Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3412-3419.doi: 10.3864/j.issn.0578-1752.2023.17.014

• HORTICULTURE • Previous Articles     Next Articles

Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping

LI MinJi(), LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing()   

  1. Beijing Academy of Forestry and Pomology Sciences/Key Laboratory of Urban Agriculture (North China),Ministry of Agriculture and Rural Affairs, Beijing 100093
  • Received:2023-01-13 Accepted:2023-03-09 Online:2023-09-01 Published:2023-09-08
  • Contact: WEI QinPing

Abstract:

【Objective】 The effects of five different planting distances from the original planting line on the growth of young apple trees of G935 dwarf self-heeling rootstock Miyato Fuji were investigated and studied for four consecutive years, and the resistance to repeated cropping of G935 dwarf self-heeling rootstock grafted Miyato Fuji was evaluated, so as to provide a theoretical basis for the renewal of old and inefficient apple orchards and the upgrading of cultivation models in China. 【Method】 In the spring of 2018, the 12-year-old apple tree (Miyato Fuji/SH6/seedling stock) was planted, without soil sterilization, adding organic fertilizer, chemical fertilizer and biological microbial fertilizer, and the G935 dwarf self-rooting stock Miyato Fuji seedlings (2-year root and 1-year dry) were directly planted at different distances (0, 0.5, 1, 1.5 and 2 m) from the original planting line, and the fine spinning hammer tree shape was used for pruning. The differences in tree growth, leaf function, early flowering and early fruiting, and fruit yield and quality of young trees of G935 dwarf self-rooting rootstock Miyato Fuji were investigated under 5 treatments for 4 consecutive years after planting. 【Result】 Under the condition of replanting, there was no significant difference in the growth, leaf function, early flowering and early fruiting, and fruit yield and quality of G935 dwarf self-rooting rootstock Miyato Fuji at different distances from the original planting line. Within 4 years after replanting, with the growth of tree age, the height, trunk diameter and number of main branches of Fuji trees under five treatments increased year by year. In the fourth year after replanting, the average number of main branches in each treatment reached more than 30. From the second year of planting, the proportion of long branches under each treatment decreased year by year, and the proportion of short branches increased year by year. In the fourth year of continuous cropping, there was no significant difference in the growth of new shoots, chlorophyll content of leaves, net photosynthetic rate and one hundred leaves weight (fresh weight and dry weight) of Fuji trees under different treatments; the average yield per plant and fruit quality (average fruit weight, fruit shape index, titratable acid content, soluble solid content, and fruit solid-acid ratio) of Fuji fruit under all treatments were similar, without significant difference. 【Conclusion】 Under the condition of replanting in continuous cropping, there was no significant difference in the growth, leaf function, early flowering and early fruiting, fruit yield and quality of the young trees planted with G935 dwarf self-rooting rootstock Miyato Fuji at different distances from the original planting line four years before planting. The branch composition of the trees in each treatment was reasonable, the tree vigor was moderate and not weak, the flowering was early, and the fruit quality was good. G935 was suitable for replanting in continuous cropping, and the effect of resistance to repeated cropping was not affected by the distance from the original planting line.

Key words: continuous cropping cultivation, G935 rootstock, dwarfing rootstock, Miyato Fuji apple, tree growth, fruit yield

Fig. 1

Annual changes of tree height, trunk thickness and number of main branches of G935 Miyato Fuji planted at different distances from the original planting line under continuous cropping conditions Statistical multiple comparison was according to the Duncan’s test, The same lowercase letters indicate no significant difference (P>0.05). The same as below"

Fig. 2

Annual changes of branch composition of G935 Miyato Fuji apple trees planted at different distances from the original planting line under continuous cropping conditions"

Table 1

Differences in leaf quality of G935 Miyato Fuji apple trees planted at different distances from the original planting line in the fourth year of continuous cropping"

不同处理
Different treatments
新梢长度
Length of new branches (cm)
叶绿素含量
Chlorophyll content (mg∙g-1)
净光合速率
Net photosynthesis rate (μmol·m-2·s-1)
百叶重鲜重
Fresh weight of one
hundred leaves (g)
百叶重干重
Dry weight of one
hundred leaves (g)
0 m 61.5a 65.21a 12.39a 103.28a 36.99a
0.5 m 58.9a 66.14a 12.24a 104.57a 37.08a
1 m 59.4a 65.21a 12.07a 106.47a 37.24a
1.5 m 61.1a 65.48a 12.17a 102.89a 36.92a
2 m 60.7a 66.39a 12.19a 103.66a 37.11a

