Longitude (°)
始播期
Initial sowing date (M-D)
盛播期
Peak sowing date (M-D)
终播期
Final sowing date (M-D)
惠农Huinong 39.22 106.77 04-03 04-08 04-20
陶乐Taole 38.80 106.70 04-03 04-08 04-20
银川Yinchuan 38.47 106.20 04-03 04-08 04-20
盐池Yanchi 37.80 107.38 04-07 04-12 04-25
中卫Zhongwei 37.53 105.18 04-07 04-12 04-25
中宁Zhongning 37.48 105.68 04-07 04-12 04-25
同心Tongxin 36.97 105.90 04-07 04-12 04-25
海源Haiyuan 36.57 105.65 04-01 04-10 04-20
固原Guyuan 36.00 106.27 04-01 04-08 04-20
西吉Xiji 35.97 105.72 04-01 04-08 04-20

Table 3

Accumulated temperatures in various regions of Ningxia under different sowing dates (°C·d)"

种植区
Plant site
从始播期至
10月31日
From initial sowing date to 31 October
从盛播期至
10月31日
From peak sowing date to 31 October
从终播期至
10月31日
From final sowing date to 31 October
从始播期至
11月30日
From initial sowing date to 30 November
从盛播期至
11月30日
From peak sowing date to 30 November
从终播期至
11月30日
From final sowing date to 30 November
惠农Huinong 3994 3944 3788 4081 4030 3874
陶乐Taole 3853 3805 3654 3919 3870 3719
银川Yinchuan 3974 3919 3757 4067 4011 3850
盐池Yanchi 3578 3530 3372 3649 3600 3443
中卫Zhongwei 3785 3728 3548 3876 3818 3639
中宁Zhongning 3986 3924 3736 4091 4029 3841
同心Tongxin 3757 3702 3531 3849 3795 3623
海源Haiyuan 3244 3173 3071 3317 3246 3144
固原Guyuan 3179 3127 3009 3246 3195 3077
西吉Xiji 2894 2851 2750 2937 2894 2793

Fig. 1

Classification of dehydration performance of maize varieties PM: Physiological maturity. Varieties of corn are Dmeiya-1, Demeiya-2, Jingnongke728, Huamei-1, Yinyu274, Dongdan6531, Ruipu909, Jidan66, KX9384, Nonghua213, Denghai786, Heyu187, MC670, Lidan295, Dongdan1331, Liaodan586, Shaandan628, Denghai105, Zhengdan528, Zhengdan958, Shaandan520, Zengyu1572, Lianchuang825, Denghai739, Liaodan585, Xianyu1321, Denghai769, Denghai618, Liaodan575, Lianchuang808, Dika517, M751, Yinyu123, Yinyu439, Dika519, Zhengdan1002, Fuyou968, Xianyu335. The same as below"

Table 4

Accumulated temperatures required for dehydration to three target kernel moisture contents of different maize types (℃·d)"

类型
Type
品种数
Number of varieties
脱水至28%所积温
Accumulated temperature required
for dehydration to 28%
脱水至25%所积温
Accumulated temperature required
for dehydration to 25%
脱水至16%所积温
Accumulated temperature required
for dehydration to 16%
平均值
Average
变幅
Range
平均值
Average
变幅
Range
平均值
Average
变幅
Range
I 13 3456 3292-3846 3615 3420-4069 4321 3954-5080
II 3 3168 3026-3259 3291 3156-3374 3816 3721-3868
III 10 3023 2710-3201 3138 2820-3324 3633 3294-3877
IV 12 3290 3140-3518 3427 3265-3695 4024 3785-4487

Fig. 2

Accumulated temperature satisfaction for kernel dehydration to 25% for the different maize types"

Fig. 3

Accumulated temperature satisfaction of kernel dehydration to 16% for different maize types"

Fig. 4

The dates of dehydration to kernel moisture contents of 28%, 25%, and 16% for maize variety Xianyu 335"

Fig. 5

The dates of dehydration to kernel moisture contents of 28%, 25%, and 16% for maize variety Zhengdan 958"

Fig. 6

The dates of dehydration to kernel moisture contents of 28%, 25%, and 16% for maize variety Heyu 187"

Fig. 7

The dates of dehydration to kernel moisture contents of 28%, 25%, and 16% for maize variety KX9384"

Fig. 8

The dates of dehydration to kernel moisture contents of 28%, 25%, and 16% for maize variety Dika 519"

