Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 265-279.doi: 10.3864/j.issn.0578-1752.2022.02.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot

DUAN CanXing1(),CAO YanYong2,DONG HuaiYu3,XIA YuSheng1,LI Hong4,HU QingYu1,YANG ZhiHuan1,WANG XiaoMing1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
    2Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    3Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161
    4Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
  • Received:2021-07-12 Accepted:2021-08-30 Online:2022-01-16 Published:2022-01-26

Abstract:

【Objective】The objective of this study is to establish and perfect the method for precise characterization of maize germplasm resistance to Pythium stalk rot (PSR) and Gibberella stalk rot (GSR), and then precisely evaluate maize accessions with rich genetic background for resistance to stalk rot, and to screen out resistant germplasm and provide valuable resources to the maize community for enhancing disease resistance. 【Method】The total of 2 004 maize accessions with extensive genetic background were identified for resistance to stalk rot in multi-plot demonstration for three years under natural condition in order to preliminarily screen out germplasm with resistance or other excellent traits. Using drilling inoculation, precise evaluation of 690 maize germplasm for resistance to PSR and GSR was conducted at 6 different sites from 2018 to 2020. 【Result】During 2016-2018, 508 accessions with different resistance to stalk rot were identified at multiple sites in non-inoculated fields, including 79, 106, and 323 highly resistant, resistant, and moderately resistant germplasm, respectively. The method of drilling inoculation at the base of stem for precise characterization of maize resistance to stalk rot was established and perfected. Correlation coefficient (r) between soil inoculation and drilling inoculation for screening of maize resistance to PSR was 0.87, with 0.84 for GSR, indicating strong correlation between maize resistance to stalk rot identified by drilling inoculation and soil inoculation. Compared with soil inoculation, the severity of stalk rot on maize treated with drilling inoculation is higher. The precise resistance evaluation of 690 maize accessions to PSR was conducted with drilling inoculation at 6 different environments in Changping of Beijing, Changge of Henan, and Yuanyang of Henan from 2018 to 2020. The incidence of PSR was considerable and the majority of accessions were susceptible or highly susceptible, merely 3.5% of maize exhibited stable PSR resistance. Correlation coefficient of maize resistance to PSR between any two sites among six different environments varied from 0.46 to 0.72. The r values between two sites in 2018, 2019, and 2020 were 0.66, 0.60, and 0.65, respectively. The r values between pairwise annual comprehensive resistance to PSR among 3 years were 0.67, 0.84, and 0.87, indicating the resistance reaction of 690 maize accessions to PSR exhibited good consistency among different environments. A total of 24 maize germplasm expressed stable resistance to PSR, such as Jizi H676, Liao 2235, Jizi 14L88, Jizi 14L101, Dan 337, M02N-23, Y1747, HRB16232, and T628358, and so on. During 2018-2020, 690 maize resources were precisely identified for resistance to GSR with drilling inoculation at 6 different environments in Shenyang of Liaoning, Lishu of Jilin, and Gongzhuling of Jilin. The results indicated GSR on maize accessions in Shenyang was severe, with the majority of maize expressing susceptibility or high susceptibility, while it was significantly slight in Lishu and Gongzhuling. Correlation coefficient of GSR resistance in 690 maize germplasm between any two sites among six environments ranged from 0.00 to 0.76. The r values between two sites in 2018, 2019, and 2020 were 0.12, 0.04, and 0.05, respectively, indicating considerable differences in GSR resistance at two sites. The r values between pairwise annual comprehensive resistance to GSR among 3 years were 0.40, 0.74, and 0.72, showing annual comprehensive GSR resistance in 690 maize accessions were relatively consistent. The six-point experimental data showed that 5 accessions (Jizi C32, Liao 785, Liao 2235, Jizi 1034, and 16SD088) exhibited stable resistance to GSR. The r value of 0.44 between PSR and GSR resistance in 690 maize germplasm indicated moderate correlation between two stalk rot resistances. 【Conclusion】The resistance level of 2004 maize accessions to stalk rot was determined at multiple environments under natural conditions. The method of drilling inoculation at the base of stem for precise characterization of maize germplasm resistance to stalk rot was established and validated. The precise resistance characterization of 690 maize accessions to PSR and GSR was performed with drilling inoculation at 6 different environments among 3 years. Twenty-four and five maize germplasm expressed stable resistance to PSR and GSR at diverse sites among 3 years, respectively, which were important sources for breeding stalk rot resistant varieties or improvement of cultivar resistance.

