Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4851-4868.doi: 10.3864/j.issn.0578-1752.2021.22.012

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa

WANG Jie(),WU XiaoYu,YANG Liu,DUAN QiaoHong(),HUANG JiaBao()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 270108, Shandong
  • Received:2021-01-25 Accepted:2021-06-01 Online:2021-11-16 Published:2021-11-19
  • Contact: QiaoHong DUAN,JiaBao HUANG E-mail:17835423101@163.com;duanqh@sdau.edu.cn;jbhuang2018@outlook.com

Abstract:

【Objective】The aim of this study was to identify ACA genes family from Brassica rapa, and to analyze the commonness and characteristics of those genes, which provided data support for further revealing the evolutionary relationship of ACA family. At the same time, the expression of BraACAs after self-pollination under abiotic stress was investigated, which laid the foundation for further exploring how BraACAs as regulate calcium to perform some biological functions. 【Method】Based on Arabidopsis genome database, the ACA gene family of Brassica rapa was identified by homologous alignment. The molecular weight, theoretical isoelectric point and other physicochemical properties were predicted by online software Expasy. The MEGA 5.0 software was used to construct phylogenetic tree, and the online software GSDS 2.0 was employed to draw gene structure map. According to the family gene location information, chromosome mapping was carried out in TBtools. Then, McscanX software was used to carry out the collinearity analysis of ACA family genes in Arabidopsis and Brassica rapa, and the online software PlantCARE was used to predict and analyze the promoter elements of BraACAs. The protein conserved domains were analyzed by online tools Pfam and MEME. The expression of BraACAs gene in different tissues, abiotic stress and self-pollination were detected by qRT-PCR. 【Result】A total of 18 ACA genes were systematically identified from Brassica rapa, which were distributed on 10 chromosomes. According to the phylogenetic tree, four groups were classified, including 3, 4, 4 and 7 members. According to promoter element analysis, there were many light, abiotic stress and hormone response elements in the promoter of ACA family genes in Brassica rapa, which indicated that ACA family genes had potential biological function of resisting stress. According to the analysis of protein domains, most of the ACA gene family proteins in Brassica rapa had four functional domains unique to the ACA family, 13 of which had N-terminal autoinhibitory domains. The results of qRT-PCR showed that BraACAs were mainly expressed in flowers and pods, and the expression of Bra002762 and Bra035649 genes were up-regulated under chill stress, suggesting that Bra002762 and Bra035649 had potential biological functions in response to chill stress; the expression of Bra031701 gene was up-regulated under salt stress, suggesting that Bra031701 had potential biological functions in response to salt stress. There were significant differences in the expression of Bra003276 and Bra024117 genes between self-pollination and cross-pollination, suggesting that Bra003276 and Bra024117 responded to the self-incompatibility of Brassica rapa. The subcellular localizations of these five genes were all located in the plasma membrane to verify their function of balancing ion concentration on the membrane. 【Conclusion】BraACAs protein structures contained four highly conserved domains. The expression of BraACAs was specific in tissues, and five ACA family gene members encoded proteins located on the cell membrane, of which Bra0002762, Bra035649, Bra031701 were associated with chilling and salt stress response, while Bra003276 and Bra024117 were associated with self-incompatibility reaction.

Key words: ACA gene family, Ca2+-ATPase, chilling stress, salt stress, self-incompatibility, Brassica rapa

Table 1

The primers used in the qRT-PCR"