[1] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆. 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018, 44(12): 1747-1754.
LI L L, XUE J, XIE R Z, WANG K R, MING B, HOU P, GAO S, LI S K. Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agronmica Sinica, 2018, 44(12): 1747-1754. (in Chinese)
[2] 李少昆, 谢瑞芝, 王克如, 明博, 侯鹏. 专题导读: 加强籽粒脱水与植株倒伏特性研究、推动玉米机械粒收技术应用. 作物学报, 2018, 44(12): 1743-1746.
LI S K, XIE R Z, WANG K R, MING B, HOU P. Editorial: Strengthening the research of grain dehydration and lodging characteristics to promote the application of maize mechanical grain harvest. Acta Agronmica Sinica, 2018, 44(12): 1743-1746. (in Chinese)
[3] 王克如, 李少昆. 玉米籽粒机械收获破碎率研究进展. 中国农业科学, 2017, 50(11): 2018-2026.
WANG K R, LI S K. Progresses in research on grain broken rate by combine harvesting maize. Scientia Agricultura Sinica, 2017, 50(11): 2018-2026. (in Chinese)
[4] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械籽粒收获质量现状及其与水分含量的关系. 中国农业科学, 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[5] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50(11): 2044-2051.
LI L L, LEI X P, XIE R Z, WANG K R, HOU P, ZHANG F L, LI S K. Analysis of influential factors on mechanical grain harvesting quality of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2044-2051. (in Chinese)
[6] 易克传, 朱德文, 张新伟, 姚智华, 刘正. 含水率对玉米籽粒机械化直接收获的影响. 中国农机化学报, 2016, 37(11): 87-89.
YI K C, ZHU D W, ZHANG X W, YAO Z H, LIU Z. Effect of moisture content on corn grain harvesting mechanization. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 87-89. (in Chinese)
[7] 李少昆. 美国玉米生产技术特点与启示. 玉米科学, 2013, 21(3): 1-5.
LI S K. Characteristics and enlightenment of corn production technologies in the US. Journal of Maize Sciences, 2013, 21(3): 1-5. (in Chinese)
[8] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018, 44(12): 1764-1773.
LI L L, MING B, XIE R Z, WANG, K R, HOU P, LI S K. The establishment of dehydration type and mechanical grain collecting time of Yellow-Huaihai summer maize. Acta Agronmica Sinica, 2018, 44(12): 1764-1773. (in Chinese)
[9] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44(12): 1755-1763.
GAO S, MING B, LI L L, XIE R Z, XUE J, HOU P, WANG K R, LI S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai rivers summer maize. Acta Agronmica Sinica, 2018, 44(12): 1755-1763. (in Chinese)
[10] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50(11): 2052-2060.
LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K. Study on corn kernel weight and moisture content after physiological maturity in field. Scientia Agricultura Sinica, 2017, 50(11): 2052-2060. (in Chinese)
[11] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11): 2027-2035.
WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017, 50(11): 2027-2035. (in Chinese)
[12] RAGAI H, LOOMIS W E. Respiration of maize grain. Plant Physiology, 1954, 29(1): 49-55.
doi: 10.1104/pp.29.1.49
[13] YANG L, CUI T, QU Z, LI K H, YIN X W, HAN D D, YAN B X, ZHAO D Y, ZHANG D X. Development and application of mechanized maize harvesters. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 15-28.
[14] WAELTI H. Physical properties and morphological characteristics ofmaize and their influence on threshing injury of kernels[D]. Ames: Iowa State University, 1967.
[15] WAELTI H, BUCHELE W F. Factors affecting corn kernel damage combine cylinders. Transactions of the ASAE, 1969, 12(1): 55-59.
doi: 10.13031/2013.38762
[16] 赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军. 美国玉米生产关键技术与中国现代玉米生产发展的思考—赴美国考察报告. 作物杂志, 2011(5): 1-3.
ZHAO M, LI S K, DONG S T, ZHANG D X, WANG P, XUE J Q, GAO J L, SUN S M, ZHANG, J W, LIU P, LIU Y H, WANG Y J. The key technology of American maize production and the development of modern maize production in China - a study report after visiting the United States. Crops, 2011(5): 1-3. (in Chinese)
[17] DAYNARD T B. Relationships among black layer formation, grain moisture percentage, and heat unit accumulation in corn. Agronomy Journal, 1972, 64(6): 716-719.
