Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2274-2287.doi: 10.3864/j.issn.0578-1752.2023.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Optimization of Dryland Wheat Grain Growth Model Parameters Based on an Improved Shuffled Frog Leaping Algorithm

CUI WeiNan1(), NIE ZhiGang1,2(), LI Guang3, WANG Jun1   

  1. 1 School of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070
    2 School of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070
    3 School of Forestry, Gansu Agricultural University, Lanzhou 730070
  • Received:2022-10-21 Accepted:2023-01-08 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】As the core decision module for intelligent agricultural production, the accurate simulation of the crop model depends on efficient and accurate optimization of the model parameters. In order to improve the efficiency of tuning parameters and enhance the performance and accuracy of the crop model, this study optimized the single objective parameters of the dryland spring wheat grain growth sub-model by improving the optimization algorithm, so as to provide a reference for the adaptation study of dryland spring wheat in the loess hilly region of northwestern China, to expand the application of the model, and to facilitate the model to better guide agricultural production.【Method】Based on a field experiment in Anjiapo Village, Fengxiang Town, Anding District, Dingxi City, Gansu Province, from 2015 to 2021, this study combined weather data and yearbook yield data from 1970 to 2021, further optimized six parameters of dryland wheat grain growth stage using roulette selection strategy based on the global communication and local depth search of traditional shuffled frog leaping algorithm (SFLA), carried out error calculation and comparison between measured and simulated yield values before and after algorithm improvement, and tested the APSIM-Wheat model.【Result】(1) At the same number of iterations, the traditional shuffled frog leaping algorithm converged around 200 times, while the improved shuffled frog leaping algorithm converged around 100 times. (2) The optimized parameters for the dryland spring wheat grain growth stage were: the grain number per gram stem was 26.0; the potential rate of grain filling from flowering to start of grain filling period was 0.00119 grain/d; the potential rate of grain filling during grain filling period was 0.00174 grain/d; the potential rate of grain filling under N limitation was 6.20×10-5 g grain/d; the minimum rate of grain filling under N limitation was 1.90×10-5 g grain/d; the maximum grain dry weight per plant was 0.0437 g. (3) The wheat yield was simulated using the parameter values optimized by the traditional shuffled frog leaping algorithm and the parameter values optimized by the improved shuffled frog leaping algorithm, respectively. After parameter optimization, the root mean square error (RMSE) between the measured and simulated yield values decreased from 363.22 kg·hm-2 to 57.85 kg·hm-2, and the normalized root mean square error (NRMSE) decreased from 21.78% to 3.47%.【Conclusion】Compared with the traditional shuffled frog leaping algorithm, the improved shuffled frog leaping algorithm increased the diversity of populations and subpopulations, converged quickly, and improved the optimization efficiency and accuracy, so the optimized results conformed to the growth and development process of dryland spring wheat with higher applicability, which significantly improved the performance of the APSIM-Wheat model in the loess hilly agricultural area of northwestern China.

Key words: APSIM-Wheat model, parameters optimization, shuffled frog leaping algorithm, dryland spring wheat, wheat grain growth stages

Table 1

Soil property parameters in the experimental area"

参数
Parameter
土壤深度Soil depth (mm)
0-50 50-100 100-300 300-500 500-800 800-1100 1100-1400 1400-1700 1700-2000
容重Bulk density (g·cm-3 1.29 1.23 1.33 1.20 1.14 1.14 1.25 1.12 1.11
风干含水量Air-dried moisture (mm·mm-1) 0.01 0.01 0.05 0.07 0.09 0.10 0.11 0.12 0.13
萎蔫系数Wilting coefficient (mm·mm-1) 0.09 0.09 0.09 0.09 0.09 0.11 0.11 0.12 0.13
田间持水量Field capacity (mm·mm-1) 0.27 0.27 0.27 0.27 0.26 0.27 0.26 0.26 0.26
饱和含水量Saturated moisture (mm·mm-1) 0.46 0.49 0.45 0.50 0.52 0.52 0.48 0.53 0.53
有效水分下限Lower available moisture (mm·mm-1) 0.09 0.09 0.09 0.09 0.10 0.12 0.13 0.18 0.22

