Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 280-294.doi: 10.3864/j.issn.0578-1752.2022.02.004


Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings

LI Gang(),BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan(),LI Cheng()   

  1. College of Agriculture, Shihezi University/The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang
  • Received:2021-03-31 Accepted:2021-09-06 Online:2022-01-16 Published:2022-01-26
  • Contact: ChunYan LI,Cheng LI;;


【Objective】 This study was conducted to explore the adaptive mechanism of wheat plants to drought stress under two kinds of phosphorus supply conditions and its response after rehydration, so as to provide more information for revealing the interaction mechanism of water and phosphorus and breeding the wheat varieties with stress resistance and high phosphorus efficiency. 【Method】 The wheat cultivar Xindong23 were used. The response of wheat plants to drought stress (0, 3, 5, 7 d) and the reaction of rehydration 3 d under low phosphorus (LP: 0.05 mmol·L-1) and conventional phosphorus (CP: 1.0 mmol·L-1) were studied by means of ionomics and metabonomics. 【Result】The root system of wheat was dense under LP treatment. From 0 d to 7 d of drought stress and then to 3 d of re-watering, the dry weight of shoot and whole plant under CP treatment increased firstly and then decreased, but that under LP treatment increased firstly and then decreased and then increased. After re-watering for 3 days, the increase rate of total root volume under LP treatment was significantly higher than that under CP treatment. The decrease rate of root DNA content under LP treatment was 21.7%, which was significantly lower than that under CP treatment. Ion group analysis showed that compared with CP, the content of most elements in roots decreased and that in shoots increased under LP treatment. Metabonomics analysis showed that CP treatment was more sensitive to drought stress, and the effect of drought stress on shoot was greater than that of root. With the extension of drought stress time, the metabolism of amino acids, fatty acids and terpenoids was more affected. 【Conclusion】Wheat plants with low phosphorus supply were less sensitive and more adaptable to drought stress, and had stronger recovery ability after rewatering than those with normal phosphorus supply, the main reason is the change of root morphology, rearrangement of ion balance and the change of metabolism of amino acid and abscisic acid to regulate osmotic balance, maintain ion homeostasis and enhance tolerance to drought stress.

Key words: Triticum aestivum L., phosphoru s, drought stress, growth, mineral elements, metabolites

Fig. 1

The morphology of wheat roots cultured by CP and LP under drought stress and rehydration"

Fig. 2

The changes of plant weight and physiological characteristics of wheat plants cultured by CP and LP under drought stress In figure 2, only the difference between CP and LP treatments was indicated, * indicated that the difference reached 5% significant level; ** indicated difference at 1% level"

Fig. 3

The changes of chlorophyll content of wheat plants cultured by CP and LP under drought stress"

Table 1

The changes of elements content in the roots and shoots of wheat Xindong 23"

Stress comparision
元素含量变化 Elements content (%)
K Ca P Si Na Mg Mn Cu Zn Fe S
D7 LP/CP 24.0 -78.5 275.7 301.9 -95.9 -87.7 -93.3 -87.1 -87.0 90.8
R3 LP/CP 87.0 -48.9 138.6 282.9 -76.3 22.2 -97.1 -96.7 -91.9 -86.3 53
CP R3/D7 -26.3 -51.7 34.6 22.2 102.1 29.8
LP R3/D7 -33.7 28.2 405.3 -71.6 -41.9
D7 LP/CP -62.9 263.9 -88.8 297.3 -67.4 293.8 707.7 90.5 583.4 62.6
R3 LP/CP -42.7 262.9 -69.1 162.0 -62.7 992.8 442.4 120.8 607.6 41.2
CP R3/D7 -33.4 60.8 26.9
LP R3/D7 20.4 128.6 198.0

Table 2

Differential metabolic pathways and metabolites in roots of wheat Xindong 23 under drought stress for 3 days compared with LP and CP"

