Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 766-778.doi: 10.3864/j.issn.0578-1752.2023.04.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Guanidinoacetic Acid and Betaine Supplementation on Growth Performance, Rumen Fermentation and Blood Metabolites in Lambs

REN GuoDong1(), HAO XiaoYan1, ZHANG XuanZi1, LIU Sen1, ZHANG HongXiang2, TIAN GuangYuan1, ZHANG JianXin1()   

  1. 1College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Xianghe Lingshang Agriculture and Animal Husbandry Development Co., Ltd., Youyu 037200, Shanxi
  • Received:2021-11-23 Accepted:2022-01-21 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】This study was conducted to investigate the effects of dietary guanidinoacetic acid (GAA) and betaine (BT) on growth performance, rumen fermentation and blood metabolites in lambs, so as to provide a support for applying GAA and BT on ruminants. 【Method】Forty-eight 3-month-old Dorper×Thin-tailed Han F1 hybrid male lambs with similar body weight (22.03±1.3 kg; mean±SD) were randomly divided into 4 groups with a 2×2 factorial arrangement, and the experimental factors were GAA (0 or 900 mg/kg) and BT (0 or 5 g/day). Lambs in four groups were control group, GAA group, BT group and GAA+BT group, respectively. The feeding experiment lasted for 75 days with 15 days of adaptation. On the first day of the formal experiment period, the body weight (BW) before morning feeding was weighed as the initial BW, and each lamb were recorded accurately the amount of feed and residual of weight every day; at the end of the trial period, the blood samples were collected from the jugular vein, and final body weight (FBW) was weighed before morning feeding to calculate average daily gain (ADG), average daily feed intake (ADFI) and feed efficiency (FE). The blood serum was used for the determination of creatine metabolism indexes, homocysteine and lactate content. The rumen fluid was collected from all lambs at 3 hours after feeding at the end of the experiment, which were used to measured rumen fermentation parameters, digestive enzyme activity, and functional microorganisms. 【Result】(1) Compared to the control group, the addition of GAA in the diet did not significantly increase ADG (P>0.05), while the addition of BT increased ADG significantly (P<0.05). The addition of GAA or BT in the diet increased FE significantly (P<0.05), and GAA and BT had significant interaction on ADG and FE (P<0.05). (2) The rumen pH was decreased by addition of GAA or BT (P<0.05), and the concentration of propionic acid and total volatile fatty acid were increased by GAA or BT (P<0.05). There was no significant interaction between GAA and BT on rumen fermentation in lambs (P>0.05). (3) The addition of GAA or BT increased the populations of R. flavefaciens, F. succinogenes, B. fibrisolvens, and P. ruminicola (P<0.05), and decreased the populations of total protozoa (P<0.05). The addition of BT decreased the populations of total methanogens and had a tendency to increase the populations of Rb.Amylophilus (P<0.05, P=0.098). GAA had a tendency to decrease the populations of total methanogens (P=0.088). The addition of GAA and BT had no significant interaction effect on ruminal main functional microflora in lambs (P>0.05). (4) The activity of protease was increased by addition of GAA and BT (P<0.05). The addition of BT increased carboxymethyl-cellulase, xylanase and α-amylase activities (P<0.05), and had a tendency to increase cellobiase activity (P=0.075). GAA increased pectase activity (P<0.05), and had a tendency to increase α-amylase activitiy (P=0.056). The significant interaction effect between GAA and BT was observed on pectase (P<0.05). (5) The addition of GAA or BT increased the content of creatine in blood serum (P<0.05). The addition of GAA had a tendency to increase the concentration of homocysteine (Hcy) and to decrease L-arginine-glycine amidinotransferase (AGAT) (P=0.053, P=0.056). BT decreased the content of Hcy in blood serum, and had a tendency to increase creatine kinase (P=0.063). GAA and BT had no interactive significant effects on blood metabolites (P>0.05). 【Conclusion】In conclusion, the addition of GAA or BT promoted rumen fermentation, increased the populations of functional rumen microflora and microbial enzyme activity, elevated serum creatine levels, and decreased the content of homocysteine. However, the combination addition of GAA and BT did not further increase the performance of lambs when compared with the addition of GAA or BT alone.

Key words: guanidinoacetic acid, betaine, lambs, growth performance, rumen fermentation

Table 1

Composition and nutrient levels of the basal diet (air dry basis, %)"

原料 Ingredient 含量Content 营养水平 Nutrient level 2)
豆粕 Soybean meal 6.00 干物质 DM 93.41
棉籽粕 Cottonseed meal 4.00 粗蛋白质 CP 15.00
玉米胚芽粕 Corn germ meal 15.00 粗脂肪 EE 2.01
喷浆玉米皮 Sprayed corn husk 7.00 粗灰分 Ash 9.13
玉米 Corn 33.00 中性洗涤纤维 NDF 31.68
花生壳粉 Peanut shell powder 12.00 酸性洗涤纤维 ADF 18.03
葵花皮粉 Sunflower peel powder 12.00 钙 Ca 1.19
玉米秸秆 Corn straw 6.00 磷 P 0.48
预混料 Premix1) 5.00 代谢能 ME/(MJ·kg-1·kg-1) 9.98
总计Total 100.00