基因名称 Gene name 上游引物(5´-3´) Forward primer (5´-3´) 下游引物(5´-3´) Reverse primer (5´-3´)
Bra017841 AAAAGCTTCTGGGTGTTCGTAT GGTAGCTATCCCAACGATCAAA
Bra039940 ACCAGAATTTTGACGTTAAGGC GAGATAAATTGGAATGCGGCTT
Bra010605 GCTGTTGGTTCAGTCGATATTC GGCTCAACTTTCACCACTTTAC
Bra010917 GAAGCTTCAAGATGGTTCTCAC ATTGTCTCACAAGCAGCTAGAT
Bra023790 TCGACAAGCTTACTTCTTCGAT ATCGCTTTTCGTATTCTTTCCG
Bra033900 GTCTGCTACCACTATCTGTACC TTGATTCTAAACCGGACCAGAA
Bra023899 TCAAGCACTAAGGAAAAACGG ATATTTGCATACACAGAACGGC
Bra031259 AATAACGGTGATGGGTAGATCC ATATTTGCATACACAGAACGGC
Bra016926 ATCTCTGACGTCATTGAAGGTT AATCGCTTTAGCTGTGCTTATG
Bra003276 GCTGATGTGATCATAATGGACG ATACAAAGTTGATGATCAGCGC
Bra007319 GTATCCATCGTGAAAAACCGAG GTTTATATTCTGTCCGTGCACC
Bra019960 GTGATTCTGCTGATATTGGCTG GCTATATTTGCTTGGTAGGCAC
Bra031701 TTCTGTCACGCCATTGTCCT GGTCTATGGCAAGGCAAGGT
Bra002762 GAGAGTTCGGACATCATCATCT GTTAATGATAAGAGCAGCGACG
Bra035649 GTAGTATTTACGTCCCAGAGGG AGAATAGAAGACTGCGATCTGG
Bra011144 GCTCATAATACAACTGGCAGTG GCATCGAAATTCATGCCTAACT
Bra024117 CTTGTCGTCCGCTATTTTACTG TAGGCAAGAGTCAAGGTAACAG
Bra037404 CGGAGATAGGCAAGATACAGAG TGTAGTTGATGATCCAGACGAG
BraActin2 CGGTGTCATGGTTGGGAGA CGTGCTCGATGGGGTACTTC

Table 2

Partial cloned gene primer sequence"

引物名称 Primer name 正向引物(5´-3´) Forward primer(5´-3´) 反向引物(5´-3´) Reverse primer(5´-3´)
Bra002762-pCAMBIA1300-GFP ATGACCAGTCCCTTCAAGCCA GAGTGAACCTTCTCCAGAAGATTTTT
Bra035649-pCAMBIA1300-GFP ATGACTAGCCTCTTCAAGCAATCTC CAAGGCTTCAAAAGTTTGTTGTTT
Bra031701-pCAMBIA1300-GFP ATGGAAGACGCTTACGCCAG CGCCGGTCCTTGGGGAGT
Bra024117-pCAMBIA1300-GFP ATGAGTGGTGGACAAGGACAGTT ACCTGATGAATTCCTTCTCCATCG
Bra003276-pCAMBIA1300-GFP ATGTCTAATCTCCTCAAGGATTTTCA GGCAGAGTCAGATGGACCAGAA

Table 3

Information about ACA gene family members of Brassica rapa"

基因ID
Gene ID
理论等电点
pI
分子量
Molecular weight (Da)
CDS长度
CDS length (bp)
氨基酸
No. of amino acids (aa)
亚细胞定位
Subcellular location
跨膜结构数量
Number of membrane spanning domain
拟南芥对应ID
Arabidopsis corresponds ID
Bra017841 5.58 110370.20 3045 1015 细胞质膜Plas 8 AT4G37640
Bra039940 5.65 110609.40 3045 1015 细胞质膜Plas 8 AT2G22950
Bra010605 5.45 112318.20 3093 1031 细胞质膜Plas 8 AT4G37640
Bra010917 5.40 110689.40 3054 1017 细胞质膜Plas 8 AT1G27770
Bra023790 8.75 112419.20 3054 1018 细胞质膜Plas 8 AT3G22910
Bra033900 8.28 112171.60 3048 1016 细胞质膜Plas 8 AT3G22910
Bra023899 6.16 119249.50 3291 1097 细胞质膜Plas 10 AT3G21180
Bra031259 6.09 119273.50 3288 1096 细胞质膜Plas 8 AT3G21180
Bra016926 5.43 112256.90 3099 1033 细胞质膜Plas 8 AT2G41560
Bra003276 6.08 111847.50 3078 1026 细胞质膜Plas 8 AT3G57330
Bra007319 5.84 111456.90 3066 1022 细胞质膜Plas 8 AT3G57330
Bra019960 5.06 113187.20 3138 1046 细胞质膜Plas 7 AT1G10130
Bra031701 5.26 118294.80 3256 1086 细胞质膜Plas 8 AT1G10130
Bra002762 8.03 116025.10 3222 1074 细胞质膜Plas 7 AT5G57110
Bra035649 7.81 116661.70 3231 1077 细胞质膜Plas 7 AT5G57110
Bra011144 6.48 116775.40 3210 1070 细胞质膜Plas 8 AT5G57110
Bra024117 6.39 115856.20 3186 1062 细胞质膜Plas 8 AT4G29900
Bra037404 5.31 115615.30 3165 1055 细胞质膜Plas 8 AT4G00900
平均数 Average 6.28 114171.00 3142 1047 \ \ \