编号 No. 代谢通路 Metabolic pathways 差异代谢物 Differential metabolite LP/CP
1 代谢途径Metabolic pathways 脱落酸ABA 0.162
2 植物信号转导Plant hormone signal transduction 脱落酸ABA 0.162
3 次级代谢物的生物合成Biosynthesis of secondary metabolites 脱落酸ABA 0.162
4 类胡萝卜素生物合成Carotenoid biosynthesis 脱落酸ABA 0.162

Table 3

Differential metabolic pathways and metabolites in roots of wheat Xindong 23 under drought stress for 7 days compared with LP and CP"

编号 No. 代谢通路Metabolic pathways 差异代谢物Differential metabolite LP/CP
1 叶酸生物合成Folatebiosynthesis 环吡喃磷酸盐CPMP 0.058
2 硫代葡萄糖苷生物合成Glucosinolate biosynthesis 3-(甲基硫代)丙基硫代异氰酸酯3-Methylthiopropyl-desulfoglucosinolate 0.058
3 2-氧代羧酸代谢2-Oxocarboxylic acid metabolism 3-(甲基硫代)丙基硫代异氰酸酯3-Methylthiopropyl-desulfoglucosinolate 0.058

嘧啶代谢Pyrimidine metabolism 尿苷酸UMP 0.024
尿苷5’-磷酸Pseudouridine 5'-phosphate 0.024
3'-尿苷酸3'-UMP 0.024

代谢途径Metabolic pathways 尿苷酸UMP 0.024
环吡喃磷酸酯 Cyclic pyranopterin monophosphate 0.058
鸟苷酸GMP 0.058
6 嘌呤代谢Purine metabolism 鸟苷酸GMP 0.058
3'-鸟苷酸3'-GMP 0.058
7 次生代谢物的生物合成Biosynthesis of secondary metabolites (甲硫基)丙基硫代葡萄糖苷3-Methylthiopropyl-desulfoglucosinolate 0.058
8 硫磺中继系统Sulfur relay system 环吡喃磷酸盐CPMP 0.058

Table 4

Differential metabolic pathways and metabolites in the shoot of CP treatment compared to 3 d and 7 d of drought stress in wheat Xindong 23"

Metabolic pathways
Differential metabolite
干旱3 d/7 d
Drought 3 d/7 d
1 氨基酸的生物合成
Biosynthesis of amino acids
活性腺苷甲硫胺酸S-Adenosylmethionine 2.013
氧戊二酸Oxoglutaric acid 1.263
2,6-二氨基庚二酸N6-Acetyl-LL-2,6-diaminoheptanedioate 1.648
(6S,2S)-二氨基庚二酸LL-2,6-diaminoheptanedioate 1.554
内消旋-2,6-二氨基庚酸Meso-2,6-diaminoheptanedioate 1.554
2 精氨酸生物合成Arginine biosynthesis 氧戊二酸Oxoglutaric acid 1.263
3 组氨酸Histidine metabolism 氧戊二酸Oxoglutaric acid 1.263
4 精氨酸和脯氨酸代谢
Arginine and proline metabolism
S-腺苷-L-蛋氨酸S-Adenosyl-L-methionine 2.013
N2-琥珀酰-L-鸟氨酸N2-Succinyl-L-ornithine 1.648
γ-谷氨酰氨基丁酸Gamma-Glutamyl-GABA 1.648
5 酪氨酸代谢Tyrosine metabolism 3-甲氧酪胺3-Methoxytyramine 1.430
6 色氨酸代谢Tryptophan metabolism 吲哚乙醛Indoleacetaldehyde 1.292
N-乙酰血清素N-Acetylserotonin 1.406
7 赖氨酸生物合成
Lysine biosynthesis
氧戊二酸Oxoglutaric acid 1.263
2,6-二氨基庚二酸N6-Acetyl-LL-2,6-diaminoheptanedioate 1.648
LL-2,6-二氨基庚二酸酰胺LL-2,6-diaminoheptanedioate 1.554
内消旋-2,6-二氨基庚酸Meso-2,6-diaminoheptanedioate 1.433
8 丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolism
氧戊二酸Oxoglutaric acid 1.263

