Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 929-941.doi: 10.3864/j.issn.0578-1752.2020.05.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa

XU ChunMei,ZOU Ya,LIU ZiGang(),MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing   

  1. Agronomy College, Gansu Agricultural University/Gansu Rapeseed Engineering and Technology Research Center/Key Laboratory of Arid Land Crop Science in Gansu Province/Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070
  • Received:2019-08-07 Accepted:2019-11-03 Online:2020-03-01 Published:2020-03-14
  • Contact: ZiGang LIU E-mail:lzgworking@163.com

Abstract:

【Objective】 To explore the possibility of low temperature through vernalization to the germination of Brassica rapa, and the phenotypic changes of seed physiology and biochemistry and plant set during vernalization, so as to provide theoretical basis for artificial breeding and accelerating breeding process of B. rapa. 【Method】 Three different temperature-sensitive of B. rapa were used as materials, the germinated seeds were placed in 4℃ of low temperature for vernalization treatment. During the vernalization process (0 d, 20 d, 30 d, 40 d, 50 d, 60 d) the physiological and biochemical indexes such as nitrate reductase, antioxidant enzyme activity, osmotic regulator and malondialdehyde content of the germinated seeds were measured. Simultaneously germinated seeds of each vernalization treatment, the growth period of the seed formation plant was observed, and the seed-setting performance of the plants were measured. 【Result】 With the increase of vernalization time, the vernalization rate (V), plant height (FPH), mature plant height (MPH) and primary branch number (PB), the number of pods per plant (SP), the length of pods (LS), the number of pods (SS) and the yield per plant (YP) of germinated seeds of B. rapa showed an increasing trend; the early stage of vernalization (0-40 d), the plant's seed-setting performance showed significant differences among different varieties. After the vernalization time increased (50-60 d), the seed-setting ability of different varieties was slightly difference, but they were not significantly difference. The results of regression analysis showed that the germination seeds of strong winter rapa Longyou 7 at 4℃ were completely vernalized (springing rate >95%) and need to be treated 76.9 d, Longyou 9 and Tianyou 4 were 54.0 d, 39.4 d, respectively. Correlation analysis showed that the vernalization rate was extremely significant positive correlated with plant height and seed-setting performance and other phenotypic traits. The correlation coefficient between vernalization rate with average first flower plant height and average mature plant height was 0.947 and 0.985, which indicated that vernalization degree of winter B. rapa significantly affected plant height and seed-setting performance. With the increase of low temperature vernalization time, the germinated seeds of winter B. rapa with nitrate reductase (NR), superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), soluble protein (SP), Soluble sugar (SS) were increased first and then decreased, and the activity of catalase (CAT) decreased continuously. Compared with the control (the germinated seeds not treated at low temperature), the content of GA3 in the germinated seeds of Longyou 7 and Longyou 9 decreased significantly at the low temperature vernalization treatment, and the content of GA3 in the germinated seeds of Tianyou 4 was significantly higher than that of the control at 30 days. Compared with the control, the content of IAA in the winter rapeseed germinated in vernalization increased significantly (except for the treatment 40 days of Longyou9). Among them, the content of IAA in the seeds treated with vernalization for 50 days of Tianyou 4 increased by 197.0% compared with the control. The ABA content of the Longyou 7 was significantly increased compared with the control. 【Conclusion】 The germination seeds of winter Brassica rapa can be perceived the low temperature to complete the vernalization. The low temperature time required for vernalization of the variety depends on the winter strength. During the process vernalization of low temperature, the physiological and biochemical status is occurring some changes of the seed of winter B. rapa, and ultimately affect the growth and development of the plant and its seed setting performance.

Key words: Brassica rapa, germination seed, phenotypic characteristics, physiological and biochemical

Table 1

MS/MS conditions for different endogenous plant hormones"

激素
Hormone
母离子
Parent ion (m·z-1)
子离子
Daughter ion (m·z-1)
碎裂电压
Fragmentation voltage (V)
碰撞能量
Collision energy (V)
线性方程
Linear equation
GA3 345.1 239.0 75 9 y=8.333311x-7.130558
IAA 174.1 129.9 80 13 y=1.528595x-3.011945
ABA 263.1 218.9 90 10 y=16.050096x-14.3815

Fig. 1

Effect of vernalization time on phenotype of B. Rapa a, b, and c: Plants grown in a nutrient bowl after 30 days of vernalization; d, e, and f: Plants grown in a nutrient bowl after 60 days of vernalization; 1: CK; 2, 3: Vernalization"

Table 2

Effect of vernalization time on the number of flowering plants of B. rapa (%)"