Table 2

Units and values of measured parameters in the wheat yield formation model"

名称
Name
单位
Unit

Value
来源
Reference
种植密度 Sowing density SD plant/hm2 400×104 数据来源于研究区 Data from the study area
开花期茎干重
Stem dry weight at flowering
Ws g 1.31 数据通过烘干法测得
Data measured by oven-drying method
开花至开始灌浆阶段茎的氮含量
Nitrogen concentration of stem parts from flowering to start of grain filling
CN_stem % 1.19 数据通过半微量凯氏定氮法测得
Data measured by semi-micro Kjeldahl method
开花至开始灌浆阶段叶片的氮含量
Nitrogen concentration of leaf parts from flowering to start of grain filling
CN_leaf % 2.66 数据通过半微量凯氏定氮法测得
Data measured by semi-micro Kjeldahl method
灌浆期茎的氮含量
Nitrogen concentration of stem parts during grain filling
CN_stem % 0.65 数据通过半微量凯氏定氮法测得
Data measured by semi-micro Kjeldahl method
灌浆期叶片的氮含量
Nitrogen concentration of leaf parts during grain filling
CN_leaf % 1.23 数据通过半微量凯氏定氮法测得
Data measured by semi-micro Kjeldahl method
籽粒含水量
Grain water content
Cw % 20 数据来源于《中国西北春小麦》[15]
Data from Spring Wheat in Northwest China[15]

Fig. 1

Relationship between the factor affecting the rate of grain filling and daily mean temperature"

Fig. 2

Relationship between critical, minimum nitrogen concentration and growth stages for wheat leaf and stem"

Table 3

Functional expressions of the figures"

Figure 函数表达式 Function expression 区间 Interval 函数类型 Function type
图1 Fig. 1 hgrain_gfr_Tmean =$\frac{1}{26}$Tmean Tmean∈[0, 26) 单一变量的线性函数
Linear functions of a single variable
hgrain_gfr_Tmean = 1 Tmean∈[26, +∞) 单一变量的线性函数 Linear functions of a single variable
图2 Fig. 2 CN_crit_stem = -0.00253s + 0.02485 s∈[6, 8] 单一变量的线性函数
Linear functions of a single variable
CN_min_stem = -0.00007s + 0.00327
CN_crit_leaf = -0.00344s + 0.03527
CN_min_leaf = -0.00254s + 0.02495
CN_crit_stem = -0.000715s + 0.01033 s∈(8, 9] 单一变量的线性函数
Linear functions of a single variable
CN_min_stem = -0.00024s + 0.00463
CN_crit_leaf = -0.0023s + 0.02615
CN_min_leaf = -0.00132s + 0.01519

Fig. 3

Flow chart for optimization of parameters of APSIM wheat yield formation model using SFLA"

Table 4

Upper and lower bounds of optimized parameters in wheat yield formation model"

名称
Name
wheat.xml中的定义
Definition in wheat.xml
默认值
Default value
下限
Lower bound
上限
Upper bound
小麦茎部分的每克籽粒数 Grain number per gram stem Rg grains_per_gram_stem 26.0 19.0 32.0
开花至开始灌浆阶段的潜在籽粒灌浆速率
Potential rate of grain filling from flowering to start of grain filling period (grain/d)
Rgrain_gfr potential_grain_growth_rate 0.00112 0.00077 0.00129
灌浆阶段的潜在籽粒灌浆速率
Potential rate of grain filling during grain filling period (grain/d)
Rgrain_gfr potential_grain_growth_rate 0.00249 0.00172 0.00346
氮限制下的潜在籽粒灌浆速率
Potential rate of grain filling under nitrogen limitation (g grain/d)
hN_poten potential_grain_n_filling_rate 6.70×10-5 5.50×10-5 8.60×10-5
氮限制下的最小籽粒灌浆速率
Minimum rate of grain filling under nitrogen limitation (g grain/d)
hN_min minimum_grain_n_filling_rate 1.80×10-5 1.50×10-5 2.30×10-5
单株小麦籽粒部分的最大干重值
Maximum dry weight of a single plant (g)
Wgm max_grain_size 0.0437 0.0362 0.0519