Cysteine and methionine metabolism
腺苷-L-甲硫氨酸 S-Adenosyl-L-methionine 2.013
1.2-二羟基-5-(甲硫基)戊-1-烯-3-酮1,2-Dihydroxy-5-(methylthio)pent-1-en-3-one 1.548
5-甲硫基-D-核糖5-Methylthio-D-ribose 1.548
10 玉米素生物合成Zeatin biosynthesis S-腺苷-L-蛋氨酸S-Adenosyl-L-methionine, 2.012
11 苯丙氨酸代谢Phenylalanine metabolism 辣椒素Capsaicin 2.070
12 苯丙素生物合成
Phenylpropanoid biosynthesis
乙酸香豆醇酯 Coumaryl acetate 0.526
甲基异丁香酚Methylisoeugenol 1.477
阿魏酸Ferulic acid 0.721
4-羟基-3-甲氧基肉桂酸4-Hydroxy-3-methoxycinnamic acid 0.721
5-羟基松柏醛5-Hydroxyconiferaldehyde 0.721
13 碳代谢Carbon metabolism 氧戊二酸Oxoglutaric acid 1.263
14 戊糖和葡萄糖醛酸的相互转化
Pentose and glucuronate interconversions
氧戊二酸Oxoglutaric acid 1.263
15 光合作用Photosynthesis 质体醌醇Plastoquinol-1 1.606
16 TCA循环TCA cycle 氧戊二酸Oxoglutaric acid 1.263
17 丙酸代谢Propanoate metabolism 单磷酸盐Monophosphate 0.021
Metabolic pathways
Differential metabolite
干旱3 d/7 d
Drought 3 d/7 d
18 丁酸代谢Butanoate metabolism 氧戊二酸Oxoglutaric acid 1.263
19 抗坏血酸盐和醛酸盐代谢 Ascorbate and aldarate metabolism 氧戊二酸Oxoglutaric acid 1.263
20 α-亚麻酸代谢
Alpha-Linolenic acid metabolism
茉莉酸甲酯Methyl jasmonate 1.927
(+)-7-异构乙基茉莉酮酸酯 (+)-7-Isomethyljasmonate 1.927
硬脂酸Stearidonic acid 3.636
21 花生四烯酸代谢Arachidonic acid metabolism 16种16 metabolites 全部增加
All increase
22 类胡萝卜素生物合成Carotenoid biosynthesis 32种32 metabolites 18种减小
18 reduced
23 萜类骨架生物合成
Terpenoid backbone biosynthesis
反式,反式-金合欢醇(2E,6E)-Farnesol 2.203
金合欢醇 2-trans,6-trans-Farnesal 1.976
异戊二烯Isoprene 2.730
全反式六异戊二烯基二磷酸酯 all-trans-Hexaprenyl diphosphate 0.564
24 单萜类生物合成
Monoterpenoid biosynthesis
去氧番木鳖苷 Deoxyloganin 1.581
(-)-香芹酮 (-)-Carvone 1.554
(-)-异戊烯酮 (-)-Isopiperitenone 1.554
异戊烯酮 Ipsdienone 1.554
(+)-(S)-香芹酮 (+)-(S)-Carvone 1.554
(+)-门托呋喃 (+)-Menthofuran 1.554
7-脱氧甘油酯7-Deoxyloganate 1.606
25 二萜类生物合成
Diterpenoid biosynthesis
2,3-脱氢赤霉素A9 2,3-Dehydro-gibberellin A9 1.572
赤霉素A51分解代谢产物 Gibberellin A51-catabolite 1.599
赤霉素A5 Gibberellin A5 1.599
赤霉素A7 Gibberellin A7 1.599
10β-14β-二羟紫杉-4(20) 10beta,14beta-Dihydroxytaxa-4(20) 1.447
莫米拉克通 Momilactone A 1.676
蚜虫素Aphidicolin 4.677
10-脱乙酰基巴卡汀 10-Deacetylbaccatin III 1.487
26 倍半萜类和三萜类生物合成
Sesquiterpenoid and triterpenoid biosynthesis
52种52 metabolites 51种增加
51 increased
Only some important metabolic pathways and different metabolites were listed in the table. The same as below

