Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 12-25.doi: 10.3864/j.issn.0578-1752.2022.01.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA ShuanHong1(),WAN Jiong1,LIANG RuiQing2,ZHANG XueHai1,QIU XiaoQian1,MENG ShuJun1,XU NingKun1,LIN Yuan1,DANG KunTai1,WANG QiYue1,ZHAO JiaWen1,DING Dong1(
),TANG JiHua1(
)
[1] | 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52(9): 1501-1517. |
ZHOU B Y, MA W, SUN X F, GAO Z H, DING Z S, LI C F, ZHAO M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Scientia Agricultura Sinica, 2019, 52(9): 1501-1517. (in Chinese) | |
[2] | 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11): 2036-2043. |
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese) | |
[3] |
MENG C A, FAZAL F M, BLOCK S M. Real-time observation of polymerase-promoter contact remodeling during transcription initiation. Nature Communications, 2017, 8(1): 1-9.
doi: 10.1038/s41467-016-0009-6 |
[4] |
YANAGISAWA S. Transcription factors in plants: Physiological functions and regulation of expression. Journal of Plant Research, 1998, 111(3): 363-371.
doi: 10.1007/BF02507800 |
[5] |
GUO L, WANG X, ZHAO M, HUANG C, LI C, LI D, YANG C J, YORK A M, XUE W, XU G H, LIANG Y M, CHEN Q Y, DOEBLEY J F, TIAN F. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation. Current Biology, 2018, 28(18): 3005-3015.
doi: 10.1016/j.cub.2018.07.029 |
[6] | HUANG C, SUN H, XU D, CHEN Q, LIANG Y M, WANG X F, XU G H, TIAN J G, WANG C L, LI D, WU L S, YANG X H, JIN W W, DOEBLEY J F, TIAN F. ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the USA, 2018, 115(2): E334-E341. |
[7] |
STEPHENSON E, ESTRADA S, MENG X, OURADA J, MUSZYNSKI M G, HABBEN J E, DANILEVSKAYAET O N. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS ONE, 2019, 14(2): e0203728.
doi: 10.1371/journal.pone.0203728 |
[8] |
LI Y, JIANG J, DU M L, LI L, WANG X L, LI X B. A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Plant and Cell Physiology, 2013, 54(6): 893-906.
doi: 10.1093/pcp/pct038 |
[9] |
SHEN X P, HU Z W, XIANG X, XU L A, CAO J S. Overexpression of a stamen-specific R2R3-MYB gene BcMF28 causes aberrant stamen development in transgenic Arabidopsis. Biochemical and Biophysical Research Communications, 2019, 518(4): 726-731.
doi: 10.1016/j.bbrc.2019.08.119 |
[10] |
AYA K, UEGUCHI-TANAKA M, KONDO M, HAMADA K, YANO K, NISHIMURA M, MATSUOKA M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell, 2009, 21(5): 1453-1472.
doi: 10.1105/tpc.108.062935 |
[11] |
RAHIM M A, RESENTINI F, DALLA VECCHIA F, TRAINOTTI L. Effects on plant growth and reproduction of a peach R2R3-MYB transcription factor overexpressed in tobacco. Frontiers in Plant Science, 2019, 10: 1143.
doi: 10.3389/fpls.2019.01143 |
[12] |
SUN B M, ZHU Z S, CHEN C J, CHEN G J, CAO B H, CHEN C M, LEI J J. Jasmonate-inducible R2R3-MYB transcription factor regulates capsaicinoid biosynthesis and stamen development in Capsicum. Journal of Agricultural and Food Chemistry, 2019, 67(39): 10891-10903.
doi: 10.1021/acs.jafc.9b04978 |
[13] | HU R, YUAN C, NIU Y, TANG Q, WEI D, WANG Z. Regulation of plant MYB transcription factors in anther development. Chinese Journal of Biotechnology, 2020, 36(11): 2277-2286. |
[14] |
LI S J, ZHOU X, CHEN L G, HUANG W D, YU D Q. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules and Cells, 2010, 29(5): 475-483.