Table 2

Differences in flower formation of G935 Miyato Fuji apple trees planted at different distances from the original planting line"

不同处理
Different treatments
成花株率 The rate of flowering plant (%)
2020年 2021年
0 m 24.6a 100a
0.5 m 21.9a 100a
1 m 20.8a 100a
1.5 m 21.6a 100a
2 m 20.7a 100a

Table 3

Differences in fruit yield and quality of G935 Miyato Fuji apple planted at different distances from the original planting line in the fourth year of continuous cropping"

不同处理
Different treatments
平均单株产量
The average yield of single plant (kg)
平均单果重
Mean fruit mass
(g)
果形指数
Fruit figure index
可溶性固形物含量
Soluble solids
(%)
可滴定酸含量
Titratable acidity (%)
固酸比
TSS/TA
0 m 10.98±1.63a 211.47a 0.86a 16.4a 0.30a 54.33a
0.5 m 11.08±1.74a 218.18a 0.85a 16.4a 0.29a 56.21a
1 m 10.69±2.02a 223.50a 0.85a 15.9a 0.29a 54.83a
1.5 m 11.32±1.39a 224.93a 0.84a 16.0a 0.28a 57.14a
2 m 10.88±2.41a 216.87 a 0.86a 16.2a 0.30a 54.00a
[1]
韩明玉. 苹果矮砧集约高效栽培模式. 果农之友, 2009(9): 12.
HAN M Y. Intensive and efficient cultivation mode of apple dwarf rootstock. Fruit Growers’ Friend, 2009(9): 12. (in Chinese)
[2]
DI VAIO C, CIRILLO C, BUCCHERI M, LIMONGELLI F. Effect of interstock (M.9 and M.27) on vegetative growth and yield of apple trees (cv “Annurca”). Scientia Horticulturae, 2009, 119(3): 270-274.

doi: 10.1016/j.scienta.2008.08.019
[3]
LICZNAR-MALANCZUK M. Influence of planting and training systems on fruit yield in apple orchard. Journal of Fruit and Ornamental Plant Research, 2004, 12(Suppl.): 97-104.
[4]
ROBINSON T L, HOYING S A, REGINATO G H. The tall spindle planting system: Principles and performance. Acta Horticulturae, 2011, 903: 571-579.
[5]
马宝焜, 徐继忠, 孙建设. 关于我国苹果矮砧密植栽培的思考. 果树学报, 2010, 27(1): 105-109.
MA B K, XU J Z, SUN J S. Consideration for high density planting with dwarf rootstocks in apple in China. Journal of Fruit Science, 2010, 27(1): 105-109. (in Chinese)
[6]
李丙智. 中国苹果矮砧栽培现状与栽培技术要求. 落叶果树, 2020, 52(6): 1-3.
LI B Z. Present situation and technical requirements of apple dwarf stock cultivation in China. Deciduous Fruits, 2020, 52(6): 1-3. (in Chinese)
[7]
赵建戟. 壮根肥土是渭北大龄苹果园的当务之急. 西北园艺, 2009(6): 4-5.
ZHAO J J. Strengthening roots and fertilizing soil is the top priority of the older apple orchard in Weibei. Northwest Horticulture, 2009(6): 4-5. (in Chinese)
[8]
宁安中. 衰老期苹果园更新技术. 北方果树, 2012(4): 34-35.
NING A Z. Regeneration technology of apple orchard in aging period. Northern Fruits, 2012(4): 34-35. (in Chinese)
[9]
李晶, 王新语, 张焕春, 张学勇, 刘美英, 李淑平, 姜中武. 脱毒红将军苹果品种在重茬果园的栽培表现与果实品质分析. 安徽农业科学, 2018, 46(13): 59-60, 82.
LI J, WANG X Y, ZHANG H C, ZHANG X Y, LIU M Y, LI S P, JIANG Z W. Cultivation performance and fruit quality of virus-free red general apple variety in replanted orchard. Journal of Anhui Agricultural Sciences, 2018, 46(13): 59-60, 82. (in Chinese)
[10]
毛志泉, 沈向. 苹果重茬(连作)障碍防控技术. 烟台果树, 2016(4): 26-27.
MAO Z Q, SHEN X. Prevention and control technology of apple continuous cropping obstacle. Yantai Fruits, 2016(4): 26-27. (in Chinese)
[11]
黄翠香, 毛志泉, 韩甜甜, 张文会, 夏燕飞, 王荣, 沈向. 有机营养活化发酵液处理重茬土壤对苹果幼树生长的影响. 中国农学通报, 2013, 29(1): 178-182.
HUANG C X, MAO Z Q, HAN T T, ZHANG W H, XIA Y F, WANG R, SHEN X. The effect of the cropping soil disposed with the fermentation fluid of organic materials on the growth of young apple trees. Chinese Agricultural Science Bulletin, 2013, 29(1): 178-182. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2012-2593
[12]
PAWLICKI N, WELANDER M. Adventitious shoot regeneration from leaf segments of in vitro cultured shoots of the apple rootstock Jork 9. Journal of Horticultural Science, 1994, 69(4): 687-696.