Table 5

Differential metabolic pathways and metabolites in the root of CP treatment compared to 3 d and 7 d of drought stress in wheat Xindong 23"

Metabolic pathways
Differential metabolite
干旱3 d/7 d
Drought 3 d/7 d
1 色氨酸代谢Tryptophan metabolism 3-羟基邻氨基苯甲酸酯3-Hydroxyanthranilate 0.056
2 赖氨酸生物合成Lysine biosynthesis (2R,3R)-3-甲基谷氨酰-5-半醛-N6-赖氨酸(2R,3R)-3-Methylglutamyl-5-semialdehyde-N6-lysine 8.775
3 氨基糖和核苷酸糖代谢
Amino sugar and nucleotide sugar metabolism
4 α-亚麻酸代谢
Alpha-Linolenic acid metabolism
9-氧代壬酸9-Oxononanoic acid 1.496
α-亚麻酸 Alpha-Linolenic acid 0.182
5 不饱和脂肪酸的生物合成
Biosynthesis of unsaturated fatty acids
(6Z,9Z,12Z)-十八碳三烯酸(6Z,9Z,12Z)-Octadecatrienoic acid 0.182
α-亚麻酸alpha-Linolenate 0.182
6 二萜生物合成Diterpenoid biosynthesis 6β,7β-二羟基贝壳杉烯酸6beta,7beta-Dihydroxykaurenoic acid 0.270
7 单萜生物合成 Monoterpenoid biosynthesis 开联番木鳖苷Secologanin 0.320
8 亚油酸代谢Linoleic acid metabolism 12种12 metabolites 全部增加
All increase
[1] 张林刚, 邓西平. 小麦抗旱性生理生化研究进展. 干旱地区农业研究, 2000, 18(3), 87-92.
ZHANG L G, DENG X P. Advances in studies on physiology and biochemistry of wheat drought resistance. Agricultural Research in the Arid Areas, 2000, 18(3):87-92. (in Chinese)
[2] LUDLOW M M, MUCHOW R C. A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 1990, 43(1):107-153.
[3] 李继云, 孙建华, 刘全友, 童依平. 不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究. 西北植物学报, 2000, 20(4):503-510.
LI J Y, SUN J H, LIU Q Y, TONG Y P. A study on the physiological properties of root systems in various wheat varieties andthe effects of their phosphorus uptake and utilization efficiency on the yields. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(4):503-510. (in Chinese)
[4] 庞春花, 张紫薇, 张永清. 水磷耦合对藜麦根系生长、生物量积累及产量的影响. 中国农业科学, 2017, 50(21):4107-4117.
PANG C H, ZHANG Z W, ZHANG Y Q. Effects of water and phosphorus coupling on root growth, biomass allocation and yield of quinoa. Scientia Agricultura Sinica, 2017, 50(21):4107-4117. (in Chinese)
[5] 张岁岐, 山仑. 磷素营养对春小麦抗旱性的影响. 应用与环境生物学报, 1998, 4(2):115-119.
ZHANG S Q, SHAN L. The effect of phosphorus nutrition on drought-resistance of spring wheat. Chinese Journal of Applied and Environmental Biology, 1998, 4(2):115-119. (in Chinese)
[6] 张岁岐, 徐炳成. 根系与植物高效用水. 北京: 科学出版社, 2010.
ZHANG S Q, XU B C. Efficient Water Use for Roots and Plants. Beijing: Science Press, 2010. (in Chinese)
[7] 张福锁, 曹一平. 根际动态过程与植物营养. 土壤学报, 1992, 29(3):239-250.
ZHANG F S, CAO Y P. Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 1992, 29(3):239-250. (in Chinese)
[8] BARBER S A, MACKAY A D. Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fertilizer Research, 1986, 10(3):217-230.
doi: 10.1007/BF01049351
[9] 李庆逵. 现代磷肥研究的进展. 土壤学进展, 1986, 14(2):1-7.
LI Q K. Progress of modern phosphate fertilizer research. Progress in Soil Science, 1986, 14(2):1-7. (in Chinese)
[10] 李万春. 不同程度水氮磷耦合对冬小麦根系生理指标和解剖结构的影响[D]. 杨凌: 西北农林科技大学, 2012.
LI W C. Effects of water, N and P coupling on root physiological and anatomical features of winter wheat[D]. Yangling: Northwest A&F University, 2012. (in Chinese)