Table 2

Primer sequences of genes"

基因 Gene name 引物序列Primer sequence(5'→3') 产物大小 Product (bp) 参考文献 Reference
总菌
Total bacterial
F:CGGTGAATACGTTCYCGG
R:GGWTACCTTGTTACGACTT
123 DENMAN et al.[28]
总厌氧真菌
Total anaerobic fungi
F:GAGGAAGTAAAAGTCGTAACAAGGTTTC
R:CAAATTCACAAAGGGTAGGATGATT
120 LI et al.[10]
黄色瘤胃球菌
Flavefaciens
F:ATTGTCCCAGTTCAGATTGC
R:GGCGTCCTCATTGCTGTTAG
173 DENMAN et al.[28]
白色瘤胃球菌
Albus
F:CCCTAAAAGCAGTCTTAGTTCG
R:CCTCCTTGCGGTTAGAACA
176 KOIKE et al.[29]
产琥珀酸丝状杆菌
Succinogens
F:GGCGGGATTGAATGTACCTTGAGA
R:TCCGCCTGCCCCTGAACTATC
204 DENMAN et al.[28]
溶纤维丁酸弧菌
Fibrisolvens
F:TAACATGAGAGTTTGATCCTGGCTC
R:CGTTACTCACCCGTCCGC
136 FORSTER et al.[30]
嗜淀粉瘤胃杆菌
R. amylophilus
F:CTGGGGAGCTGCCTGAATG
R:GCATCTGAATGCGACTGGTTG
100 JAMI et al.[31]
栖瘤胃普雷沃氏菌
P. ruminicola
F:GAAAGTCGGATTAATGCTCTATGTTG R:CATCCTATAGCGGTAAACCTTTGG 74 JAMI et al.[31]
产甲烷菌
Methanogens
F:TTCGGTGGATCDCARAGRGC
R:GBARGTCGWAWCCGTAGAATCC
140 ZHANG et al.[32]
原虫
Protozoan
F:GCTTTCGWTGGTAGTGTATT
R:CTTGCCCTCYAATCGTWCT
223 ZHANG et al.[32]

Table 3

Effects of GAA and BT on growth performance of lambs"

项目
Item
BT- BT+ SEM PP value
GAA- GAA+ GAA- GAA+ BT GAA BT×GAA
初始体重 IBW (kg) 26.56 25.94 25.74 25.02 0.26 0.829 0.677 0.178
终末体重 FBW (kg) 44.80 46.21 46.11 45.10 0.39 0.890 0.786 0.106
平均日增重 ADG (g·d-1) 305.93Bb 337.11a 349.37Aa 337.15a 6.65 0.004 0.166 0.004
平均日采食量 ADFI (g·d-1) 1792.18 1672.30 1754.93 1688.42 24.87 0.831 0.072 0.590
饲料效率 FE 0.17b 0.20a 0.19a 0.20a 0.004 0.023 0.011 0.023

Table 4

Effects of GAA and BT on ruminal fermentation of lambs"

项目
Item
BT- BT+ SEM P P value
GAA- GAA+ GAA- GAA+ BT GAA BT×GAA
pH 6.16 6.00 5.98 5.66 0.062 0.021 0.028 0.411
总挥发酸 Total VFA (mmol·L-1) 96.52 109.88 101.76 122.35 2.660 0.012 <0.001 0.267
挥发酸组成(%,mol/100mol)
乙酸 Acetate (A) 48.29 50.03 49.73 53.47 1.000 0.234 0.183 0.619
丙酸 Propionate (P) 43.52 50.21 47.91 56.40 1.550 0.047 <0.001 0.719
丁酸 Butyrate 5.96 8.49 8.60 8.77 0.494 0.128 0.157 0.211
戊酸 Valerate 2.80 3.95 1.91 2.40 0.215 <0.001 0.010 0.249
异丁酸 Isobutyrate 0.32 0.29 0.29 0.22 0.019 0.202 0.185 0.507
异戊酸 Isovalerate 0.37 0.35 0.27 0.26 0.015 <0.001 0.630 0.570
乙丙比 A:P 1.00 0.98 0.97 0.97 0.014 0.539 0.871 0.820
氨态氮 NH3-N (mg/100 mL) 10.50 10.34 10.23 13.10 0.489 0.151 0.186 0.111

Table 5

Effects of GAA and BT on rumen microbial enzyme activity of lambs (U·mL-1)"

项目
Items
BT- BT+ SEM PP value
GAA- GAA+ GAA- GAA+ BT GAA BT×GAA
羧甲基纤维素酶 Carboxymethyl-cellulase 0.36 0.36 0.40 0.38 0.013 0.023 0.609 0.701
纤维二糖酶Cellobiase 0.53 0.59 0.63 0.60 0.016 0.075 0.611 0.176
木聚糖酶 Xylanase 0.67 0.70 0.80 0.86 0.025 0.002 0.274 0.681
果胶酶 Pectinase 2.99B 3.53A 3.79A 3.54A 0.071 <0.001 0.091 <0.001
α-淀粉酶 α-amylase 1.31 1.34 1.54 1.74 0.047 <0.001 0.056 0.158
蛋白酶 Protease 6.26 7.13 7.83 10.70 0.428 <0.001 0.005 0.112