Table 5

Basic parameters of crop properties in the study sites"

名称
Name

Value
单位
Unit
wheat.xml中的定义
Definition in wheat.xml
灌浆期至成熟期积温 Thermal time required from start grain filling to maturity 580 tt_startgf_to_mat
穗粒数 Number of grains produced by unit weight of stem 30.0 number/spike grain_num_coeff
最大灌浆速率 Maximum grain filling rate of individual grains 2.30 mg grain/d max_grain_fill_rate
单蘖重 Single tiller weight when elongation ceases 1.22 g Dm_tilller_max
单株重 Plant weight 4.00 g x_stem_wt
株高 Plant height for above weights 1.00 m Y_height

Fig. 4

Trend graph of 6 parameters"

Fig. 5

Trend graph of fitness values"

Fig. 6

Relationship graph between simulated and observed values of wheat yield"

[1]
朱艳, 汤亮, 刘蕾蕾, 刘兵, 张小虎, 邱小雷, 田永超, 曹卫星. 作物生长模型(CropGrow)研究进展. 中国农业科学, 2020, 53(16): 3235-3256.

doi: 10.3864/j.issn.0578-1752.2020.16.004
ZHU Y, TANG L, LIU L L, LIU B, ZHANG X H, QIU X L, TIAN Y C, CAO W X. Research progress on the crop growth model CropGrow. Scientia Agricultura Sinica, 2020, 53(16): 3235-3256. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.16.004
[2]
王伟, 林团荣, 王真, 王玉凤, 焦欣磊, 张志成, 范龙秋, 王懿茜, 邢进, 尹玉和. 基于随机森林算法(RF)的马铃薯冠层叶绿素含量估测 //马铃薯产业与种业创新, 2022: 326-327.
WANG W, LIN T R, WANG Z, WANG Y F, JIAO X L, ZHANG Z C, FAN L Q, WANG Y Q, XING J, YIN Y H. Estimation of chlorophyll content in potato canopy based on random forest algorithm (RF). //Potato Industry and Seed Innovation, 2022: 326-327. (in Chinese)
[3]
GASO D V, WIT A D, BERGER A G, KOOISTRA L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area index with a crop growth model. Agricultural and Forest Meteorology, 2021, 308: 108553.
[4]
BEHESHTI Z, SHAMSUDDIN S M H. A review of population-based meta-heuristic algorithms. International Journal of Advances in Soft Computing and Its Applications, 2013, 5(1): 1-35.
[5]
尹起. 机器学习预测参考作物蒸散量在智能灌溉系统中的应用研究[D]. 乌鲁木齐: 新疆大学, 2021.
YIN Q. Machine learning prediction of reference crop evapotranspiration in an intelligent irrigation system[D]. Urumqi: Xinjiang University, 2021. (in Chinese)
[6]
GOET G, SONKAR I, PRASAD K H. Estimation of non-linear water uptake parameter using genetic algorithm for sodic soils[R]. Copernicus Meetings, 2022.
[7]
聂志刚, 李广, 雒翠萍, 马维伟, 代永强. 利用混合蛙跳算法优化基于APSIM的旱地小麦产量形成模型参数. 作物学报, 2018, 44(8): 1229-1236.

doi: 10.3724/SP.J.1006.2018.01229
NIE Z G, LI G, LUO C P, MA W W, DAI Y Q. Parameter optimization in APSIM-Based simulation model for yield formation of dryland wheat using shuffled frog leaping algorithm. Acta Agronomica Sinica, 2018, 44(8): 1229-1236. (in Chinese)