Key words: maize germplasm, Pythium stalk rot, Gibberella stalk rot, drilling inoculation, non-inoculated resistance identification, precise characterization

Table 1

Classification of disease score of maize resistance to stalk rot"

病情分级Scale 描述Description
1 病原物未从接种处扩展 No visible spread of the pathogen from inoculation point
3 病斑扩展面积占接种茎节总面积1%—25% 1%-25% of inoculated internode symptomatic
5 病斑扩展面积占接种茎节总面积26%—50% 26%-50% of inoculated internode symptomatic
7 病斑扩展面积占接种茎节总面积51%—75% 51%-75% of inoculated internode symptomatic
9 病斑扩展面积占接种茎节总面积76%—100%,或扩展至相邻茎节
76%-100% of inoculated internode symptomatic, or spread to adjacent internodes

Table 2

The criteria of evaluation of maize resistance to stalk rot"

茎腐病平均病情级别SRSA 抗性Resistance
≤1.5 高抗HR
1.6—3.5 抗R
3.6—5.5 中抗MR
5.6—7.5 感S
7.6—9.0 高感HS

Table 3

Some maize germplasm with different levels of resistance to stalk rot from naturally infected identification during 2016-2018"

名称 Name 发病率 Incidence (%) 抗性 Resistance 名称 Name 发病率 Incidence (%) 抗性 Resistance
冀资H676 Jizi H676 27.3 MR G285 0.0 HR
C89 0.0 HR 郑32P75 Zheng32P75 7.1 R
冀资14L88 Jizi 14L88 26.7 MR HRB16074 0.0 HR
16SD069 0.0 HR 冀资C32 Jizi C32 23.1 MR
丹337 Dan 337 16.0 MR 辽785 Liao 785 20.8 MR
M02N-23 27.3 MR 辽2235 Liao 2235 8.3 R
Y1747 9.1 R 吉资1034 Jizi 1034 28.6 MR
陇1627 Long 1627 24.3 MR 郑507 Zheng 507 14.2 MR
16NS545 7.1 R 郑134 Zheng 134 7.7 R
丹599 Dan 599 4.2 HR 214CTS 0.0 HR
吉资1046 Jizi1046 0.0 HR 5N76 4.2 HR
郑696 Zheng 696 21.4 MR C89 0.0 HR
HRB16232 15.4 MR Y378 4.5 HR
T628358 0.0 HR 161085 0.0 HR
W314 3.8 HR 121842 9.2 R
X48B 4.8 HR Ds-12a 3.8 HR
辽50482 Liao 50482 0.0 HR X901 3.6 HR
15-5C22 25.0 MR 浚248 Xun 248 3.8 HR
16Y1327-6 7.1 R 487 12.5 MR
PH6JM 3.4 HR F33 12.5 MR
PHPMO 0.0 HR 辽785 Liao 785 0.0 HR
273 0.0 HR Pa91 0.0 HR
沈135 Shen 135 9.1 R MC7549 4.2 HR
16SD088 16.7 MR 铁0519 Tie0519 8.3 R
Y1711 4.8 HR X324 0.0 HR
Y1720 0.0 HR Y1630 4.2 HR
Y1754 4.2 HR H050 0.0 HR
T5551 20.0 MR YCM 14.3 MR
T5553 16.7 MR YCF 15.4 MR

Fig. 1

Inoculation of maize stalk rot A: Soil inoculation; B: Drilling inoculation"

Fig. 2

Correlation analysis between soil inoculation and drilling inoculation for screening of maize resistance to stalk rot A: Pythium stalk rot, PSR; B: Gibberella stalk rot, GSR"

Fig. 3

The symptom of maize Pythium stalk rot in the field A: Resistant; B: Highly susceptible"

Fig. 4

The symptom of maize stalk pith tissues caused by Pythium stalk rot A: Resistant; B: Highly susceptible"