时间Time (d) 陇油7号Longyou7 陇油9号Longyou9 天油4号Tianyou4
0(CK ) 0.00 0.00 0.00
20 25.81 27.27 56.25
30 19.23 56.52 93.10
40 38.24 73.68 97.06
50 60.00 95.00 96.15
60 86.96 100.00 96.88
线性拟合方程Linear fitting equation y =1.3567x-6.85(R2=0.8901) y = 1.7954x-1.1007(R2=0.9785) y =1.6169x+19.344(R2=0.7924)
春化率95%所需低温处理天数TTT (d) 76.9 54.0 39.4

Table 3

Effect of vernalization time on plant height of B. rapa"

品种Variety 时间Time (d) 陇油7号Longyou7 陇油9号Longyou9 天油4号Tianyou4
初花期株高
FPH (cm)
0(CK) 0.00 0.00 0.00
20 5.68 6.48 11.67
30 3.65 13.47 22.81
40 8.56 21.37 26.04
50 18.90 31.03 30.45
60 29.80 34.00 43.92
成熟期株高
MPH (cm))
0(CK) 0.00 0.00 0.00
20 15.16 15.61 34.31
30 10.19 35.23 62.69
40 23.32 48.88 66.49
50 45.00 72.36 76.60
60 68.26 85.50 80.08

Table 4

Effect of vernalization time on seed set of B. rapa"

品种Variety 时间Time(d) 陇油7号Longyou7 陇油9号Longyou9 天油4号Tianyou4
PB 20 1.00±1.00b 2.00±1.00a 1.67±0.58b
30 0.67±0.58b 2.33±0.58a 2.00±1.00b
40 1.67±0.58ab 1.67±1.15a 1.33±0.58b
50 2.00±0ab 2.67±0.58a 2.33±0.58ab
60 3.00±1.00a 2.67±0.58a 3.33±0.58a
SP 20 37.00±8.19bc 40.3±4.73b 38.00±5.57b
30 30.33±3.21c 42.67±6.81b 42.67±4.04b
40 45.0±10.54abc 49.00±7.00ab 49.67±5.51ab
50 53.33±10.07ab 57.33±9.71a 53.67±13.05ab
60 57.33±10.07a 59.33±6.66a 60.67±10.60a
LS 20 4.38±0.47b 4.39±1.06b 4.97±0.46c
30 4.47±0.26b 3.83±0.26b 5.10±0.53bc
40 4.64±0.30b 4.83±0.58b 5.56±1.09abc
50 7.03±0.38a 6.34±.53a 6.20±0.45ab
60 6.91±0.25a 6.42±0.52a 6.66±0.21a
SS (mm) 20 12.33±3.48b 12.67±3.18b 14.11±2.14b
30 14.78±2.22b 12.78±9.22b 16.67±4.63a
40 16.89±3.66a 15.22±7.50a 19.44±3.37a
50 21.78±2.50a 24.22±4.17a 22.33±6.77a
60 21.33±1.15a 24.56±1.26a 23.33±0.58a
YP (g) 20 0.74±0.10b 0.78±0.18c 0.75±0.10b
30 0.67±0.09b 0.69±0.08c 0.92±0.13b
40 0.91±0.18b 0.97±0.17bc 1.21±0.09a
50 1.22±0.10a 1.14±0.22ab 1.25±0.24a
60 1.28±0.18a 1.32±0.17a 1.27±0.07a

Table 5

Correlation between vernalization rate and phenotypic traits of B. rapa"

性状 Trait 春化率V 初花株期高FPH 成熟期株高MPH 一次分枝数PB 单株角果数SP 角果长度LS 角果粒数SS 单株产量YP
春化率V 1
初花期株高FPH 0.947** 1
成熟期株高MPH 0.985** 0.978** 1
一次分枝数PB 0.841** 0.862** 0.847** 1
单株角果数SP 0.876** 0.837** 0.854** 0.915** 1
角果长度LS 0.839** 0.798** 0.820** 0.867** 0.974** 1
角果粒数SS 0.881** 0.854** 0.877** 0.874** 0.972** 0.978** 1
单株产量YP 0.893** 0.858** 0.882** 0.870** 0.982** 0.979** 0.982** 1

Fig. 2

Effects of low temperature vernalization on nitrate reductase activity of B. Rapa Different letters indicate significant differences at P<0.05. The same as below"

Fig. 3

Effect of low temperature vernalization on antioxidant enzyme activity of B. rapa"

Fig. 4

Effects of low temperature vernalization on osmotic adjustment substances and plasma membrane permeability of B. rapa"

Fig. 5

Effects of low temperature vernalization on plant hormones of B. rapa"

Table 6

Correlation between vernalization rate and physiological indexes of B. rapa"