Table 6

Effects of GAA and BT on ruminal microflora of lambs (U·mL-1)"

项目
Item
BT- BT+ SEM PP value
GAA- GAA+ GAA- GAA+ BT GAA BT×GAA
总细菌 Total bacteria, ×1011 2.42 2.48 2.02 2.09 0.184 0.317 0.864 0.980
总厌氧真菌 Total anaerobic fungi, ×109 2.62 3.64 3.71 3.86 0.251 0.195 0.245 0.392
瘤胃原虫 Total protozoa, ×106 2.49 0.87 0.88 0.60 0.241 0.036 0.033 0.125
瘤胃产甲烷菌 Total methanogens, ×108 1.56 1.50 1.28 0.55 0.131 0.011 0.085 0.138
白色瘤胃球菌 R. albus, ×108 1.25 1.81 1.62 2.09 0.213 0.470 0.257 0.918
黄色瘤胃球菌R. flavefaciens, ×109 1.34 2.68 2.62 4.59 0.331 0.002 0.001 0.476
产琥珀酸丝状杆菌 F. succinogenes, ×1010 0.40 1.11 1.03 1.34 0.120 0.042 0.019 0.318
溶纤维丁酸弧菌 B. fibrisolvens, ×1010 0.87 1.52 1.66 2.20 0.138 0.002 0.010 0.812
栖瘤胃普雷沃氏菌 P. ruminicola, ×1010 1.05 2.55 2.12 3.32 0.256 0.026 0.002 0.693
嗜淀粉瘤胃杆菌 Rb. amylophilus, ×108 2.55 2.77 3.25 3.98 0.572 0.098 0.649 0.399

Table 7

Effects of GAA and BT on serum biochemical parameters of lambs (U·mL-1)"

项目
Item
BT- BT+ SEM PP value
GAA- GAA+ GAA- GAA+ BT GAA BT×GAA
乳酸 Lactic acid (mmol·L-1) 1.42 1.72 1.85 1.73 0.070 0.109 0.508 0.119
肌酸 Creatine (µmol·L-1) 31.55 52.05 52.87 55.73 3.155 0.027 0.036 0.107
肌酸激酶 Creatine kinase (U·L-1) 91.41 95.57 96.42 97.86 1.056 0.063 0.182 0.232
L-精氨酸-甘氨酸脒基转移酶 AGAT (U·L-1) 106.61 95.12 101.38 88.36 3.140 0.327 0.056 0.900
S-腺苷蛋氨酸-胍基乙酸N-甲基转移酶 GAMT (U·L-1) 175.06 174.05 188.68 185.89 6.809 0.385 0.895 0.951
同型半胱氨酸 Hcy (µmol·L-1) 14.79 15.48 9.90 12.75 0.631 <0.001 0.053 0.221
[1]
OSTOJIC S M, OSTOJIC J, DRID P, VRANES M, JOVANOV P. Dietary guanidinoacetic acid increases brain creatine levels in healthy men. Nutrition, 2017, 33: 149-156. doi:10.1016/j.nut.2016.06.001.

doi: 10.1016/j.nut.2016.06.001.
[2]
JONCQUEL-CHEVALIER CURT M, VOICU P M, FONTAINE M, DESSEIN A F, PORCHET N, MENTION-MULLIEZ K, DOBBELAERE D, SOTO-ARES G, CHEILLAN D, VAMECQ J. Creatine biosynthesis and transport in health and disease. Biochimie, 2015, 119: 146-165. doi:10.1016/j.biochi.2015.10.022.

doi: 10.1016/j.biochi.2015.10.022.
[3]
OSTOJIC S M. Guanidinoacetic acid as a performance-enhancing agent. Amino Acids, 2016, 48(8): 1867-1875. doi:10.1007/s00726-015-2106-y.

doi: 10.1007/s00726-015-2106-y pmid: 26445773
[4]
OSTOJIC S M, DRID P, OSTOJIC J. Guanidinoacetic acid increases skeletal muscle creatine stores in healthy men. Nutrition (Burbank, Los Angeles County, Calif), 2016, 32(6): 723-724. doi:10.1016/j.nut.2015.11.006.

doi: 10.1016/j.nut. 2015.11.006.
[5]
WYSS M, KADDURAH-DAOUK R. Creatine and creatinine metabolism. Physiological Reviews, 2000, 80(3): 1107-1213. doi:10.1152/physrev.2000.80.3.1107.

doi: 10.1152/physrev.2000.80.3.1107 pmid: 10893433
[6]
TOSSENBERGER J, RADEMACHER M, NÉMETH K, HALAS V, LEMME A. Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poultry Science, 2016, 95(9): 2058-2067. doi:10.3382/ps/pew083.