doi: 10.1080/14620316.1994.11516501
[13]
RABI F, RAB A, RAHMAN K U, MUNIR M, BOSTAN N. Response of apple cultivars to graft take success on apple rootstock. Journal of Biology, Agriculture and Healthcare, 2014, 4(3): 78-84.
[14]
AUTIO W R, BARRITT B H, CLINE J A, CRASSWELLER R M, EMBREE C G, FERREE D C, GARCIA M E, GREENE G M, HOOVER E E, JOHNSON R S, KOSOLA K, MASABNI J, PARKER M L, PERRY R L, REIGHARD G L, ROBINSON T L, SEELEY S D, WARMUND M. Early performance of ‘Fuji’ and ‘mcintosh’ apple trees on several dwarf rootstocks in the 1999 nc-140 rootstock trial. Acta Horticulturae, 2007, 732: 119-126.
[15]
JACKSON JOHN E. World-wide development of high density planting in research and practice. Acta Horticulturae, 1989, 243: 17-28.
[16]
CZYNCZYK A C, OMIECINSKA B. Effect of new rootstocks of Polish, Russian and czechoslovakian breeds and two depth of planting of trees with interstems on growth and cropping of 3 apple cultivars. Acta Horticulturae, 1989, 243: 71-78.
[17]
ZAGAJA S W. Performance of two apple cultivars on pseries dwarf rootstocks. Acta Horticulturae, 1981, 114: 162-169.
[18]
ISUTSA D K, MERWIN I A. Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. HortScience, 2000, 35(2): 262-268.
[19]
LEINFELDER M M, MERWIN I A. Rootstock selection, preplant soil treatments, and tree planting positions as factors in managing apple replant disease. HortScience, 2006, 41(2): 394-401.

doi: 10.21273/HORTSCI.41.2.394
[20]
ZHU Y M, SHAO J, ZHOU Z, DAVIS R E. Comparative transcriptome analysis reveals a preformed defense system in apple root of a resistant genotype of G.935 in the absence of pathogen. International Journal of Plant Genomics, 2017, 2017: 1-14.
[21]
FAZIO G, ALDWINCKLE H S, ROBINSON T L, CUMMINS J. (315) Geneva® 935: A new fire blight resistant, semidwarfing apple rootstock. HortScience, 2005, 40(4): 1027.
[22]
FAZIO G, ALDWINCKLE H, ROBINSON T, CUMMINS J. (314) Geneva® 41: A new fire blight resistant, dwarf apple rootstock. HortScience, 2005, 40(4): 1027.
[23]
李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 张军科, 周佳, 魏钦平. 4种矮化砧木对再植苹果幼树生长、产量和品质的影响. 中国农业科学, 2020, 53(11): 2264-2271. doi: 10.3864/j.issn.0578-1752.2020.11.012.

doi: 10.3864/j.issn.0578-1752.2020.11.012
LI M J, ZHANG Q, LI X L, ZHOU B B, YANG Y Z, ZHANG J K, ZHOU J, WEI Q P. Effects of 4 dwarfing rootstocks on growth, yield and fruit quality of ‘Fuji’ sapling in apple replant orchard. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271. doi: 10.3864/j.issn.0578-1752.2020.11.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.11.012
[24]
张春禹. 不同苹果矮化自根砧的抗重茬和抗旱性比较研究[D]. 杨凌: 西北农林科技大学, 2017.
ZHANG C Y. Comparative study on the resistance to continuous cropping and drought of different dwarf apple rootstocks[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[25]
赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.
ZHAO S J. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[26]
何平, 李林光, 王海波, 常源升. 5个矮化中间砧对‘沂水红’’宫藤富士’苹果生长、结果和叶片矿质元素积累的影响. 中国农业科学, 2018, 51(4): 750-757. doi: 10.3864/j.issn.0578-1752.2018.04.014.