Fig. 5

Correlation analysis between maize resistance to PSR at different environments during 2018-2020 A: Pairwise comparisons between any two sites among six ones; B: Pairwise comparisons between three annual comprehensive resistance"

Table 4

Twenty-four maize germplasm with stable resistance to Pythium stalk rot from precise characterization during 2018-2020"

材料名称
Name
2018 2019 2020 最高抗级Scale 综合抗性Resistance 杂种优势群Heterotic group
北京昌平Changping, Beijing 河南长葛Changge, Henan 北京昌平Changping, Beijing 河南原阳Yuanyang, Henan 北京昌平Changping, Beijing 河南原阳Yuanyang, Henan
冀资H676 Jizi H676 5.0 4.7 4.7 5.5 5.3 3.0 5.5 MR SS
辽2235 Liao 2235 5.3 4.9 5.1 3.7 4.4 5.5 5.5 MR PB
冀资14L88 Jizi 14L88 3.9 3.5 4.7 4.0 4.7 4.5 4.7 MR NSS
冀资14L101 Jizi 14L101 4.3 3.0 3.8 4.3 3.3 4.2 4.3 MR NSS
丹337 Dan 337 3.9 3.1 5.5 2.8 - - 5.5 MR PB
M02N-23 5.1 3.5 5.5 3.0 - - 5.5 MR 混合群Mixed
Y1747 5.2 5.4 4.9 4.5 - - 5.4 MR 混合群Mixed
16SD088 4.2 3.2 3.9 4.2 - - 4.2 MR 混合群Mixed
Pa91 4.5 4.7 4.8 4.8 - - 4.8 MR 混合群Mixed
陇1627 Long 1627 - - - - 5.5 5.3 5.5 MR
16NS545 - - - - 1.4 3.5 3.5 R Iodent
郑507 Zheng 507 - - - - 5.5 4.6 5.5 MR NSS
郑134 Zheng 134 - - - - 4.5 3.6 4.5 MR NSS
郑696 Zheng 696 - - - - 4.7 3.4 4.7 MR NSS
HRB16232 - - - - 3.3 3.1 3.3 R NSS
T628358 - - - - 2.8 3.4 3.4 R SS
161085 - - - - 3.1 2.7 3.1 R NSS
121842 - - - - 4.3 2.4 4.3 MR 混合群Mixed
辽50482 Liao 50482 - - - - 4.3 3.2 4.3 MR NSS
15-5C22 - - - - 4.5 3.5 4.5 MR
16Y1327-6 - - - - 4.7 3.9 4.7 MR NSS
487 - - - - 3.5 3.0 3.5 R 混合群Mixed
F33 - - - - 5.3 4.5 5.3 MR NSS
273 - - - - 5.3 2.4 5.3 MR NSS

Fig. 6

The symptom of maize stem pith tissues caused by Gibberella stalk rot A: Resistant; B: Highly susceptible"

Fig. 7

Correlation analysis between maize resistance to GSR at different environments during 2018-2020 A: Pairwise comparisons between any two sites among six ones; B: Pairwise comparisons between three annual comprehensive resistance"

Table 5

Five maize germplasm with stable resistance to Gibberella stalk rot from precision identification during 2018-2020"

材料名称
Name
2018 2019 2020 最高抗级Scale 综合抗性Resistance 杂种优势群Heterotic group
吉林梨树Lishu,
Jilin
辽宁沈阳Shenyang, Liaoning 吉林公主岭Gongzhuling, Jilin 辽宁沈阳Shenyang, Liaoning 吉林公主岭Gongzhuling, Jilin 辽宁沈阳Shenyang, Liaoning
冀资C32 Jizi C32 1.3 4.6 3.6 4.0 3.8 4.6 4.6 MR 混合群Mixed
辽785 Liao 785 3.0 4.4 3.3 4.3 3.1 4.8 4.8 MR PB
辽2235 Liao 2235 1.6 3.3 4.2 3.6 3.8 4.4 4.4 MR PB
吉资1034 Jizi 1034 3.1 3.8 3.8 4.5 - - 4.5 MR Lancaster
16SD088 1.0 3.8 2.7 3.6 - - 3.8 MR 混合群Mixed

Fig. 8

Correlation analysis between PSR and GSR resistance in 690 maize germplasm"