doi: 10.3382/ps/pew083 pmid: 26994189
[7]
张俊玲, 张德福, 石凤云, 田耀耀, 杨立彬. 胍基乙酸在动物生产上的研究进展. 中国畜牧杂志, 2016, 52(4): 63-66. doi:10.3969/j.issn.0258-7033.2016.04.013.

doi: 10.3969/j.issn.0258-7033.2016.04.013.
ZHANG J L, ZHANG D F, SHI F Y, TIAN Y Y, YANG L B. Research process for guanidino acetic acid in animal production. Chinese Journal of Animal Science, 2016, 52(4): 63-66. doi:10.3969/j.issn.0258-7033.2016.04.013. (in Chinese)

doi: 10.3969/j.issn.0258-7033.2016.04.013.
[8]
刘笑梅, 郝小燕, 张宏祥, 杨立彬, 项斌伟, 张文佳, 张春香, 张建新. 饲粮中添加胍基乙酸对羔羊生长性能、屠宰性能和肉品质的影响. 动物营养学报, 2021, 33(3): 1565-1575. doi:10.3969/j.issn.1006-267x.2021.03.038.

doi: 10.3969/j.issn.1006-267x.2021.03.038
LIU X M, HAO X Y, ZHANG H X, YANG L B, XIANG B W, ZHANG W J, ZHANG C X, ZHANG J X. Effects of dietary guanidineacetic acid on growth performance, slaughter performance and meat quality of lambs. Chinese Journal of Animal Nutrition, 2021, 33(3): 1565-1575. doi:10.3969/j.issn.1006-267x.2021.03.038. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2021.03.038.
[9]
晁雅琳, 刘博, 寇启芳, 牛文智, 蒋红琴, 杨立彬, 张桂杰. 胍基乙酸对舍饲滩羊生长性能、屠宰性能、脂肪沉积及肌肉营养成分的影响. 动物营养学报, 2019, 31(1): 388-394. doi:10.3969/j.issn.1006-267x.2019.01.046.

doi: 10.3969/j.issn.1006-267x.2019.01.046.
CHAO Y L, LIU B, KOU Q F, NIU W Z, JIANG H Q, YANG L B, ZHANG G J. Effects of guanidine acetic acid on growth performance, slaughter performance, fat deposition and nutritional components in muscle of stabling tan sheep. Chinese Journal of Animal Nutrition, 2019, 31(1): 388-394. doi:10.3969/j.issn.1006-267x.2019.01.046. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2019.01.046.
[10]
LI S Y, WANG C, WU Z Z, LIU Q, GUO G, HUO W J, ZHANG J, CHEN L, ZHANG Y L, PEI C X, ZHANG S L. Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. Animal, 2020, 14(12): 2535-2542. doi:10.1017/ S1751731120001603.

doi: 10.1017/S1751731120001603.
[11]
LU Y F, ZOU T D, WANG Z R, YANG J, LI L H, GUO X B, HE Q, CHEN L L, YOU J M. Dietary guanidinoacetic acid improves the growth performance and skeletal muscle development of finishing pigs through changing myogenic gene expression and myofibre characteristics. Journal of Animal Physiology and Animal Nutrition, 2020, 104(6): 1875-1883. doi:10.1111/jpn.13351.

doi: 10.1111/jpn.13351.
[12]
刘洋, 李蛟龙, 张林, 高峰, 周光宏. 胍基乙酸和甜菜碱对育肥猪肌肉能量代谢和肉品质的影响. 畜牧兽医学报, 2015, 49(9): 1557- 1563. doi:10.11843/j.issn.0366-6964.2015.09.010.

doi: 10.11843/j.issn.0366-6964.2015.09.010.
LIU Y, LI J L, ZHANG L, GAO F, ZHOU G H. Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on muscle energy metabolism, meat quality in finishing pigs. Acta Veterinaria et Zootechnica Sinica, 2015, 49(9): 1557-1563. doi:10.11843/j.issn.0366-6964.2015.09.010. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2015.09.010.
[13]
STEAD L M, AU K P, JACOBS R L, BROSNAN M E, BROSNAN J T. Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. American Journal of Physiology Endocrinology and Metabolism, 2001, 281(5): E1095- E1100. doi:10.1152/ajpendo.2001.281.5.E1095.

doi: 10.1152/ajpendo.2001.281.5.E1095.
[14]
EDISON E E, BROSNAN M E, MEYER C, BROSNAN J T. Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. American Journal of Physiology Renal Physiology, 2007, 293(6): F1799-F1804. doi:10.1152/ajprenal.00356.2007.

doi: 10.1152/ajprenal.00356.2007.
[15]
GRANT M S, MIESNER M D, TITGEMEYER E C. 208 Effects of supplemental guanidinoacetic acid, creatine, and choline on protein deposition and methyl group metabolites in growing steers. Journal of Animal Science, 2020, 98(Supplement_4): 147. doi:10.1093/jas/skaa278.268.

doi: 10.1093/jas/skaa278.268.
[16]
CHENG K F, WANG C, ZHANG G W, DU H S, WU Z Z, LIU Q, GUO G, HUO W J, ZHANG J, CHEN L, PEI C X. Effects of betaine and rumen-protected folic acid supplementation on lactation performance, nutrient digestion, rumen fermentation and blood metabolites in dairy cows. Animal Feed Science and Technology, 2020, 262: 114445. doi:10.1016/j.anifeedsci.2020.114445.