doi: 10.1007/s10059-010-0059-2 |
[15] |
ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics, 1994, 244(6): 563-571.
doi: 10.1007/BF00282746 |
[16] |
ÜLKER B, SOMSSICH I E. WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7(5): 491-498.
doi: 10.1016/j.pbi.2004.07.012 |
[17] |
PANDEY S P, SOMSSICH I E. The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009, 150(4): 1648-1655.
doi: 10.1104/pp.109.138990 |
[18] |
WEI K F, CHEN J, CHEN Y F, WU L J, XIE D X. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research, 2012, 19(2): 153-164.
doi: 10.1093/dnares/dsr048 |
[19] |
RUSHTON D L, TRIPATHI P, RABARA R C, LIN J, RINGLER P, BOKEN A K, LANGUM T J, SMIDT L, BOOMSMA D D, EMME N J, CHEN X F, FINER J J, SHEN Q J, RUSHTON P J. WRKY transcription factors: Key components in abscisic acid signalling. Plant Biotechnology Journal, 2012, 10(1): 2-11.
doi: 10.1111/pbi.2011.10.issue-1 |
[20] |
MA Z, LI W, WANG H, YU D Q. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age‐mediated flowering. Journal of Integrative Plant Biology, 2020, 62(11): 1659-1673.
doi: 10.1111/jipb.v62.11 |
[21] |
LI W, WANG H, YU D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular Plant, 2016, 9(11): 1492-1503.
doi: 10.1016/j.molp.2016.08.003 |
[22] |
KUMAR S V, LUCYSHYN D, JAEGER K E, ALÓS E, ALVEY E, HARBERD N P, WIGGEM P A. Transcription factor PIF4 controls the chemosensory activation of flowering. Nature, 2012, 484(7393): 242-245.
doi: 10.1038/nature10928 |
[23] |
CELESNIK H, ALI G S, ROBISON F M, REDDY A S N. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biology Open, 2013, 2(4): 424-431.
doi: 10.1242/bio.20133764 |
[24] |
PENG L T, SHI Z Y, LI L, SHENC G Z, ZHANG J L. Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. Journal of Plant Physiology, 2008, 165(8): 876-885.
doi: 10.1016/j.jplph.2007.07.010 |
[25] |
ALTER P, BIRCHENEDER S, ZHOU L Z, SCHLÜTER U, GAHRTZ M, SONNEWALD U, DRESSELHAUS T. Flowering time-regulated genes in maize include the transcription factor ZmMADS1. Plant Physiology, 2016, 172(1): 389-404.
doi: 10.1104/pp.16.00285 |
[26] |
WENG L, BAI X D, ZHAO F F, LI R, XIAO H. Manipulation of flowering time and branching by overexpression of the tomato transcription factor Sl ZFP 2. Plant Biotechnology Journal, 2016, 14(12): 2310-2321.
doi: 10.1111/pbi.2016.14.issue-12 |
[27] |
ASLAM M, JAKADA B H, FAKHER B, GREAVES J G, NIU X P, SU Z X, CHENG Y, CAO SJ, WANG X M, QIN Y. Genome-wide study of pineapple (Ananas comosus L.) bHLH transcription factors indicates that cryptochrome-interacting bHLH2 (Ac CIB2) participates in flowering time regulation and abiotic stress response. BMC Genomics, 2020, 21(1): 1-13.
doi: 10.1186/s12864-019-6419-1 |
[28] |
O’MALLEY R C, HUANG S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER G R. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016, 165(5): 1280-1292.
doi: 10.1016/j.cell.2016.04.038 |
[29] |
BARTLETT A, O'MALLEY R C, HUANG S C, GALLI M, NERY J R, GALLAVOTTI A, ECKER J R. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols, 2017, 12(8): 1659.