[11] 徐凌翔, 陈壬杰, 许海锦, 周元昌, 吴为人. 胁迫下的细胞程序性死亡鉴定有助于植物抗逆性. 科学通报, 2016, 61(8):809-818.
XU L X, CHEN R J, XU H J, ZHOU Y C, WU W R. Identifying stress-related programmed cell death improves research on plant resistance. Chinese Science Bulletin, 2016, 61(8):809-818. (in Chinese)
[12] VAN DOORN W G. Plant programmed cell death and the point of no return. Trends in Plant Science, 2005, 10(10):478-483.
doi: 10.1016/j.tplants.2005.08.003
[13] WU D, SHEN Q F, CAI S G, CHEN Z H, DAI F, ZHANG G P. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant and Cell Physiology, 2013, 54(12):1976-1988.
doi: 10.1093/pcp/pct134
[14] KOBAYASHI F, TAKUMI S, NAKATA M, OHNO R, NAKAMURA C. Comparative study of the expression profiles of the Cor/ Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiology Plantarum, 2004, 120(4):585-594.
doi: 10.1111/ppl.2004.120.issue-4
[15] BOWNE J B, ERWIN T A, JUTTNER J, SCHNURBUSCH T, LANGRIDGE P, BACIC A, ROESSNER U. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Molecular Plant, 2012, 5(2):418-429.
doi: 10.1093/mp/ssr114
[16] SPICKETT C M, SMIRNOFF N, RATCLIFFE R G. Metabolic response of maize roots to hyperosmotic shock: An in vivo P nuclear magnetic resonance study. Plant Physiology, 1992, 99(3):856-863.
doi: 10.1104/pp.99.3.856
[17] HARE P D, CRESS W A, STADEN J V. Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment, 1998, 21(6):535-553.
doi: 10.1046/j.1365-3040.1998.00309.x
[18] DENNISON K L, ROBERTSON W R, LEWIS B D, HIRSCH R E, SPALDING E P. Functions of AKT1and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiology, 2001, 127(3):1012-1019.
doi: 10.1104/pp.010193
[19] CHEN T H H, MURATA N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 2002, 5(3):250-257.
doi: 10.1016/S1369-5266(02)00255-8
[20] YASAR F, UZAL O, TUFENKCI S, YILDIZ K. Ion accumulation in different organs of green bean genotypes grown under salt stress. Plant Cell and Environment, 2006, 52(10):476-480.
[21] WANG H, ZHANG M S, GUO R, SHI D C, LIU B, LIN X Y, YANG C W. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biology, 2012, 12(1):194.
doi: 10.1186/1471-2229-12-194
[22] SELOTE D S, BHARTI S, CHOPRA R K. Drought acclimation reduces O2-accumulation and lipid peroxidation in wheat seedlings. Biochemical and Biophysical Research Communications, 2004, 314(3):724-729.
doi: 10.1016/j.bbrc.2003.12.157
[23] CURIE C, BRIAT J F. Iron transport and signaling in plants. Annual Review of Plant Biology, 2003, 54(1):183-206.
doi: 10.1146/arplant.2003.54.issue-1
[24] 杨丽丽. 铜胁迫对甜菜幼苗生长和光合特性的影响[D]. 济南:山东师范大学, 2013.
YANG L L. Effects of Cu2+ stress on growth and photosynthesis of Beta vulgaris[D]. Jinan: Shandong Normal University, 2013. (in Chinese)
[25] 李延, 刘星辉, 庄卫民. 植物Mg素营养生理的研究进展. 福建农业大学学报, 2000, 29(1):74-80.
LI Y, LIU X H, ZHUANG W M. Advances in magnesium nutritional physiology in plants. Journal of Fujian Agricultural University, 2000, 29(1):74-80. (in Chinese)