doi: 10.1016/j.anifeedsci.2020.114445.
[17]
WANG C, LIU C, ZHANG G W, DU H S, WU Z Z, LIU Q, GUO G, HUO W J, ZHANG J, PEI C X, CHEN L, ZHANG S L. Effects of rumen-protected folic acid and betaine supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls. The British Journal of Nutrition, 2020, 123(10): 1109-1116. doi:10.1017/S0007114520000331.

doi: 10.1017/S0007114520000331 pmid: 31992377
[18]
YU L H, JIN Y Q, CUI H H, LUO Y, DONG L, WANG H R. Effects of dietary rumen-protected betaine supplementation on the antioxidant status of lambs. Livestock Science, 2020, 237: 104026. doi:10.1016/j.livsci.2020.104026.

doi: 10.1016/j.livsci.2020.104026.
[19]
OBEID R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients, 2013, 5(9): 3481-3495. doi:10.3390/nu5093481.

doi: 10.3390/nu5093481 pmid: 24022817
[20]
MCFADDEN J W, GIRARD C L, TAO S, ZHOU Z, BERNARD J K, DUPLESSIS M, WHITE H M. Symposium review: one-carbon metabolism and methyl donor nutrition in the dairy cow. Journal of Dairy Science, 2020, 103(6): 5668-5683. doi:10.3168/jds.2019-17319.

doi: S0022-0302(20)30254-X pmid: 32278559
[21]
刘洁. 肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究[D]. 北京: 中国农业科学院, 2012.
LIU J. Prediciton of metabolizable energy and metabolizable protein in feeds for meat sheep[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[22]
严淑红, 赵士萍, 蒋琦晖, 方洛云, 周敏, 闵婉平, 蒋林树. 茶皂素对奶牛瘤胃发酵及瘤胃微生物区系的影响. 动物营养学报, 2016, 28(8): 2485-2496.

doi: 10.3969/j.issn.1006-267x.2016.08.020
YAN S H, ZHAO S P, JIANG Q H, FANG L Y, ZHOU M, MIN W P, JIANG L S. Effects of tea saponin on rumen fermentation and rumen microflora of dairy cows. Chinese Journal of Animal Nutrition, 2016, 28(8): 2485-2496. (in Chinese)
[23]
金亚倩, 赵俊星, 刘文忠, 任有蛇, 张春香, 张文佳, 项斌伟, 张建新. 酿酒葡萄皮渣对绵羊瘤胃代谢及发育的影响. 畜牧兽医学报, 2017, 48(9): 1683-1693. doi:10.11843/j.issn.0366-6964.2017.09.013.

doi: 10.11843/j.issn.0366-6964.2017.09.013.
JIN Y Q, ZHAO J X, LIU W Z, REN Y S, ZHANG C X, ZHANG W J, XIANG B W, ZHANG J X. Effect of dietary wine grape pomace supplementation on rumen metabolism and development in lambs. Acta Veterinaria et Zootechnica Sinica, 2017, 48(9): 1683-1693. doi:10.11843/j.issn.0366-6964.2017.09.013. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2017.09.013.
[24]
AGARWAL N, KAMRA D N, CHAUDHARY L C, AGARWAL I, SAHOO A, PATHAK N N. Microbial status and rumen enzyme profile of crossbred calves fed on different microbial feed additives. Letters in Applied Microbiology, 2002, 34(5): 329-336. doi:10.1046/j.1472-765x.2002.01092.x.

doi: 10.1046/j.1472-765x.2002.01092.x pmid: 11967054
[25]
MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31(3): 426-428. doi:10.1021/ac60147a030.

doi: 10.1021/ac60147a030.
[26]
YU Z T, MORRISON M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques, 2004, 36(5): 808-812. doi:10.2144/04365ST04.

doi: 10.2144/04365ST04 pmid: 15152600
[27]
KONGMUN P, WANAPAT M, PAKDEE P, NAVANUKRAW C. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livestock Science, 2010, 127(1): 38-44. doi:10.1016/j.livsci.2009.08.008.

doi: 10.1016/j.livsci.2009.08.008.
[28]
DENMAN S E, MCSWEENEY C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572-582. doi:10.1111/j.1574-6941.2006.00190.x.

doi: 10.1111/j.1574-6941.2006.00190.x pmid: 17117998
[29]
KOIKE S, KOBAYASHI Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 2001, 204(2): 361-366. doi:10.1016/S0378- 1097(01)00428-1.

doi: 10.1016/S0378-1097(01)00428-1.
[30]
FORSTER R J, TEATHER R M, GONG J, DENG S J.16s rDNA analysis of Bufyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Letters in Applied Microbiology, 1996, 23(4): 218-222. doi:10.1111/j.1472-765x.1996.tb00069.x.

doi: 10.1111/j.1472-765x.1996.tb00069.x.
[31]
JAMI E, MIZRAHI I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS One, 2012, 7(3): e33306. doi:10.1371/journal.pone.0033306.