Fig. 1

Phylogenetic tree and gene structure of ACA gene family in Brassica rapa"

Fig. 2

Synteny analysis and gene duplication events ACA genes between Brassica rapa and Arabidopsis"

Fig. 3

Analysis of cis-elements in promoter of ACA family genes in Brassica rapa"

Fig. 4

Characterization conserve domains within the Brassica rapa ACA family protein"

Fig. 5

Alignment of conserved motifs of the Brassica rapa ACA family"

Fig. 6

Expression of BraACAs in different organs of Brassica rapa"

Fig. 7

Expression analysis of BraACAs under cold stress at different time points"

Fig. 8

Alignment of the amino acid sequences Bra0002762, Bra035649 and AT5G57110"

Fig. 9

Expression analysis of BraACAs under salt stress at different time points"

Fig. 10

Alignment of the amino acid sequences Bra031701 and AT1G10130"

Fig. 11

Expression levels of BraACAs in stigmas of Brassica rapa at matures stage FPKM values of BraACAs were extracted from stigma RNA-seq data for drawing"

Fig. 12

Expression level of BraACA genes under un-pollination (UP), self-pollination (SI) and cross-pollination (SC)"

Fig. 13

Agarose gel electrophoresis of BraACAs"

Fig. 14

Subcellular localization of BraACAs CK: Vector free injection of tobacco leaves; GFP: Expression of 35s-GFP/pCAMBIA1300 empty vector in tobacco leaves. Scale bar=10 μm"