doi: 10.1038/nprot.2017.055 |
[30] |
STIGLIANI A, MARTIN-AREVALILLO R, LUCAS J, BESSY A, VINOS-POYO T, MIRONOVA V, VERNOUX T, DUMAS R, PARCY F. Capturing auxin response factors syntax using DNA binding models. Molecular Plant, 2019, 12(6): 822-832.
doi: 10.1016/j.molp.2018.09.010 |
[31] |
GALLI M, KHAKHAR A, LU Z, SEN S, JOSHI T, NEMHAUSER J L, SCHMITZ R J, GALLAVOTTI A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nature Communications, 2018, 9(1): 1-14.
doi: 10.1038/s41467-017-02088-w |
[32] |
LIANG S, GAO X X, WANG Y J, ZHANG H L, YIN K X, CHEN S L, ZHANG M, ZHAO R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochemical and Biophysical Research Communications, 2020, 526(4): 1100-1105.
doi: 10.1016/j.bbrc.2020.04.011 |
[33] | 丁冬, 马拴红, 林源, 邱小倩, 万炯, 孟淑君, 王琪月, 张雪海, 汤继华. 玉米转录因子候选基因关联分析. 分子植物育种, 2021, 19(13): 4206-4215. |
DING D, MA S H, LI Y, QIU X Q, WAN J, MENG S J, WANG Q Y, ZHANG X H, TANG J H. Candidate genes association analysis of transcription factors in maize. Molecular Plant Breeding, 2021, 19(13): 4206-4215. (in Chinese) | |
[34] |
O’ MALLEY R C, HUANG S-S C, SONG L, LEWSEY M G, BARTLETT A, NERY J R, GALLI M, GALLAVOTTI A, ECKER J R, Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 2016. 165(5): 1280-1292.
doi: 10.1016/j.cell.2016.04.038 |
[35] |
YANG N, LIU J, GAO Q, GUI S T, CHEN L, YANG L F, HUANG J, DENG T Q, LUO J Y, HE L J, WANG Y B, XU P W, PENG Y, SHI Z X, LAN L, MA Z Y, YANG X, ZHANG Q Q, BAI M Z, LI S, LI W Q, LIU L, JACKSON D, YAN J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature Genetics, 2019, 51(6): 1052-1059.
doi: 10.1038/s41588-019-0427-6 |
[36] |
XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome‐wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095-1106.
doi: 10.1111/nph.2016.210.issue-3 |
[37] |
YANG N, LU Y L, YANG X H, HUANG J, ZHOU Y, ALI F, WEN W W, LIU J, LI J S, YAN J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573.
doi: 10.1371/journal.pgen.1004573 |
[38] |
HENDELMAN A, ZEBELL S, RODRIGUEZ-LEAL D, DUKLER N, ROBITAILLE G, WU X L, KOSTYUN J, TAL L, WANG P P, BARTLETT M E, ESHED Y, EFRONI I, LIPPMAN Z B. Conserved pleiotropy of an ancient planthomeobox gene uncovered by cis-regulatory dissection. Cell, 2021, 184(7): 1724-1739.
doi: 10.1016/j.cell.2021.02.001 |
[39] |
NOH Y S, AMASINO R M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. The Plant Cell, 2003, 15(7): 1671-1682.
doi: 10.1105/tpc.012161 |
[40] |
BAI S, SUNG Z R. The role of EMF1 in regulating the vegetative and reproductive transition in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 1995, 82(9): 1095-1103.
doi: 10.1002/ajb2.1995.82.issue-9 |
[41] |
YAN D W, ZHANG X M, ZHANG L, YE S H, ZENG L J, LIU J Y, LI Q, HE Z H. CURVED CHIMERIC PALEA 1 encoding an EMF 1‐like protein maintains epigenetic repression of O s MADS 58 in rice palea development. The Plant Journal, 2015, 82(1): 12-24.