doi: 10.2134/agronj1972.00021962006400060003x
[18] 黄兆福, 明博, 王克如, 谢瑞芝, 杨飞, 王志刚, 肖春华, 李少昆. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019, 45(6): 922-931.
doi: 10.3724/SP.J.1006.2019.83062
HUANG Z F, MING B, WANG K R, XIE R Z, YANG F, WANG Z G, XIAO C H, LI S K. Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao River Basin. Acta Agronmica Sinica, 2019, 45(6): 922-931. (in Chinese)
doi: 10.3724/SP.J.1006.2019.83062
[19] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性关系的研究. 中国农业科学, 2018, 50(10): 1878-1889.
LI L L, MING B, GAO S, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characteristics of maize and its relationship with grain filling. Scientia Agricultura Sinica, 2018, 50(10): 1878-1889. (in Chinese)
[20] LI H Y, WANG Y H, XUE J, XIE R Z, WANG K R, ZHAO R L, LIU W M, MING B, HOU P, ZHANG Z T, ZHANG W J, LI S K. Allocation of corn varieties according to temperature for use in mechanical kernel harvesting in Ningxia, China. International Journal of Agricultural and Biological Engineering, 2021, 14(1): 20-28.
[21] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44(1): 137-143.
REN B Z, GAO F, WEI Y J, DONG S T, ZHAO B, LIU P, ZHANG J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agronmica Sinica, 2018, 44(1): 137-143. (in Chinese)
[22] 白彩云, 李少昆, 柏军华, 张厚宝, 谢瑞芝. 我国东北地区不同生态条件下玉米品种积温需求及利用特征. 应用生态学报, 2011, 22(9): 2337-2342.
BAI C Y, LI S K, BO J H, ZHANG H B, XIE R Z. Characteristics of accumulated temperature demand and its utilization of maize under different ecological conditions in Northeast China. Chinese Journal of Applied Ecology, 2011, 22(9): 2337-2342. (in Chinese)
[23] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018, 51(10): 1890-1898.
ZHANG W X, MING B, WANG K R, LIU C W, HOU P, CHEN J L, ZHANG G Q, YANG J J, CHE S L, XIE R Z, LI S K. Analysis of the suitable sowing time and harvesting period of machine-harvested maize based on the characteristics of mature period and grain dehydration. Scientia Agricultura Sinica, 2018, 51(10): 1890-1898. (in Chinese)
[24] 王利锋, 唐保军, 王振华, 李会勇. 不同类型玉米品种间子粒脱水速率相关分析. 玉米科学, 2018, 26(2): 64-70.
WANG L F, TANG B J, WANG Z H, LI H Y. Compare study on grain dehydration rate of different maize hybrids. Journal of Maize Sciences, 2018, 26(2): 64-70. (in Chinese)
[25] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017(2): 88-92.
LI L L, XIE R Z, WANG K R, MING B, HOU P, LI S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017(2): 88-92. (in Chinese)
[26] PLETT S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Canadian Journal of Plant Science, 1994, 74(3): 543-544.
doi: 10.4141/cjps94-097
[27] HALL G E, JOHNSON W H. Corn kernel crackage induced by mechanical shelling. Transactions of the American Society of Agricultural Engineers, 1970, 13(1): 51-55.
doi: 10.13031/2013.38533
[28] HICKS D R, GEADELMANN J L, PETERSON R H. Drying rates of frosted maturing maize. Agronomy Journal, 1976, 68(3): 452-455.
doi: 10.2134/agronj1976.00021962006800030004x
[29] 张林, 王振华, 金益, 于天江. 玉米收获期含水量的配合力分析. 西南农业学报, 2005, 18(5): 534-537.
ZHANG L, WANG Z H, JIN Y, YU T J. Combine ability analysis of water content in harvest stage in corn. Southwest China Journal of Agricultural Sciences, 2005, 18(5): 534-537. (in Chinese)
[30] MAGARI R, KANG M S, ZHANG Y. Sample size for evaluating field ear moisture loss rate in maize. Maydica, 1996, 41(1): 19-24.
[31] BROOKING I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Research, 1990, 23(1): 55-68.
doi: 10.1016/0378-4290(90)90097-U
[32] 谭福忠, 韩翠波, 邹双利, 刘振江, 籍依安. 极早熟玉米品种籽粒脱水特性的初步研究. 中国农学通报, 2008, 24(7): 161-168.
TAN F Z, HAN C B, ZOU S L, LIU Z J, JI Y A. Elementary study on kernel dry-down traits in earliest maturity maize hybrid. Chinese Agricultural Science Bulletin, 2008, 24(7): 161-168. (in Chinese)
[33] WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the Northern corn belt. Agronomy Journal, 2002, 94(5): 1020-1023.
doi: 10.2134/agronj2002.1020