[1] 李正吉, 赵胜业, 倪树林, 周民. 喷盐水克服大白菜自交不亲和的研究. 蔬菜, 1997(1): 28.
LI Z J, ZHAO S Y, NI S L, ZHOU M. Study on overcoming self-incompatibility of Chinese cabbage by spraying salt water. Vegetable, 1997(1): 28. (in Chinese)
[2] SPALDING E P, HARPER J F. The ins and outs of cellular Ca2+ transport. Current Opinion in Plant Biology, 2011, 14(6): 715-720.
doi: 10.1016/j.pbi.2011.08.001
[3] 王精明, 李洪清, 李美茹. 水稻幼苗根细胞质膜和液泡膜微囊Ca2+-ATP酶的特性. 植物生理学通讯, 2004, 40(1): 22-26.
WANG J M, LI H Q, LI M R. Characteristics of Ca2+-ATPase of plasma membrane and tonoplast membrane vesicles from roots of rice seedlings. Plant Physiology Communications, 2004, 40(1): 22-26. (in Chinese)
[4] PUTNEY J W. A model for receptor-regulated calcium entry. Cell Calcium, 1986, 7(1): 1-12.
doi: 10.1016/0143-4160(86)90026-6
[5] TOYOSHIMA C, NOMURA H, SUGITA Y. Structural basis of ion pumping by Ca2+-ATPase of sarcoplasmic Reticulum. FEBS Letters, 2003, 555(1): 106-110.
doi: 10.1016/S0014-5793(03)01086-X
[6] HEPLER P K. Calcium: a central regulator of plant growth and development. The Plant Cell, 2005, 17(8): 2142-2155.
doi: 10.1105/tpc.105.032508
[7] 任衍钢, 白冠军, 宋玉奇, 路彦文. 钙泵的发现历程. 生物学通报, 2018, 53(10): 57-60.
REN Y G, BAI G J, SONG Y Q, LU Y W. The discovery of calcium pump. Bulletin of Biology, 2018, 53(10): 57-60. (in Chinese)
[8] 李唯奇, 张洁, 张旭东, 王瑞萍. 拟南芥At-ACA8基因在植物抗逆及调控植物生长发育中的应用. CN103122357A. 2013.
LI W Q, ZHANG J, ZHANG X D, WANG R P. Application of Arabidopsis At-ACA8 gene in plant stress resistance and regulation of plant growth and development. CN103122357A. 2013. (in Chinese)
[9] HARPER J F, HONG B, HWANG I, GUO H Q, STODDARD R, HUANG J F, PALMGREN M G, SZE H. A novel calmodulin- regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. The Journal of Biological Chemistry, 1998, 273(2): 1099-1106.
doi: 10.1074/jbc.273.2.1099
[10] WIMMERS L E, EWING N N, BENNETT A B. Higher plant Ca2+-ATPase: primary structure and regulation of mRNA abundance by salt. PNAS, 1992, 89(19): 9205-9209.
doi: 10.1073/pnas.89.19.9205
[11] 刘宇欣, 束艺, 张念, 陈秀玲, 王傲雪. 茄科植物Ca2+-ATPase基因家族鉴定及分析. 分子植物育种, 2021(13): 4268-4277.
LIU Y X, SHU Y, ZHANG N, CHEN X L, WANG A X. Identification and analysis of Ca2+-ATPase gene family in Solanaceae. Molecular Plant Breeding, 2021(13): 4268-4277. (in Chinese)
[12] CHEN F, MOTTINO G, SHIN V Y, FRANK J S. Subcellular distribution of ankyrin in developing rabbit heart: relationship to the Na+-Ca2+ exchanger. Journal of Molecular and Cellular Cardiology, 1997, 29(10): 2621-2629.
doi: 10.1006/jmcc.1997.0475
[13] 彭陈. 稻瘟菌P型ATP酶的基因家族分析及其基因MoCTA1MoCTA3的研究[D]. 合肥: 安徽农业大学, 2012.
PENG C. Analysis of P-type ATPase gene family of Magnaporthe grisea and its genes MoCTA1 and MoCTA3[D]. He Fei: Anhui Agricultural University, 2012. (in Chinese)
[14] LEE J, PARK I, LEE Z W, KIM S W, BAEK N, PARK H S, PARK S U, KWON S, KIM H. Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Molecular Biology Reports, 2013, 40(1): 177-188.
doi: 10.1007/s11033-012-2047-4
[15] SUN M Z, JIA B W, CUI N, WEN Y D, DUANMU H Z, YU Q Y, XIAO J L, SUN X L, ZHU Y M. Functional characterization of a Glycine soja Ca2+ ATPase in salt-alkaline stress responses. Plant Molecular Biology, 2016, 90(4): 419-434.
doi: 10.1007/s11103-015-0426-7
[16] 张美萍, 杨珺凯, 孙明哲, 贾博为, 孙晓丽. 基于家族分析的苜蓿逆境应答Ca2+ATPase家族基因筛选与鉴定. 植物生理学报, 2017, 53(2): 198-208.
ZHANG M P, YANG J K, SUN M Z, JIA B W, SUN X L. Screening and identification of environmental stress responsive Medicago sativa Ca2+ ATPases based on gene family analyses. Plant Physiology Communications, 2017, 53(2): 198-208. (in Chinese)
[17] PALMGREN M G, NISSEN P. P-type ATPases. Annual Review of Biophysics, 2011, 40(1): 243.
doi: 10.1146/biophys.2011.40.issue-1
[18] HANIKENNE M, BAURAIN D. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida). Frontiers in Plant Science, 2013, 4: 544.