[26] 杨春武, 李长有, 张美丽, 刘杰, 鞠淼, 石德成. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5):1000-1005.
YANG C W, LI C Y, ZHANG M L, LIU J, JU M, SHI D C. pH and ion balance in wheat-wheatgrass under salt-or alkali stress. Chinese Journal of Applied Ecology, 2008, 19(5):1000-1005. (in Chinese)
[27] 魏永胜, 梁宗锁. 钾与提高作物抗旱性的关系. 植物生理学通讯, 2001, 37(6):576-580.
WEI Y S, LIANG Z S. Relationship between potassium and drought resistance of crops. Plant Physiology Communications, 2001, 37(6):576-580. (in Chinese)
[28] SADIQOV S T, AKBULUT M, EHMEDOV V. Role of Ca2+ in drought stress signaling in wheat seedlings. Biochemistry, 2002, 67(4):491-497.
[29] MAMRUTHA H M, SHARMA D, SUMANTH KUMAR K, VENKATESH K, TIWARI V, SHARMA I. Influence of diurnal irradiance variation on chlorophyll values in wheat: A comparative study using different chlorophyll meters. National Academy Science Letters-India, 2017, 40(3):221-224.
[30] 朱广廉. 植物生理学实验. 北京: 北京大学出版社, 1990: 76-100.
ZHU G L. Plant Physiology Experiments Beijing: Beijing University Press, 1990: 76-100. (in Chinese)
[31] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999: 146-322.
LU R K. Analytical Methods for Soil and Agrochemistry. Beijing: China Agricultural Science and Technology Press, 1999: 146-322. (in Chinese)
[32] 徐涛, 孔垂华, 胡飞. 胜红蓟化感作用研究Ⅲ.挥发油对不同营养水平下植物的化感作用. 应用生态学报, 1999, 10(6):748-750.
XU T, KONG C H, HU F. Allelopathy of Ageratum conyzoides Ⅲ. Allelopathic effects of volatile oil from Ageratum on plants under different nutrient levels. Chinese Journal of Applied Ecology, 1999, 10(6):748-750. (in Chinese)
[33] 王燕云, 郭剑, 陈小兰. 植物对磷缺乏的适应机理. 云南民族大学学报(自然科学版), 2008, 17(1):55-58.
WANG Y Y, GUO J, CHEN X L. Plant adaptation to nutrition P limitation. Journal of Yunnan University for Nationalities (Natural Science Edition), 2008, 17(1):55-58. (in Chinese)
[34] 李春俭. 植物对缺磷的适应性反应及其意义. 世界农业, 1999(7):35.
LI C J. Adaptive response of plants to phosphorus deficiency and its significance. World agriculture, 1999(7):35. (in Chinese)
[35] ZENG Z H, HUANG H H, HAN N, HUANG C Y, LANGRIDGE P, BIAN H W, ZHU M. Endopolyploidy levels in barley vary in different root types and significantly decrease under phosphorus deficiency. Plant Physiology and Biochemistry, 2017, 118(9):11-21.
doi: 10.1016/j.plaphy.2017.06.004
[36] HERMANS C, HAMMOND J P, WHITE P J, VERBRUGGEN N. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 2006, 11(12):610-617.
doi: 10.1016/j.tplants.2006.10.007
[37] SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by plants: From soil to cell. Plant Physiology, 1998, 116(2):447-453.
doi: 10.1104/pp.116.2.447
[38] CHAPINIII F S, BIELESKI R L. Mild phosphorus stress in barley and a related low-phosphorus-adapted barley grass: Phosphorus fractions and phosphate absorption in relation to growth. Physiologia Plantarum, 2010, 54(3):309-317.
doi: 10.1111/ppl.1982.54.issue-3
[39] HERNANDEZ G, RAMIREZ M, VALDES-LOPEZ O, TESFAYE M, GRAHAM M A, CZECHOWSKI T, SCHLERETH A, WANDREY M, ERBAN A, CHEUNG F. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiology, 2007, 144(2):752-767.