[34] 国家市场监督管理总局和国家标准化管理委员会. 玉米: GB1353- 2018, 北京: 中国标准出版社, 2018.
State Administration for Market Regulation and Standardization Administration of China. Maize: GB1353-2018. Beijing: China Quality and Standards Publishing and Media Co.,Ltd. 2018. (in Chinese)
[35] 国家质量监督检验检疫总局和国家标准化委员会. 粮油储藏技术规范: GB/T29890-2013. 北京: 中国标准出版社, 2013.
State Administration for Market Regulation and Standardization Administration of China. Technical Criterion for Grain and Oil-Seeds Storage: GB/T29890-2013. Beijing: China Quality and Standards Publishing and Media Co.,Ltd. 2013. (in Chinese)
[1] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[2] LI Bo,YANG Fan,QIN Qin,ZHONG XiaoYuan,LI QiuPing,ZENG YuLing,LU Hui,CHEN Yong,WANG Li,TAO YouFeng,LI Juan,FENG BingLiang,REN WanJun,DENG Fei. Effects of Sowing Dates on Eating Quality of Different Indica Hybrid Rice in the Sub-Suitable Region of Ratoon Rice [J]. Scientia Agricultura Sinica, 2022, 55(1): 36-50.
[3] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[4] CHEN Jing,REN BaiZhao,ZHAO Bin,LIU Peng,YANG JinSheng,ZHANG JiWang. Determination on Suitable Sowing Date of Summer Maize Hybrids Based on Effective Accumulated Temperature in Growth Period [J]. Scientia Agricultura Sinica, 2021, 54(17): 3632-3646.
[5] LI XiaoYong,GU ChiMing,LIU Kang,LIAO Xing,HUANG Wei,YANG ZhiYuan,QIN Lu. Effects of Nitrogen Application Rate on Nitrogen Use Efficiency, Yield and Quality of Late Sowing Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(17): 3726-3736.
[6] WANG XiNa,YU JinMing,TAN JunLi,ZHANG JiaQun,WEI ZhaoQing,WANG ZhaoHui. Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903.
[7] LUO Yan, QU Yang, YANG QingHua, ZHANG WeiLi, GONG XiangWei, LI Jing, GAO XiaoLi, GAO JinFeng, YANG Pu, WANG PengKe, FENG BaiLi. Effect of Sowing Date on Agronomic Traits and Starch Physicochemical Properties of Proso Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4154-4165.
[8] QU Yang,ZHANG Fei,WANG KeZhen,HAN Fang,LIU Yang,LUO Yan,GAO XiaoLi,LU Feng, . Response of Sorghum (Sorghum bicolor (L.) Moench) Yield and Quality to Climatic and Ecological Conditions on the West Yellow-Huaihe-Haihe Rivers Plain [J]. Scientia Agricultura Sinica, 2019, 52(18): 3242-3257.
[9] LongLong SUI,JingShan TIAN,HeSheng YAO,PengPeng ZHANG,FuBin LIANG,Jin WANG,WangFeng ZHANG. Effects of Different Sowing Dates on Emergence Rates and Seedling Growth of Cotton Under Mulched Drip Irrigation in Xinjiang [J]. Scientia Agricultura Sinica, 2018, 51(21): 4040-4051.
[10] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
[11] LI GuoYu, CONG XinJun, QIN Ling, ZOU RenFeng, YANG YanBing, YAN LiMei, CHEN ErYing, LI Ni, GUAN YanAn. Effects of Sowing Dates on Panicle Differentiation and Leaf Number Index of Summer-Sowing Foxtail Millet [Setaria italica (L.) Beauv.] [J]. Scientia Agricultura Sinica, 2017, 50(4): 612-624.
[12] LEI MiaoMiao, SUN Min, GAO ZhiQiang, WANG PeiRu, REN AiXia, XUE LingZhu, YANG ZhenPing. Effects of Subsoiling During the Fallow Period and Timely Sowing on Water Storage and Wheat Yield of Dryland [J]. Scientia Agricultura Sinica, 2017, 50(15): 2904-2915.
[13] CAO YiBing, HUANG ShouBing, WANG YuanYuan, XIA YuQing, MENG QingFeng, TAO HongBin, WANG Pu. Dynamic Simulation of Relationship Between Light Interception and Growth of Maize Population and Its Application [J]. Scientia Agricultura Sinica, 2017, 50(11): 1973-1981.
[14] REN XiaoLi, LIU AoXing, LI Xiang, ZHANG Xu, WANG YaChun, SHAO HuaiFeng, QIN ChunHua, WANG Yu, WEN Wan, ZHANG ShengLi. Genetic Parameters Estimation of Test Day Milk Yield in Holstein Heifers in Ningxia Using a Random Regression Test-Day Model [J]. Scientia Agricultura Sinica, 2017, 50(10): 1885-1892.
[15] ZENG Yan-hua, ZHANG Yu-ping, WANG Ya-liang, XIANG Jing, CHEN Hui-zhe, ZHU De-feng. Effects of Sowing Date on Formation of Branches and Spikelets in Indica-Japonica Hybrid Rice [J]. Scientia Agricultura Sinica, 2015, 48(7): 1300-1310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!