春化率V NR SOD POD CAT MDA SP SS GA3 IAA ABA
春化率V 1
NR -0.192 1
SOD -0.194 0.485* 1
POD 0.379 -0.031 0.536* 1
CAT -0.698** 0.403 0.231 -0.224 1
MDA 0.808** -0.216 0.093 0.641** -0.764** 1
SP -0.150 0.604** 0.411 0.132 0.258 -0.041 1
SS 0.272 0.441 0.159 0.044 -0.373 0.248 0.337 1
GA3 0.108 -0.059 -0.011 -0.024 -0.277 0.001 0.474* 0.246 1
IAA 0.451 0.057 -0.157 -0.173 -0.341 0.294 -0.057 0.191 -0.011 1
ABA -0.028 0.306 0.524* 0.388 -0.101 0.225 0.103 0.085 0.032 -0.322 1
[1] 张腾国, 李瑶, 刁志宏, 史中飞, 王娟, 郑晟 . 白菜型油菜RbohCRbohF基因克隆与表达分析. 西北植物学报, 2018,38(10):7-16.
ZHANG T G, LI Y, DIAO Z H, SHI Z F, WANG J, ZHENG S . Cloning and expression analysis of RbohC and RbohF genes in Brassica rapa L. Acta Botanica Boreali-Occidentalia Sinica, 2018,38(10):7-16. (in Chinese)
[2] 赵彩霞, 孙万仓, 武军艳 . 北方白菜型冬油菜杂种优势分析. 西北农业学报, 2013,22(2):76-84.
ZHAO C X, SUN W C, WU J Y . Analysis of heterosis of winter Brassica rapa in Gansu Province, Northern China. Acta Agriculturae Boreali-occidentalis Sinica, 2013,22(2):76-84. (in Chinese)
[3] 宋杨, 窦连登, 张红军 . 高等植物成花诱导调控的分子和遗传机制. 植物生理学报, 2014,50(10):1459-1468.
SONG Y, DOU L D, ZHANG H J . Molecular and genetic mechanisms of control of floral induction in higher plants. Plant Physiology Journal, 2014,50(10):1459-1468. (in Chinese)
[4] 于锐芳, 苏同兵, 于拴仓, 张凤兰, 余阳俊, 张德双, 赵岫云, 汪维红, 卢桂香 . 种芽春化和绿体春化对大白菜现蕾及开花时间的影响. 中国蔬菜, 2016(5):27-32.
YU R F, SU T B, YU S C, ZHANG F L, YU Y J, ZHANG D S, ZHAO X Y, WANG W H, LU G X . Effects of plumule-vernalization and seeding-vernalization on bolting and flowering times of different Chinese cabbage varieties. China Vegetables, 2016(5):27-32. (in Chinese)
[5] 赵华, 方光华 . 甘蓝型冬油菜人工春化技术的利用. 上海农业科技, 1992(5):19+18.
ZHAO H, FANG G H. Utilization of artificial vernalization techniques of Brassica napus L. Shanghai Agricultural Science and Technology, 1992(5):19+18.(in Chinese)
[6] 孙超才, 方光华, 赵华, 王伟荣 . 甘蓝型油菜(Brassica napus L.)的春化作用及其应用. 上海农业学报, 1996(2):5-9.
SUN C C, FANG G H, ZHAO H, WANG W R . Vernalization and application ofBrassica napus L. Acta Agriculturae Shanghai, 1996(2):5-9. (in Chinese )
[7] 孔小平 . 大白菜春化特性及其生理生化指标的研究[D]. 杨凌: 西北农林科技大学, 2007.
KONG X P . The vernalization of Chinese cabbage and its biochemical -physiology[D]. Yangling: Northwest A&F University, 2007. ( in Chinese)
[8] XU S J, CHONG K . Remembering winter through vernalisation. Nature Plants, 2018,4(12):997-1009.
[9] 杨德光, 孙玉珺, IRFAN Ali Raza, 刘昕萌, 蔚菊萍, 宫磊, 刘哲, 白冰, . 低温胁迫对玉米发芽及幼苗生理特性的影响. 东北农业大学学报, 2018,49(5):4-11.
YANG D G, SUN Y X, IRFAN A R, LIU X M, LV J Y, YU J P, GONG L, LIU Z, BAI B . Effects of low temperature stress on germination and physiological of maize seedling. Journal of Northeast Agricultural University, 2018,49(5):4-11. (in Chinese)
[10] 张旭 . 春化过程对甘蓝型油菜甲基化水平及蛋白质影响的分析[D]. 郑州: 郑州大学, 2013.
ZHANG X . Analysis of the vernalization process effect on DNA methylation and protein level in Brassica napus L.[D]. Zhengzhou: Zhengzhou University, 2013. ( in Chinese)
[11] 赵凯 . 早播条件下低温处理小麦萌动种子对生育期及产量的影响[D]. 雅安: 四川农业大学, 2017.