doi: 10.3724/SP.J.1006.2018.01229
[8]
聂志刚, 任新庄, 李广, 董莉霞, 马维伟, 唐洁, 刘小娥, 罗永忠. 基于APSIM的黄土丘陵区旱地小麦气候适宜性评价. 中国农业气象, 2017, 38(6): 369-377.
NIE Z G, REN X Z, LI G, DONG L X, MA W W, TANG J, LIU X E, LUO Y Z. APSIM-based evaluation of climate suitability on wheat in dryland in the hill-gullied region of the Loess Plateau. Chinese Journal of Agrometeorology, 2017, 38(6): 369-377. (in Chinese)
[9]
李广, 黄高宝, BELLOTTI W, 陈文. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009, 29(5): 2655-2663.
LI G, HUANG G B, BELLOTTI W, CHEN W. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region. Acta Ecologica Sinica, 2009, 29(5): 2655-2663. (in Chinese)
[10]
HOLZWORTH D P, HUTH N I, DEVOIL P G, ZURCHER E J, HERRMANN N I, MCLEAN G, CHENU K, OOSTEROM E J, SNOW V, MURPHY C, MOORE A D, BROWN H, WHISH J P, VERRALL S, FAINGES J, BELL L W, PEAKE A S, PEAKE P L, HOCHMAN Z, THORBURN P J, GAYDON D S, DALGLIESH N P, RODRIGUEZ D, COX H, CHAPMAN S, DOHERTY A, TEIXEIRA E, SHARP J, CICHOTA R, VOGELER I, LI F Y, WANG E, HAMMER G L, ROBERTSON M J, DIMES J P, WHITBREAD A M, HUNT J, REES H, MCCLELLAND T, CARBERRY P S, HARGREAVES J N G, MACLEOD N, MCDONALD C, HARSDORF J, WEDGWOOD S, KEATING B A. APSIM-evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 2014, 62: 327-350.
[11]
HOLZWORTH D, HUTH N I, FAINGES J, BROWN H, ZURCHER E, CICHOTA R, VERRALL S, HERRMANN N I, ZHENG B, SNOW V. APSIM next generation: Overcoming challenges in modernising a farming systems model. Environmental Modelling & Software, 2018, 103: 43-51.
[12]
ZHENG B, CHENU K, DOHERTY A, CHAPMAN S. The APSIM- wheat module (7.5 R3008). Agricultural Production Systems Simulator (APSIM) Initiative, 2014: 615.
[13]
WANG E, OOSTEROM E V, MEINKE H, ASSENG S, ROBERTSON M, HUTH N, KEATING B, PROBERT M. The new APSIM-Wheat model-performance and future improvements//Proceedings of the 11th Australian Agronomy Conference. Geelong, Victoria. Australian Society of Agronomy, 2003: 6.
[14]
郭林祥, 李广, 肖鸿民, 闫丽娟. 甘肃省定西市安定区1970-2010年下垫面气候变化特征分析. 草业科学, 2014, 31(11): 2015-2020.
GUO L X, LI G, XIAO H M, YAN L J. Climate change characteristics of underlying surface in Anding District, Dingxi in Gansu Province from 1970 to 2010. Pratacultural Science, 2014, 31(11): 2015-2020. (in Chinese)
[15]
杨文雄. 中国西北春小麦. 北京: 中国农业出版社, 2016: 155-161.
YANG W X. Spring Wheat in Northwest China. Beijing: China Agriculture Press, 2016: 155-161. (in Chinese)
[16]
吕东灿, 袁帅, 赵仲麟, 顿文涛, 李建伟, 袁志华, 袁超. Origin软件在实验数据拟合中的应用. 农业网络信息, 2016(2): 38-40.
D C, YUAN S, ZHAO Z L, DUN W T, LI J W, YUAN Z H, YUAN C. Application of Origin software in experimental data fitting. Agriculture Network Information, 2016(2): 38-40. (in Chinese)
[17]
张静, 高尚. 基于轮盘赌反向选择机制的果蝇优化算法. 计算机与数字工程, 2020, 48(7): 1595-1600, 1742.
ZHANG J, GAO S. Fruit fly optimization algorithm based on roulette reverse selection mechanism. Computer and Digital Engineering, 2020, 48(7): 1595-1600, 1742. (in Chinese)
[18]
HO-HUU V, NGUYEN-THOI T, TRUONG-KHAC T, LE-ANH L, VO-DUY T. An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Computing and Applications, 2018, 29(1): 167-185.

doi: 10.1007/s00521-016-2426-1
[19]
EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 2003, 129(3): 210-225.

doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
[20]
EUSUFF M, LANSEY K, PASHA F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Engineering Optimization, 2006, 38(2): 129-154.

doi: 10.1080/03052150500384759
[21]
NERI F, COTTA C. Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation, 2012, 2: 1-14.

doi: 10.1016/j.swevo.2011.11.003
[22]
GUO Y, MA Y, ZHAN Z, LI B, DINGKUHN M, LUQUET D, DE REFFYE P. Parameter optimization and field validation of the functional-structural model GREENLAB for maize. Annals of Botany, 2006, 97(2): 217-230.

pmid: 16390847
[23]
蒋纪芸, 苏珮. 小麦灌浆期间营养器官对籽粒氮积累的影响. 西北农业学报, 1993, 2(3): 43-47.
JIANG J Y, SU P. The effect of nutrition organs of winter wheat to the accumulation of N substance in seed during the fill period. Acta Agriculturae Boreali-occidentalis Sinica, 1993, 2(3): 43-47. (in Chinese)
[24]
LIPOWSKI A, LIPOWSKA D. Roulette-wheel selection via stochastic acceptance. Physica A: Statistical Mechanics and Its Applications, 2012, 391(6): 2193-2196.

doi: 10.1016/j.physa.2011.12.004
[25]
鲁建厦, 翟文倩, 李嘉丰, 易文超, 汤洪涛. 基于改进混合蛙跳算法的多约束车辆路径优化. 浙江大学学报 (工学版), 2021, 55(2): 259-270.
LU J X, ZHAI W Q, LI J F, YI W C, YANG H T. Multi-constrained vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 259-270. (in Chinese)
[26]
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 2014, 7(3): 1247-1250.

doi: 10.5194/gmd-7-1247-2014
[27]
SHCHERBAKOV M V, BREBELS A, SHCHERBAKOVA N L, TYUKOV A. A survey of forecast error measures. World Applied Sciences Journal, 2013, 24(24): 171-176.
[28]
陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 苗梦珂, 代阳. 基于无人机数码影像的冬小麦株高和生物量估算. 农业工程学报, 2019, 35(19): 107-116.
TAO H L, XU L J, FENG H K, YANG G J, YANG X D, MIAO M K, DAI Y. Estimation of plant height and biomass of winter wheat based on UAV digital image. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 107-116. (in Chinese)
[29]
COLLINS B, NAJEEB U, LUO Q, TAN D K. Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: Application of SUFI-2 algorithm in northeast Australia. Journal of Agronomy and Crop Science, 2022, 208(2): 225-242.

doi: 10.1111/jac.v208.2
[30]
彭慧文, 赵俊芳, 谢鸿飞, 房世波. 作物模型应用与遥感信息集成技术研究进展. 中国农业气象, 2022, 43(8): 644-656.
PENG H W, ZHAO J F, XIE H F, FANG S B. Progresses of crop model application and its integration with remote sensing technology. Chinese Journal of Agrometeorology, 2022, 43(8): 644-656. (in Chinese)
[31]
靳霞菲, 陈先冠, 宫志宏, 冯利平. 小麦模型WheatSM参数调试优化方法研究. 农业大数据学报, 2021, 3(3): 13-22.
JIN X F, CHEN X G, GONG Z H, FENG L P. Parameter adjustment and optimization methods for the WheatSM. Journal of Agricultural Big Data, 2021, 3(3): 13-22. (in Chinese)
[1] NIE ZhiGang,LI Guang,WANG Jun,MA WeiWei,LUO CuiPing,DONG LiXia,LU YuLan. Parameter Optimization for the Simulation of Leaf Area Index of Dryland Wheat with the APSIM Model [J]. Scientia Agricultura Sinica, 2019, 52(12): 2056-2068.
[2] ZHUANG Jia-Xiang, JIANG Hai-Yan, LIU Lei-Lei, WANG Fang-Fang, TANG Liang, ZHU Yan, CAO Wei-Xing. Parameters Optimization of Rice Development Stages Model Based on Individual Advantages Genetic Algorithm [J]. Scientia Agricultura Sinica, 2013, 46(11): 2220-2231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!