doi: 10.1371/journal.pone.0033306.
[32]
ZHANG C M, GUO Y Q, YUAN Z P, WU Y M, WANG J K, LIU J X, ZHU W Y. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology, 2008, 146(3/4): 259-269. doi:10.1016/j.anifeedsci.2008.01.005.

doi: 10.1016/j. anifeedsci.2008.01.005.
[33]
任国栋, 郝小燕, 刘森, 张宏祥, 武喜明, 耿海霞, 张洪亮, 张春香, 张建新. 胍基乙酸和甜菜碱对公羔生长发育、屠宰性能和肉品质的影响. 动物营养学报, 2021, 33(12): 6899-6909. doi:10.3969/j.issn. 1006? 267x.2021.12.031.

doi: 10.3969/j.issn.1006-267x.2021.12.031
REN G D, HAO X Y, LIU S, ZHANG H X, WU X M, GENG H X, ZHANG H L, ZHANG C X, ZHANG J X. Effects of guanidineacetic acid and betaine on growth and development, slaughter performance and meat quality of lambs. Chinese Journal of Animal Nutrition, 2021, 33(12): 6899-6909. doi:10.3969/j.issn.1006? 267x.2021.12.031. (in Chinese)

doi: 10.3969/j.issn.1006? 267x.2021.12.031.
[34]
SPEER H F, PEARL K A, TITGEMEYER E C. Relative bioavailability of guanidinoacetic acid delivered ruminally or abomasally to cattle. Journal of Animal Science, 2020, 98(9): skaa282. doi:10.1093/jas/skaa282.

doi: 10.1093/jas/skaa282.
[35]
ARDALAN M, BATISTA E D, TITGEMEYER E C. Effect of post- ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle. Journal of Animal Science, 2020, 98(3): skaa072. doi:10.1093/jas/skaa072.

doi: 10.1093/jas/skaa072.
[36]
NAKAI T, SATO T, TERAMURA M, SADOYA H, OHTANI M, TAKAHASHI T, KIDA K, HIDAKA S. The effect of a continuous supply of betaine on the degradation of betaine in the rumen of dairy cows. Bioscience, Biotechnology, and Biochemistry, 2013, 77(3): 666-669. doi:10.1271/bbb.120839.

doi: 10.1271/bbb.120839.
[37]
MITCHELL A D, CHAPPELL A, KNOX K L. Metabolism of betaine in the ruminant. Journal of Animal Science, 1979, 49(3): 764-774. doi:10.2527/jas1979.493764x.

doi: 10.2527/jas1979.493764x. pmid: 528435
[38]
DONG L, JIN Y Q, CUI H H, YU L H, LUO Y, WANG S N, WANG H R. Effects of diet supplementation with rumen-protected betaine on carcass characteristics and fat deposition in growing lambs. Meat Science, 2020, 166: 108154. doi:10.1016/j.meatsci.2020.108154.

doi: 10.1016/j.meatsci.2020.108154.
[39]
刘凯. 甜菜碱和过瘤胃脂肪对育肥羊生产性能和肌肉脂肪酸组成的影响[D]. 兰州: 兰州大学, 2016.
LIU K. Effects of betaine and rumen protected fat on the performance and the muscle fatty acids composition of finishing sheep[D]. Lanzhou: Lanzhou University, 2016. (in Chinese)
[40]
DONG L, ZHONG Z X, CUI H H, WANG S N, LUO Y, YU L H, LOOR J J, WANG H R. Effects of rumen-protected betaine supplementation on meat quality and the composition of fatty and amino acids in growing lambs. Animal, 2020, 14(2): 435-444. doi:10.1017/S1751731119002258.

doi: 10.1017/S1751731119002258 pmid: 31588891
[41]
李文娟, 刁其玉. 肉羊日粮干物质采食量及其影响因素的研究进展. 中国畜牧杂志, 2016, 52(19): 95-99.
LI W J, DIAO Q Y. Research progress on dry matter intake of mutton sheep and related influencing factors. Chinese Journal of Animal Science, 2016, 52(19): 95-99. (in Chinese)
[42]
辛均平, 李美发, 王江北, 丁鹏举, 王世辉, 柏峻, 赵二龙, 瞿明仁, 许兰娇. 胍基乙酸对锦江黄牛瘤胃体外发酵参数的影响. 中国饲料, 2020(1): 15-18. doi:10.15906/j.cnki.cn11-2975/s.20200103.

doi: 10.15906/j.cnki.cn11-2975/s.20200103.
XIN J P, LI M F, WANG J B, DING P J, WANG S H, BAI J, ZHAO E L, QU M R, XU L J. Effect of thioglycolic acid on rumen in vitro fermentation parameters of Jinjiang cattle. China Feed, 2020(1): 15-18. doi:10.15906/j.cnki.cn11-2975/s.20200103. (in Chinese)

doi: 10.15906/j.cnki.cn11-2975/s.20200103.
[43]
JAYARAMAN B, LA K V, LA H, DOAN V, CARPENA E M, RADEMACHER M, CHANNARAYAPATNA G. Supplementation of guanidinoacetic acid to pig diets: effects on performance, carcass characteristics, and meat quality. Journal of Animal Science, 2018, 96(6): 2332-2341. doi:10.1093/jas/sky137.