doi: 10.1104/pp.107.096958
[40] WILLIAMSON L C, RIBRIOUX S, FITTER A H, LEYSER H M O. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 2001, 126(2):875-882.
doi: 10.1104/pp.126.2.875
[41] BUCIO J L, RAMı́REZ A C, ESTRELLA L H. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 2003, 6(3):280-287.
doi: 10.1016/S1369-5266(03)00035-9
[42] MA Z, BASKIN T I, BROWN K M, LYNCH J P. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiology, 2003, 131(3):1381-1390.
doi: 10.1104/pp.012161
[43] KARTHIKEYAN A S, VARADARAJAN D K, JAIN A, HELD M A, CARPITA N C, Raghothama K G. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta, 2006, 225(4):907-918.
doi: 10.1007/s00425-006-0408-8
[44] 万东莉, 侯向阳, 丁勇, 任卫波, 王凯, 李西良, 万永青. 磷胁迫下羊草的响应及磷响应相关基因表达分析. 中国农业科学, 2019, 52(23):4215-4227.
WAN D L, HOU X Y, DING Y, REN W B, WANG K, LI X L, WAN Y Q. Response and the expression of Pi-responsive genes in Leymus chinensis under inorganic phosphate treatment. Scientia Agricultura Sinica, 2019, 52(23):4215-4227. (in Chinese)
[45] 郭安娜. 雷竹幼苗对磷胁迫的生理响应[D]. 杭州: 浙江农林大学, 2012.
GUO A N. Effects of phosphorus stress on physiology characteristics of phyllostachys praecox[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2012. (in Chinese)
[46] 隋方功, 于常春, 刘培利. 缺素培养对夏谷幼苗吸收磷钾钙镁的影响. 莱阳农学院学报, 1992, 9(3):205-210.
SUI F G, YU C C, LIU P L. Effects of nutrient deficient culture on the absorption of P, K, Ca and Mg of summer millet seedling. Journal of Laiyang Agricultural College, 1992, 9(3):205-210. (in Chinese)
[47] 都韶婷. 不同供磷水平对饭豆体内铁有效性的影响. 植物营养与肥料学报, 2010, 16(1):247-251.
DU S T. Effect of phosphorus supply on iron efficiency in rice bean(Vigna umbellata). Journal of PIant Nutrition and Fertilizers, 2010, 16(1):247-251. (in Chinese)
[48] WATT M, WEELE CMVD, MCCULLY M E, CANNY M J. Effects of local variations in soil moisture on hydrophobic deposits and dye diffusion in corn roots. Botanica Acta, 1996, 109(6):492-501.
doi: 10.1111/plb.1996.109.issue-6
[49] GONG J M, LEE D A, SCHROEDER J I. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences, 2003, 100(17):10118-10123.
[50] 汪洪, 汪立刚, 周卫, 金继运. 干旱条件下土壤中锌的有效性及与植物水分利用的关系. 植物营养与肥料学报, 2007, 13(6):1178-1184.
WANG H, WANG L G, ZHOU W, JIN J Y. Soil zinc availability under water stress condition and its relationship with plant water utilization: A review. Journal of PIant Nutrition and Fertilizers, 2007, 13(6):1178-1184. (in Chinese)
[51] 李仰锐, 隋方功, 徐卫红, 葛体达. 水分胁迫对夏玉米(收获期)中微量元素含量的影响. 莱阳农学院学报, 2005, 22(2):115-117.
LI Y R, SUI F G, XU W H, GE T D. Effects of water stress on contents of mid-element and micro-element in summer maize (harvest stage). Journal of Laiyang Agricultural College, 2005, 22(2):115-117. (in Chinese)
[52] 谭晓荣, 戴媛, 伏毅. 干旱对小麦幼苗Cu、Mn含量的影响及其机理研究. 干旱地区农业研究, 2010, 28(1):152-159.
TAN X R, DAI Y, FU Y. Effect of drought on content of copper and manganese in wheat seedlings and related mechanism. Agricultural Research in the Arid Areas, 2010, 28(1):152-159. (in Chinese)