doi: 10.3864/j.issn.0578-1752.2018.04.014
HE P, LI L G, WANG H B, CHANG Y S. Effects of five dwarfing interstocks on shoot growth, fruiting and accumulation of mineral elements in leaves of Yishui red fuji apple. Scientia Agricultura Sinica, 2018, 51(4): 750-757. doi: 10.3864/j.issn.0578-1752.2018.04.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.04.014
[27]
高登涛, 郭景南, 魏志峰, 范庆锦, 杨朝选. 中部地区两类矮砧密植苹果园生产效率及光照质量评价. 中国农业科学, 2012, 45(5): 909-916. doi: 10.3864/j.issn.0578-1752.2012.05.011.

doi: 10.3864/j.issn.0578-1752.2012.05.011
GAO D T, GUO J N, WEI Z F, FAN Q J, YANG C X. Evaluation of productivity and light quality in two high density dwarf rootstock apple orchards in central China. Scientia Agricultura Sinica, 2012, 45(5): 909-916. doi: 10.3864/j.issn.0578-1752.2012.05.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.05.011
[28]
董建波. 苹果矮砧密植园个体与群体参数研究[D]. 保定: 河北农业大学, 2010.
DONG J B. Study on individual and population parameters of apple dwarf rootstock close planting garden[D]. Baoding: Hebei Agricultural University, 2010. (in Chinese)
[29]
张强, 魏钦平, 尚志华, 刘松忠, 王小伟. 北京地区矮砧苹果园优质丰产树体结构和光照状况分析. 果树学报, 2013, 30(4): 586-590.
ZHANG Q, WEI Q P, SHANG Z H, LIU S Z, WANG X W. Analysis of tree structure and relative light intensity in apple orchard with dwarf interstock for good qualities and high yield in Beijing region. Journal of Fruit Science, 2013, 30(4): 586-590. (in Chinese)
[30]
李民吉, 张强, 李兴亮, 周贝贝, 孙健, 张军科, 魏钦平. 五个SH系矮化中间砧对‘‘宫藤富士’’苹果树体生长、产量和品质的影响. 中国农业科学, 2016, 49(22): 4419-4428. doi: 10.3864/j.issn.0578-1752.2016.22.014.

doi: 10.3864/j.issn.0578-1752.2016.22.014
LI M J, ZHANG Q, LI X L, ZHOU B B, SUN J, ZHANG J K, WEI Q P. Effect of five different dwarfing interstocks of SH on growth, yield and quality in ‘Fuji’ apple trees. Scientia Agricultura Sinica, 2016, 49(22): 4419-4428. doi: 10.3864/j.issn.0578-1752.2016.22.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.22.014
[31]
张强, 魏钦平, 刘松忠, 王小伟, 尚志华, 路瑾瑾. SH6矮化中间砧‘宫藤富士’苹果幼树至结果初期树冠结构、产量和品质的形成. 中国农业科学, 2013, 46(9): 1874-1880. doi: 10.3864/j.issn.0578-1752.2013.09.015.

doi: 10.3864/j.issn.0578-1752.2013.09.015
ZHANG Q, WEI Q P, LIU S Z, WANG X W, SHANG Z H, LU J J. Formation of canopy structure, yield and fruit quality of ‘Fuji’ apple with SH6 dwarf interstock from juvenility to fruiting early stage. Scientia Agricultura Sinica, 2013, 46(9): 1874-1880. doi: 10.3864/j.issn.0578-1752.2013.09.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.09.015
[32]
李民吉, 张强, 李兴亮, 周贝贝, 杨雨璋, 周佳, 张军科, 魏钦平. SH6矮化中间砧‘宫藤富士’苹果不同树形对树体生长和果实产量、品质的影响. 中国农业科学, 2017, 50(19): 3789-3796. doi: 10.3864/j.issn.0578-1752.2017.19.015.