doi: 10.1093/jas/sky137 pmid: 29873760
[44]
MAJDEDDIN M, GOLIAN A, KERMANSHAHI H, DE SMET S, MICHIELS J. Guanidinoacetic acid supplementation in broiler chickens fed on corn-soybean diets affects performance in the finisher period and energy metabolites in breast muscle independent of diet nutrient density. British Poultry Science, 2018, 59(4): 443-451. doi:10.1080/00071668.2018.1476678.

doi: 10.1080/00071668.2018.1476678 pmid: 29756995
[45]
MENDONÇA I B, WATANABE P H, SILVA B A N, BOIAGO M M, PANISSON J C, ANDRADE T S, CAMPOS A C N, MELLO M A S P. Dietary supplementation of guanidinoacetic acid for sows and their progenies: Performance, blood parameters and economic viability at nursery phase. Livestock Science, 2019, 227: 105-110. doi:10.1016/j. livsci.2019.07.011.

doi: 10.1016/j. livsci.2019.07.011.
[46]
WANG Y, MCALLISTER T A. Rumen microbes, enzymes and feed digestion-A review. Asian-Australasian Journal of Animal Sciences, 2002, 15(11): 1659-1676. doi:10.5713/ajas.2002.1659.

doi: 10.5713/ajas.2002.1659.
[47]
王丽芳, 斯琴毕力格, 敖长金. 黄花蒿提取物对奶牛瘤胃发酵指标的影响. 中国农业科学, 2018, 51(23): 4548-4555. doi:10.3864/j.issn. 0578-1752.2018.23.013.

doi: 10.3864/j.issn. 0578-1752.2018.23.013.
WANG L F, SIQINBILIGE, AO C J. The effects of Artemisia annua extracts on the rumen fermentation in dairy cows. Scientia Agricultura Sinica, 2018, 51(23): 4548-4555. doi:10.3864/j.issn.0578-1752.2018.23.013. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.23.013.
[48]
郑玮才, 郝小燕, 张宏祥, 项斌伟, 张文佳, 张春香, 张建新. 饲粮添加酿酒酵母和地衣芽孢杆菌对绵羊生长性能与瘤胃发酵的影响. 中国农业科学, 2020, 53(16): 3385-3393. doi:10.3864/j.issn.0578-1752.2020.16.015.

doi: 10.3864/j.issn.0578-1752.2020.16.015.
ZHENG W C, HAO X Y, ZHANG H X, XIANG B W, ZHANG W J, ZHANG C X, ZHANG J X. Effects of Saccharomyces cerevisiae and Bacillus licheniformis on growth performance and rumen fermentation in sheep. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393. doi:10.3864/j.issn.0578-1752.2020.16.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.16.015.
[49]
王金飞, 杨国义, 樊子菡, 刘旗, 张鹏程, 任有蛇, 杨春合, 张春香. 饲粮中全株玉米青贮比例对杜湖杂交母羔生长性能、瘤胃发酵、养分消化率及血清学指标的影响. 中国农业科学, 2021, 54(4): 831-844. doi:10.3864/j.issn.0578-1752.2021.04.014.

doi: 10.3864/j.issn.0578-1752.2021.04.014.
WANG J F, YANG G Y, FAN Z H, LIU Q, ZHANG P C, REN Y S, YANG C H, ZHANG C X. Effects of whole plant corn silage ratio in diet on growth performance, rumen fermentation, nutrient digestibility and serological parameters of dorper × hu crossbred female lambs. Scientia Agricultura Sinica, 2021, 54(4): 831-844. doi:10.3864/j.issn.0578-1752.2021.04.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.04.014.
[50]
LIU C, WANG C, ZHANG J, LIU Q, GUO G, HUO W J, PEI C X, CHEN L, ZHANG Y L. Guanidinoacetic acid and betaine supplementation have positive effects on growth performance, nutrient digestion and rumen fermentation in Angus bulls. Animal Feed Science and Technology, 2021, 276: 114923. doi:10.1016/j.anifeedsci. 2021.114923.

doi: 10.1016/j.anifeedsci.2021.114923.
[51]
RATRIYANTO A, MOSENTHIN R. Osmoregulatory function of betaine in alleviating heat stress in poultry. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1634-1650. doi:10.1111/jpn.12990.

doi: 10.1111/jpn.12990 pmid: 30238641
[52]
ZHAO G F, HE F, WU C L, LI P, LI N Z, DENG J P, ZHU G Q, REN W K, PENG Y Y. Betaine in inflammation: mechanistic aspects and applications. Frontiers in Immunology, 2018, 9: 1070. doi:10.3389/ fimmu.2018.01070.

doi: 10.3389/fimmu.2018.01070 pmid: 29881379
[53]
RATRIYANTO A, MOSENTHIN R, JEZIERNY D, EKLUND M. Effect of graded levels of dietary betaine on ileal and total tract nutrient digestibilities and intestinal bacterial metabolites in piglets. Journal of Animal Physiology and Animal Nutrition, 2010, 94(6): 788-796. doi:10.1111/j.1439-0396.2009.00965.x.