[19] GEISLER M, AXELSEN K B, HARPER J F, PALMGREN M G. Molecular aspects of higher plant P-type Ca2+-ATPases. Biochimica et Biophysica Acta, 2000, 1465(1/2): 52-78.
[20] AXELSEN K B, PALMGREN M G. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 2001, 126(2): 696-706.
doi: 10.1104/pp.126.2.696
[21] YU H Y, YAN J P, DU X G, HUA J. Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. Journal of Experimental Botany, 2018, 69(10): 2693-2703.
doi: 10.1093/jxb/ery073
[22] LIANG F, CUNNINGHAM K W, HARPER J F, SZE H. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic Reticulum-type Ca 2+-ATPase in Arabidopsis thaliana. PNAS, 1997, 94(16): 8579-8584.
doi: 10.1073/pnas.94.16.8579
[23] GEORGE L, ROMANOWSKY S M, HARPER J F, SHARROCK R A. The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiology, 2007, 146(2): 323-324.
[24] SCHIOTT M, ROMANOWSKY S M, BAEKGAARD L, JAKOBSEN M K, PALMGREN M G, HARPER J F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proceedings of the National Academy of Sciences, 2004, 101(25): 9502-9507.
[25] LI X Y, CHANROJ S, WU Z Y, ROMANOWSKY S M, HARPER J F, SZE H. A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process. Plant Physiology, 2008, 147(4): 1675-1689.
doi: 10.1104/pp.108.119909
[26] HUDA K M, BANU M S, GARG B, TULA S, TUTEJA R, TUTEJA N. OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing stress-responsive genes. Plant Journal for Cell & Molecular Biology, 2013, 76(6): 997.
[27] 程涣, 苏同兵, 于拴仓, 张凤兰, 余阳俊, 张德双, 赵岫云, 汪维红, 卢桂香, 龚义勤, 柳李旺. 大白菜钙运输基因ECA和钙响应基因CAS在缺钙胁迫下的表达分析. 植物生理学报, 2015, 51(4): 566-572.
CHENG H, SU T B, YU S C, ZHANG F L, YU Y J, ZHANG D S, ZHAO X Y, WANG W H, LU G X, GONG Y Q, LIU L W. Expression analysis of Ca2+Transport and response genes, ECA and CAS, in cabbage under calcium deficiency condition. Plant Physiology Communications, 2015, 51(4): 566-572. (in Chinese)
[28] ROMBAUTS S, DÉHAIS P, VAN MONTAGU M, ROUZÉ P. PlantCARE, a plant Cis-acting regulatory element database. Nucleic Acids Research, 1999, 27(1): 295-296.
doi: 10.1093/nar/27.1.295
[29] ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTRO E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40: W597-W603.
doi: 10.1093/nar/gks400
[30] HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K T. WoLF PSORT: protein localization predictor. Nucleic Acids Research, 2007, 35(Web Server issue): W585-W587.
doi: 10.1093/nar/gkm259
[31] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
doi: 10.1093/molbev/msr121
[32] GUO A Y, ZHU Q H, CHEN X, LUO J C. GSDS: a gene structure display server. Hereditas, 2007, 29(8): 1023-1026.
[33] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[34] WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T H, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49.
doi: 10.1093/nar/gkr1293
[35] XU Q F, DUNBRACK R L. Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB. Bioinformatics, 2012, 28(21): 2763-2772.
doi: 10.1093/bioinformatics/bts533
[36] BAILEY T L, WILLIAMS N, MISLEH C, LI W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 2006, 34(Suppl_2): W369-W373.
doi: 10.1093/nar/gkl198
[37] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[38] 常琳, 刘妍, 董发才, 宋纯鹏. 拟南芥内源茉莉酸甲酯缓解盐胁迫的生理生化分析. 中国植物生理学会第十次会员代表大会暨全国学术年会.开封. 2009.
CHANG L, LIU Y, DONG F C, SONG C P. Physiological and biochemical analysis of endogenous methyl jasmonate alleviating salt stress in Arabidopsis thaliana. The 10th Congress of the Chinese society of plant physiology and its annual meeting. Kaifeng. 2009. (in Chinese)
[39] 庞洪影. 茉莉酸甲酯调控刺槐抗盐性的生理机制研究[D]. 哈尔滨: 东北林业大学, 2012.
PANG H Y. Physiological mechanism of methyl jasmonate regulating salt resistance of Robinia pseudoacacia[D]. Harbin: Northeast Forestry University, 2012. (in Chinese)
[40] MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