doi: 10.3864/j.issn.0578-1752.2017.19.015
LI M J, ZHANG Q, LI X L, ZHOU B B, YANG Y Z, ZHOU J, ZHANG J K, WEI Q P. Effect of three different tree shapes on growth, yield and fruit quality of ‘Fuji’ apple trees on dwarfing interstocks. Scientia Agricultura Sinica, 2017, 50(19): 3789-3796. doi: 10.3864/j.issn.0578-1752.2017.19.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.19.015
[33]
李敏敏, 安贵阳, 张雯, 郭燕, 赵政阳, 杨建锋. 不同冬剪强度对乔化‘宫藤富士’苹果成花、枝条组成和结果的影响. 西北农业学报, 2011, 20(5): 126-129.
LI M M, AN G Y, ZHANG W, GUO Y, ZHAO Z Y, YANG J F. Effect of winter pruning on flowering, shoot-type composing and fruiting on Fiji apple trees. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(5): 126-129. (in Chinese)
[34]
尹承苗, 王玫, 王嘉艳, 陈学森, 沈向, 张民, 毛志泉. 苹果连作障碍研究进展. 园艺学报, 2017, 44(11): 2215-2230.
YIN C M, WANG M, WANG J Y, CHEN X S, SHEN X, ZHANG M, MAO Z Q. The research advance on apple replant disease. Acta Horticulturae Sinica, 2017, 44(11): 2215-2230. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2017-0524
[35]
FAZIO G, ALDWINCKLE H S, VOLK G M, RICHARDS C M, JANISIEWICZ W J, FORSLINE P L. Progress in evaluating Malus sieversii for disease resistance and horticultural traits. Acta Horticulturae, 2009, 814: 59-66.
[36]
尹承苗, 相立, 孙传香, 沈向, 陈学森, 周慧, 毛志泉. 不同苹果砧木对连作土壤微生物及酶活性的影响. 园艺学报, 2016, 43(12): 2423-2430.

doi: 10.16420/j.issn.0513-353x.2016-0217
YIN C M, XIANG L, SUN C X, SHEN X, CHEN X S, ZHOU H, MAO Z Q. Effects of different apple rootstocks on the soil microbial quantity and enzyme activity of apple replanted orchard soil. Acta Horticulturae Sinica, 2016, 43(12): 2423-2430. (in Chinese)
[1] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[2] ZHANG Ji,LI JunJie,WAN LianJie,YANG JiangBo,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Potassium Application Levels on Nutrient, Yield and Quality of Newhall Navel Orange [J]. Scientia Agricultura Sinica, 2020, 53(20): 4271-4286.
[3] LI MinJi,ZHANG Qiang,LI XingLiang,ZHOU BeiBei,YANG YuZhang,ZHANG JunKe,ZHOU Jia,WEI QinPing. Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard [J]. Scientia Agricultura Sinica, 2020, 53(11): 2264-2271.
[4] YANG JiangBo,ZHANG Ji,LI JunJie,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,HE ShaoLan,YI ShiLai. Effects of Nitrogen Application Levels on Nutrient, Yield and Quality of Tarocco Blood Orange and Soil Physicochemical Properties in the Three Gorges Area of Chongqing [J]. Scientia Agricultura Sinica, 2019, 52(5): 893-908.
[5] HE Ping, LI LinGuang, WANG HaiBo, CHANG YuanSheng. Effects of Five Dwarfing Interstocks on Shoot Growth, Fruiting and Accumulation of Mineral Elements in Leaves of Yishui Red Fuji Apple [J]. Scientia Agricultura Sinica, 2018, 51(4): 750-757.
[6] LI MinJi, ZHANG Qiang, LI XingLiang, ZHOU BeiBei, YANG YuZhang, ZHOU Jia, ZHANG JunKe, WEI QinPing. Effect of Three Different Tree Shapes on Growth, Yield and Fruit Quality of ‘Fuji’ Apple Trees on Dwarfing Interstocks [J]. Scientia Agricultura Sinica, 2017, 50(19): 3789-3796.
[7] LI Min-Ji, ZHANG Qiang, LI Xing-Liang, ZHOU Bei-Bei, SUN Jian, ZHANG Jun-Ke, WEI Qin-Ping. Effect of Five Different Dwarfing Interstocks of SH on Growth, Yield and Quality in ‘Fuji’ Apple Trees [J]. Scientia Agricultura Sinica, 2016, 49(22): 4419-4428.
[8] GAO Deng-Tao, GUO Jing-Nan, WEI Zhi-Feng, FAN Qing-Jin, YANG Chao-Xuan. Evaluation of Productivity and Light Quality in Two High Density Dwarf Rootstock Apple Orchards in Central China [J]. Scientia Agricultura Sinica, 2012, 45(5): 909-916.
[9] ,,,,. Studies on Increase of Yield and Soil Moisture of Fruit Tree by Using Super Absorbent Polymers [J]. Scientia Agricultura Sinica, 2005, 38(12): 2486-2491 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!