doi: 10.1111/tpj.2015.82.issue-1 |
[42] |
KIM W Y, HICKS K A, SOMERS D E. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiology, 2005, 139(3): 1557-1569.
doi: 10.1104/pp.105.067173 |
[43] |
DIXON L E, KNOX K, KOZMA-BOGNAR L, SOUTHERN M M, POKHILKO A, MILLAR A J. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Current Biology, 2011, 21(2): 120-125.
doi: 10.1016/j.cub.2010.12.013 |
[44] |
KIM Y, YEOM M, KIM H, LIM J, KOO H J, HWANG D, SOMERS D, NAM H J. GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. Molecular Plant, 2012, 5(3): 678-687.
doi: 10.1093/mp/sss005 |
[45] |
ZHAO J M, HUANG X, OUYANG X H, CHEN W L, DU A P, ZHU L, WANG S G, DENG X W, LI S G. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE, 2012, 7(8): e43705.
doi: 10.1371/journal.pone.0043705 |
[46] |
ADEYEMO O S, KOLMOS E, TOHME J, CHAVARIAGA P, FREGENE M, DAVIS S J. Identification and characterization of the cassava core-clock gene EARLY FLOWERING 4. Tropical Plant Biology, 2011, 4(2): 117-125.
doi: 10.1007/s12042-011-9065-6 |
[47] | HUANG H, GEHAN M A, HUSS S E, ALVAREZ S, LIZARRAGA C, GRUEBBLING E L, GIERER J, NALDRETT M J, BINDBEUTEL R K, EVANS B S, MOCKLER T C, NUSINOW D A. Cross-species complementation reveals conserved functions for EARLY FLOWERING 3 between monocots and dicots. Plant Direct, 2017, 1(4): e00018. |
[48] |
XIE Q G, WANG P, LIU X, YUAN L, WANG L B, ZHANG C G, LI Y L, XING H Y, ZHI L Y, YUE Z L, ZHAO C S, MCCLUNG C R, XU X D. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. The Plant Cell, 2014, 26(7): 2843-2857.
doi: 10.1105/tpc.114.126573 |
[49] | 张庆雯, 祁静静, 谢宇, 谢竹, 彭蕴, 李强, 彭爱红, 邹修平, 何永睿, 陈善春, 姚利晓. 黄龙病菌胁迫下‘锦橙’CsCalS 表达和胼胝质沉积的初步分析. 园艺学报, 2021, 48(2): 276-288. |
ZHANG Q W, QI J J, XIE Y, XIE Z, PENG Y, LI Q, PENG A H, ZOU X P, HE Y R, CHEN S C, YAO L X. Preliminary analysis of CsCalS5 and callose deposition in citrus sinensis infected with candidatus liberibacter asiaticus. Acta Horticulturae Sinica, 2021, 48(2): 276-288. (in Chinese) | |
[50] | 崔海芳, 张凡, 尹俊龙, 郭瑛琪, 岳艳玲. 胼胝质沉积与花粉发育. 云南农业大学学报: 自然科学版, 2017, 32(3): 551-557. |
CUI H F, ZHANG F, YIN J L, GUO Y Q, YUE Y L. Callose deposition and pollen development. Journal of Yunnan Agricultural University, 2017, 32(3): 551-557. (in Chinese) | |
[51] | 杨俊. 拟南芥生长素响应因子ARF17调控花粉壁模式形成[D]. 上海: 上海师范大学, 2013. |
YANG J. Arabidopsis auxin response factor ARF17 regulates pollen wall pattern formation[D]. Shanghai: Shanghai Normal University, 2013. (in Chinese) |
[1] | CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78. |
[2] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[3] | LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709. |
[4] | XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748. |
[5] | LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762. |
[6] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[7] | LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616. |
[8] | ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. |
[9] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[10] | LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947. |
[11] | QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976. |
[12] | HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691. |
[13] | FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822. |
[14] | DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878. |
[15] | YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911. |
|