[1] DEUTSCH C A, TEWKSBURY J J, TIGCHELAAR M, BATTISTI D S, MERRILL S C, HUEY R B, NAYLOR R L. Increase in crop losses to insect pests in a warming climate. Science, 2018, 361:916-919.
doi: 10.1126/science.aat3466
[2] SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019, 3:430-439.
[3] 王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1):1-11.
WANG Z Y, WANG X M. Current status and management strategies for corn pests and diseases in China. Plant Protection, 2019, 45(1):1-11. (in Chinese)
[4] 中国农业科学院植物保护研究所, 中国植物保护学会. 中国农作物病虫害(第3版). 北京: 中国农业出版社, 2015: 570-664.
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China Society of Plant Protection. Crop Diseases and Insect Pests in China, 3rd edn. Beijing: China Agriculture Press, 2015: 570-664. (in Chinese)
[5] 杨洋, 陈国康, 郭成, 张炜, 孙素丽, 王晓鸣, 朱振东, 段灿星. 玉米种质资源抗腐霉茎腐病鉴定. 作物学报, 2018, 44(8):1256-1260.
doi: 10.3724/SP.J.1006.2018.01256
YANG Y, CHEN G K, GUO C, ZHANG W, SUN S L, WANG X M, ZHU Z D, DUAN C X. Identification of maize germplasm for resistance to Pythium stalk rot. Acta Agronomica Sinica, 2018, 44(8):1256-1260. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01256
[6] 吴全安, 梁克恭, 朱小阳, 王晓鸣, 金加同, 王桂跃. 北京和浙江地区玉米青枯病病原菌的分离与鉴定. 中国农业科学, 1989, 22(5):71-75.
WU Q A, LIANG K G, ZHU X Y, WANG X M, JIN J T, WANG G Y. Isolation and identification of the pathogen of maize stalk rot in Beijing and Zhejiang. Scientia Agricultura Sinica, 1989, 22(5):71-75. (in Chinese)
[7] 刘树森, 马红霞, 郭宁, 石洁, 张海剑, 孙华, 金戈. 黄淮海夏玉米主产区茎腐病主要病原菌及优势种分析. 中国农业科学, 2019, 52(2):262-272.
LIU S S, MA H X, GUO N, SHI J, ZHANG H J, SUN H, JIN G. Analysis of main pathogens and dominant species of maize stalk rot in the main summer maize producing areas of Huang-Huai-Hai. Scientia Agricultura Sinica, 2019, 52(2):262-272. (in Chinese)
[8] JONG-HWAN SHIN J K, HAN J H, LEE J K, KIM K S. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathology Journal, 2014, 30(4):397-406.
[9] PE M E, GIANFRANCESCHI L, TARAMINO G, TARCHINI R, ANGELINI P, DANI M, BINELLI G. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Molecular Genetics and Genomics, 1993, 241:11-16.
[10] 郭翼奋, 梁再群, 黄洪, 卢锦钊, 冯克珊, 陈崇森. 南繁玉米茎腐病发生危害情况调查. 植物保护, 1994, 20(4):9-11.
GUO Y F, LIANG Z Q, HUANG H, LU J Z, FENG K S, CHEN C S. Investigation on the occurrence and damage of corn stalk rot in the Nanfan areas. Plant Protection, 1994, 20(4):9-11. (in Chinese)
[11] KHOKHAR M K, HOODA K S, SHARMA S S, SINGH V. Post flowering stalk rot complex of maize - present status and future prospects. Maydica, 2014, 59:226-242.
[12] 王晓鸣, 晋齐鸣, 石洁, 王作英, 李晓. 玉米病害发生现状与推广品种抗性对未来病害发展的影响. 植物病理学报, 2006, 36:1-11.
WANG X M, JIN Q M, SHI J, WANG Z Y, LI X. The status of maize diseases and the possible effect of variety resistance on disease occurrence in the future. Acta Phytopathologica Sinica, 2006, 36:1-11. (in Chinese)
[13] 郭成, 王宝宝, 杨洋, 王春明, 周天旺, 李敏权, 段灿星. 玉米茎腐病研究进展. 植物遗传资源学报, 2019, 20:1118-1128.