doi: 10.1038/nmeth.1226
[41] GIFFORD J L, WALSH M P, VOGEL H J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 2007, 405(2): 199-221.
doi: 10.1042/BJ20070255
[42] 汤寓涵, 夏星, 陈德伟, 赵大球, 陶俊. 芍药CIPK基因克隆及其响应钙调控的表达水平研究. 植物生理学报, 2018, 54(8): 1316-1324.
TANG Y H, XIA X, CHEN D W, ZHAO D Q, TAO J. Cloning of herbaceous peony CIPK gene and its expression level analysis in response to calcium regulation. Plant Physiology Communications, 2018, 54(8): 1316-1324.(in Chinese)
[43] BAXTER I, TCHIEU J, SUSSMAN M R, BOUTRY M, PALMGREN M G, GRIBSKOV M, HARPER J F, AXELSEN K B. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology, 2003, 132(2): 618-628.
doi: 10.1104/pp.103.021923
[44] HUDA K M K, BANU M S A, GARG B, TULA S, TUTEJA R, TUTEJA N. OsACA6, a P-type IIB Ca2+ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. The Plant Journal, 2013, 76(6): 997-1015.
doi: 10.1111/tpj.2013.76.issue-6
[45] IWANO M, IGARASHI M, TARUTANI Y, KAOTHIEN-NAKAYAMA P, NAKAYAMA H, MORIYAMA H, YAKABE R, ENTANI T, SHIMOSATO-ASANO H, UEKI M, TAMIYA G, TAKAYAMA S. A pollen coat-inducible autoinhibited Ca2+-ATPase expressed in stigmatic papilla cells is required for compatible pollination in the Brassicaceae. The Plant Cell, 2014, 26(2): 636-649.
doi: 10.1105/tpc.113.121350
[46] GIACOMETTI S, MARRANO C A, BONZA M C, LUONI L, LIMONTA M, DE MICHELIS M I. Phosphorylation of serine residues in the N-Terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. Journal of Experimental Botany, 2011, 63(3): 1215-1224.
doi: 10.1093/jxb/err346
[47] 周君, 肖伟, 陈修德, 高东升, 李玲. 外源钙对‘黄金梨’叶片光合特性及果实品质的影响. 植物生理学报, 2018, 54(3): 449-455.
ZHOU J, XIAO W, CHEN X D, GAO D S, LI L. Effect of exogenous calcium on leaf photosynthetic characteristics and fruit quality of ‘Whangkeumbae’ pear. Plant Physiology Communications, 2018, 54(3): 449-455.(in Chinese)
[48] 赵娟, 王芳, 李永生, 姚海梅, 张同祯, 方永丰, 王汉宁. 钙对低温胁迫下玉米种子萌发及幼苗生长的影响. 甘肃农业大学学报, 2016, 51(6): 30-35.
ZHAO J A, WANG F, LI Y S, YAO H M, ZHANG T Z, FANG Y F, WANG H N. Effects of calcium on maize seed germination and seedling growth under low temperature stress. Journal of Gansu Agricultural University, 2016, 51(6): 30-35.(in Chinese)
[49] 史晓龙, 张智猛, 戴良香, 张冠初, 慈敦伟, 丁红, 田家明. 外源施钙对盐胁迫下花生营养元素吸收与分配的影响. 应用生态学报, 2018(10): 3302-3310.
SHI X L, ZHANG Z M, DAI L X, ZHANG G C, CI D W, DING H, TIAN J M. Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress. Chinese Journal of Applied Ecology, 2018(10): 3302-3310.(in Chinese)
[50] YANG X E, WANG S S, WANG M, QIAO Z, BAO C C, ZHANG W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Molecular Biology, 2014, 86(3): 225-236.
doi: 10.1007/s11103-014-0220-y
[1] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[2] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[3] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[4] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[5] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[6] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[7] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[8] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[9] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[10] XU ChunMei,ZOU Ya,LIU ZiGang,MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing. Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa [J]. Scientia Agricultura Sinica, 2020, 53(5): 929-941.
[11] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[12] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[13] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
[14] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[15] YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng. A Simplified Production Method of Hybrid F1 Seeds in Rapeseed [J]. Scientia Agricultura Sinica, 2019, 52(8): 1334-1340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!