doi: 10.1111/j.1439-0396.2009.00965.x pmid: 20455968
[54]
OSTOJIC S M. Tackling guanidinoacetic acid for advanced cellular bioenergetics. Nutrition, 2017, 34: 55-57. doi:10.1016/j.nut.2016.09.010.

doi: S0899-9007(16)30217-9 pmid: 28063512
[55]
韩昊奇, 刘大程, 高民, 胡红莲, 谢昌贤, 邓维康, 刘运添, 王鹏飞, 卢德勋. 不同NFC/NDF比对奶山羊瘤胃微生物及瘤胃pH变化的影响. 动物营养学报, 2011, 23(4): 597-603. doi:10.3969/j.issn.1006-267x.2011.04.010.

doi: 10.3969/j.issn.1006-267x.2011.04.010.
HAN H Q, LIU D C, GAO M, HU H L, XIE C X, DENG W K, LIU Y T, WANG P F, LU D X. Effects of different dietary NFC/NDF ratios on ruminal microorganisms and pH in dairy goats. Acta Zoonutrimenta Sinica, 2011, 23(4): 597-603. doi:10.3969/j.issn.1006-267x.2011.04.010. (in Chinese)

doi: 10.3969/j.issn.1006-267x.2011.04.010.
[56]
STUMM C K, GIJZEN H J, VOGELS G D. Association of methanogenic bacteria with ovine rumen ciliates. British Journal of Nutrition, 1982, 47(1): 95-99. doi:10.1079/bjn19820013.

doi: 10.1079/bjn19820013. pmid: 6800402
[57]
DOHME F, MACHMULLER A, ESTERMANN B L, PFISTER P, WASSERFALLEN A, KREUZER M. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Letters in Applied Microbiology, 1999, 29(3): 187-192. doi:10.1046/j.1365-2672.1999.00614.x.

doi: 10.1046/j.1365-2672.1999.00614.x.
[58]
MCALLISTER T A, NEWBOLD C J. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 2008, 48(2): 7. doi:10.1071/ea07218.

doi: 10.1071/ea07218.
[59]
KUMAR S, DAGAR S S, PUNIYA A K, UPADHYAY R C. Changes in methane emission, rumen fermentation in response to diet and microbial interactions. Research in Veterinary Science, 2013, 94(2): 263-268. doi:10.1016/j.rvsc.2012.09.007.

doi: 10.1016/j.rvsc.2012.09.007 pmid: 23046919
[60]
KING G M. Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Applied and Environmental Microbiology, 1984, 48(4): 719-725. doi:10.1128/aem.48.4.719-725.1984.

doi: 10.1128/aem.48.4.719-725.1984 pmid: 16346640
[61]
MU C T, YANG W J, WANG P J, ZHAO J X, HAO X Y, ZHANG J X. Effects of high-concentrate diet supplemented with grape seed proanthocyanidins on growth performance, liver function, meat quality, and antioxidant activity in finishing lambs. Animal Feed Science and Technology, 2020, 266: 114518. doi:10.1016/j.anifeedsci.2020.114518.

doi: 10.1016/j.anifeedsci.2020.114518.
[62]
郝小燕, 牟春堂, 乔栋, 张暄梓, 杨文军, 赵俊星, 张春香, 张建新. 葡萄籽原花青素对羔羊瘤胃发酵、血清炎症及抗氧化指标的影响. 中国农业科学, 2021, 54(10): 2239-2248. doi:10.3864/j.issn.0578-1752.2021.10.019.

doi: 10.3864/j.issn.0578-1752.2021.10.019.
HAO X Y, MU C T, QIAO D, ZHANG X Z, YANG W J, ZHAO J X, ZHANG C X, ZHANG J X. Effects of high-concentrate diet supplemented with grape seed proanthocyanidins on rumen fermentation, inflammatory and antioxidant indicators of rumen and serum in lambs. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248. doi:10.3864/j.issn.0578-1752.2021.10.019. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.10.019.
[1] LU Meng, HU FengMing, TU Yan, DIAO QiYu. Effects of Anemoside B4 on Growth Performance, Nutrition Digestion and Rumen Fermentation of Calves [J]. Scientia Agricultura Sinica, 2023, 56(4): 754-765.
[2] WANG XiuJuan, GAO Han, LI HaiPeng, GAO Xue, SUN BaoZhong, CHENG Qiang, XU Lei, ZHANG YaPeng, LEI YuanHua, WEI Meng, LI SanLu, HU JunWei, ZHANG ChangQing, GAO HuiJiang, LI JunYa, ZHANG LuPei, CHEN Yan. Analysis of Growth Performance as well as Carcass and Meat Quality Traits in Pingliang Red Cattle [J]. Scientia Agricultura Sinica, 2023, 56(3): 559-571.
[3] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[4] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[5] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[6] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[7] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[8] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[9] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[10] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[11] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[12] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
[13] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[14] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[15] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!