GUO C, WANG B B, YANG Y, WANG C M, ZHOU T W, LI M Q, DUAN C X. Advances in studies of maize stalk rot. Journal of Plant Genetic Resources, 2019, 20:1118-1128. (in Chinese)
[14] 王富荣, 石秀清. 玉米品种抗茎腐病鉴定. 植物保护学报, 2000, 24:59-62.
WANG F R, SHI X Q. Identification for resistance of maize cultivars to stalk rot. Journal of Plant Protection, 2000, 24:59-62. (in Chinese)
[15] 孙淑琴, 杨秀荣, 田涛. 玉米茎腐病抗性鉴定接种方法研究. 天津农业科学, 2012, 18:160-162.
SUN S Q, YANG X R, TIAN T. Study on inoculation method of corn stalk rot resistance identification. Tianjin Agricultural Sciences, 2012, 18:160-162. (in Chinese)
[16] 宋燕春, 裴二芹, 石云素, 王天宇, 黎裕. 玉米重要自交系的肿囊腐霉茎腐病抗性鉴定与评价. 植物遗传资源学报, 2012, 13:798-802.
SONG Y C, PEI E Q, SHI Y S, WANG T Y, LI Y. Identification and evaluation of resistance to stalk rot (Pythium inflatum Matthews) in important inbred lines of maize. Journal of Plant Genetic Resources, 2012, 13:798-802. (in Chinese)
[17] 段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东. 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015, 16:947-954.
DUAN C X, WANG X M, WU X F, YANG Z H, SONG F J, ZHAO L P, SUN S L, ZHU Z D. Analysis of maize accessions resistance to Pythium Stalk rot and Fusarium ear rot. Journal of Plant Genetic Resources, 2015, 16:947-954. (in Chinese)
[18] 杨洋, 郭成, 孙素丽, 陈国康, 朱振东, 王晓鸣, 段灿星. 玉米抗腐霉茎腐病种质标记基因型鉴定与遗传多样性分析. 植物遗传资源学报, 2019, 20(6):1418-1427.
YANG Y, GUO C, SUN S L, CHEN G K, ZHU Z D, WANG X M, DUAN C X. Marker-assisted identification and genetic diversity analysis of maize germplasm resources with resistance to Pythium stalk rot. Journal of Plant Genetic Resources, 2019, 20(6):1418-1427. (in Chinese)
[19] SONG F J, XIAO M G, DUAN C X, LI H J, ZHU Z D, LIU B T, SUN S L, WANG X M. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319. Molecular Genetics and Genomics, 2015, 290(4):1543-1549.
doi: 10.1007/s00438-015-1019-5
[20] DUAN C X, SONG F J, SUN S L, GUO C, ZHU Z D, WANG X M. Characterization and molecular mapping of two novel genes resistance to Pythium stalk rot in maize. Phytopathology, 2019, 109:804-809.
doi: 10.1094/PHYTO-09-18-0329-R
[21] 余辉, 宋伟, 赵久然, 王凤格, 吴金凤. 分子标记辅助选择育成的玉米自交系京24单抗丝黑穗病和茎腐病改良材料性状分析. 分子植物育种, 2014, 12(1):56-61.
YU H, SONG W, ZHAO J R, WANG F G, WU J F. Characters analysis on resistance improved materials of Jing24 single-resistance to head smut and stalk rot bred with molecular marker-assisted selection. Molecular Plant Breeding, 2014, 12(1):56-61. (in Chinese)
[22] LEDENČAN T, ŠIMIĆ D, BRKIĆ I, JAMBROVIĆ A, ZDUNIĆ Z. Resistance of maize inbreds and their hybrids to Fusarium stalk rot. Czech Journal of Genetics and Plant Breeding, 2003, 39(1):15-20.
doi: 10.17221/CJGPB
[23] SANTIAGO R, REID L M, ZHU X, BUTRO’N A, MALVAR R A. Gibberella stalk rot (Fusarium graminearum) resistance of maize inbreds and their F1 hybrids and their potential for use in resistance breeding programs. Plant Breeding, 2010, 129:454-456.