[53] 饶立华, 覃莲祥, 朱玉贤, 谢学民. 硅对杂交稻形态结构和生理的效应. 植物生理学通讯, 1986, 6(3):20-24.
RAO L H, QIN L X, ZHU Y X, XIE X M. The effect of silicon on the morphological structure and physiology of hybrid rice. Plant Physiology Communications, 1986, 6(3):20-24. (in Chinese)
[54] 邱睿, 王兆, 王保莉, 曲东. 干旱胁迫下硫对小麦叶片GSH含量及GSH-PX活性的影响. 干旱地区农业研究, 2009, 27(2):148-152.
QIU R, WANG Z, WANG B L, QU D. Effect of sulphur on the content of GSH and the activity of GSH-PX in wheat leave under drought stress. Agricultural Research in the Arid Areas, 2009, 27(2):148-152. (in Chinese)
[55] NISAR N, LI L, LU S, KHIN N C, POGSON B J. Carotenoid metabolism in plants. Molecular Plant, 2015, 8(1):68-82.
doi: 10.1016/j.molp.2014.12.007
[56] HAVAUX M. Carotenoid oxidation products as stress signals in plants. Plant Journal, 2014, 79(4):597-606.
doi: 10.1111/tpj.2014.79.issue-4
[57] 贺窑青, 郑彩霞. 植物细胞周期调控对外界刺激的响应. 吉林林业科技, 2007, 36(4):3-9.
HE Y Q, ZHENG C X. The responses of plant cellcycle regulation to external stimulus. Journal of Jilin Forestry Science and Technology, 2007, 36(4):3-9. (in Chinese)
[1] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[2] LU Meng, HU FengMing, TU Yan, DIAO QiYu. Effects of Anemoside B4 on Growth Performance, Nutrition Digestion and Rumen Fermentation of Calves [J]. Scientia Agricultura Sinica, 2023, 56(4): 754-765.
[3] REN GuoDong, HAO XiaoYan, ZHANG XuanZi, LIU Sen, ZHANG HongXiang, TIAN GuangYuan, ZHANG JianXin. Effects of Guanidinoacetic Acid and Betaine Supplementation on Growth Performance, Rumen Fermentation and Blood Metabolites in Lambs [J]. Scientia Agricultura Sinica, 2023, 56(4): 766-778.
[4] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[5] WANG XiuJuan, GAO Han, LI HaiPeng, GAO Xue, SUN BaoZhong, CHENG Qiang, XU Lei, ZHANG YaPeng, LEI YuanHua, WEI Meng, LI SanLu, HU JunWei, ZHANG ChangQing, GAO HuiJiang, LI JunYa, ZHANG LuPei, CHEN Yan. Analysis of Growth Performance as well as Carcass and Meat Quality Traits in Pingliang Red Cattle [J]. Scientia Agricultura Sinica, 2023, 56(3): 559-571.
[6] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[7] LI XingXing, ZHOU GuoFu, LUO GuanYu, CHEN SiRong, ZHANG JinLong, CHEN GuoHua, ZHANG XiaoMing. Selection Preference and Adaptability of Bactrocera dorsalis to Different Varieties of Malus pumila [J]. Scientia Agricultura Sinica, 2023, 56(17): 3358-3371.
[8] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[9] CUI WeiNan, NIE ZhiGang, LI Guang, WANG Jun. Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm [J]. Scientia Agricultura Sinica, 2023, 56(12): 2274-2287.
[10] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[11] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[12] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[13] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[14] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[15] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
Full text



No Suggested Reading articles found!