[24] 渠清, 李丽娜, 刘俊, 王绍新, 曹志艳, 董金皋. 我国部分常用玉米种质资源对镰孢菌病害的抗性评价. 中国农业科学, 2019, 52(17):2962-2971.
QU Q, LI L N, LIU J, WANG S X, CAO Z Y, DONG J G. Resistance evaluation of some commonly used maize germplasm resources to Fusarium diseases in China. Scientia Agricultura Sinica, 2019, 52(17):2962-2971. (in Chinese)
[25] AFOLABI C G, OJIAMBO P S, EKPO E J A, MENKIR A, BANDYOPADHYAY R. Novel sources of resistance to Fusarium stalk rot of maize in tropical Africa. Plant Disease, 2008, 92:772-780.
doi: 10.1094/PDIS-92-5-0772
[26] 赵子麒, 赵雅琪, 林昌朋, 赵永泽, 余宇潇, 孟庆立, 曾广莹, 薛吉全, 杨琴. 48份玉米自交系抗病性的精准鉴定. 中国农业科学, 2021, 54(12):2510-2522.
ZHAO Z Q, ZHAO Y Q, LIN C P, ZHAO Y Z, YU Y X, MENG Q L, ZENG G Y, XUE J Q, YANG Q. Precise evaluation of 48 maize inbred lines to major diseases. Scientia Agricultura Sinica, 2021, 54(12):2510-2522. (in Chinese)
[27] 王晓鸣, 孙世贤, 石洁, 李晓, 晋齐鸣. 第6部分: 腐霉茎腐病(NY/T 1248.6-2016)//玉米抗病虫性鉴定技术规范. 北京: 中国农业出版社, 2017.
WANG X M, SUN S X, SHI J, LI X, JIN Q M. Part 6: Pythium stalk rot (NY/T 1248.6-2016)//Technical Specification on Evaluation of Maize Resistance to Pests. Beijing: China Agriculture Press, 2017. (in Chinese)
[28] 石洁, 孙世贤, 王晓鸣, 李晓, 晋齐鸣. 第7部分: 镰孢茎腐病(NY/T 1248.7-2016)//玉米抗病虫性鉴定技术规范. 北京: 中国农业出版社, 2017.
SHI J, SUN S X, WANG X M, LI X, JIN Q M. Part 7: Fusarium and Gibberella stalk rot (NY/T 1248.7-2016)//Technical Specification on Evaluation of Maize Resistance to Pests. Beijing: China Agriculture Press, 2017. (in Chinese)
[29] 段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报, 2020, 46(8):1135-1145.
doi: 10.3724/SP.J.1006.2020.03003
DUAN C X, DONG H Y, LI X, LI H, LI G H, SUN S L, ZHU Z D, WANG X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agronomica Sinica, 2020, 46(8):1135-1145. (in Chinese)
doi: 10.3724/SP.J.1006.2020.03003
[30] SUN Y, RUAN X, MA L, WANG F, GAO X. Rapid screening and evaluation of maize seedling resistance to stalk rot caused by Fusarium spp. Bio-protocol, 2018, 8(10):e2859.
[31] 崔智博, 陶烨, 王丽娟, 刘培斌, 董怀玉. 玉米种质对镰孢菌茎腐病的表型抗性鉴定. 辽宁农业科学, 2019(1):75-77.
CUI Z B, TAO Y, WANG L J, LIU P B, DONG H Y. Identification of maize germplasm for resistance to Gibberella stalk rot. Liaoning Agricultural Sciences, 2019(1):75-77. (in Chinese)
[32] YANG Q, YIN G, GUO Y, ZHANG D, CHEN S, XU M. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2010, 121:673-687.
doi: 10.1007/s00122-010-1339-0
[33] CHEN Q, SONG J, DU W P, XU L Y, JIANG Y, ZHANG J, XIANG X L, YU G R. Identification, mapping, and molecular marker development for Rgsr8.1: A new quantitative trait locus conferring resistance to Gibberella stalk rot in maize (Zea mays L.). Frontiers in Plant Science, 2017, 8:1355.
doi: 10.3389/fpls.2017.01355
[1] QU Qing,LI LiNa,LIU Jun,WANG ShaoXin,CAO ZhiYan,DONG JinGao. Resistance Evaluation of Some Commonly Used Maize Germplasm Resources to Fusarium Diseases in China [J]. Scientia Agricultura Sinica, 2019, 52(17): 2962-2971.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!