ZHAO K . Effect of low temperature treated wheat germinaing seeds on growth period and yield under early sowing condition[D]. Yaan: Sichuan Agricultural University, 2017. ( in Chinese)
[12] 蒋欣梅, 于锡宏 . 低温处理青花菜萌动种子对花芽分化的促进作用. 植物生理与分子生物学学报, 2004(4):421-427.
JIANG X M, YU X H . Stimulatory effects of low temperature treatment of germinating seeds on flowerbud differentiation in Broccoli. Journal of Plant Physiology and Molecular Biology, 2004(4):421-427. (in Chinese)
[13] TURAN O, EKMEKCI Y . Activities of photosystem II and antioxidant enzymesin chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiology Plant, 2011,33:67-78.
[14] 李彦奇, 姚正培, 张桦, 代培红 . 低温胁迫对三种早春短命植物生理生化指标的影响. 新疆农业科学, 2012,49(9):1608-1615.
LI Y Q, YAO Z P, ZHANG H, DAI P H . Effects of low temperature stress on physiological-biochemical indexes of three early spring ephemeral plants. Xinjiang Agricultural Sciences, 2012,49(9):1608-1615. (in Chinese)
[15] 陈奇, 袁金海, 孙万仓, 刘自刚, 赵新旺, 方彦, 武军艳, 李学才, 曾秀存, 米超, 蒲媛媛, 马骊, 赵艳宁, 方园, 许耀照 . 低温胁迫下白菜型冬油菜与春油菜叶片光合特性及内源激素变化比较. 中国油料作物学报, 2017,39(1):37-46.
CHEN Q, YUAN J H, SUN W C, LIU Z G, ZHAO X W, FANG Y, WU J Y, LI X C, ZENG X C, MI C, PU Y Y, MA L, ZHAO Y N, FANG Y, XU Y Z . Leaf photo synthetics and endogenous hormones of spring and winter Rapa ( Brassica rapa L.) under low temperature. Chinese Journal of Oil Crop Sciences, 2017,39(1):37-46. (in Chinese)
[16] 杨刚, 孙万仓, 王丽萍, 曾秀存, 刘自刚, 李学才, 方彦, 武军艳, 王凯音, 侯献飞, 钱武, 马骊, 刘海卿 . 白菜型油菜春化基因BrFLC序列变异分析. 中国油料作物学报, 2015,37(2):167-172.
YANG G, SUN W C, WANG L P, ZENG X C, LIU Z G, LI X C, FANG Y, WU J Y, WANG K Y, HOU X F, QIAN W, MA L, LIU H Q . equence variation of vernalization gene BrFLC in turnip rapes (Brassica rapa L.). Chinese Journal of Oil Crop Sciences, 2015,37(2):167-172. (in Chinese)
[17] 杨宁宁 . 白菜型冬油菜抗寒机理与选择指标体系研究[D]. 兰州: 甘肃农业大学, 2014.
YANG N N . Study on cold resistance mechanism and selection index evaluation system of winter tumip rape (Brassica napus L.)[D]. Lanzhou: Gansu Agricultural University, 2014. ( in Chinese)
[18] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2003: 23-27.
ZOU Q. Plant Physiology Experiment Guide. Beijing: China Agriculture Press, 2003: 23-27. (in Chinese)
[19] 郭建恒, 张航航, 黎莎莎, 孟庆艳, 张吉忠 . LC-MS测定大花罗布麻中植物激素的方法学研究. 西南民族大学学报(自然科学版), 2017(6):593-598.
GUO J H, ZHANG H H, LI S S, MENG Q Y, ZHANG J Z . LC-MS determination of plant hormones in Poacyzuan hendersonii. Journal of Southwest Minzu University (Natural Science Edition), 2017(6):593-598. (in Chinese)
[20] 陈康, 刘娟, 周修腾, 纪瑞锋, 童宇茹, 陈童, 袁媛 . UPLC-MS/MS测定人参花中5种内源植物激素含量. 中国现代中药, 2018,20(6):77-82.
CHEN K, LIU J, ZHOU X T, JI R F, TONG Y R, CHEN T, YUAN Y . Determination of various endogenous hormones in flower buds of panax ginseng by UPLC-MS/MS. Modern Chinese Medicine, 2018,20(6):77-82. (in Chinese)
[21] ESIM N, TIRYAKI D, KARADAGOGLU O, ATICI O . Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots. Toxicology and Industrial Health, 2013,29(9):800-805.
[22] 胡巍, 侯喜林, 史公军 . 植物春化特性及春化作用机理. 物学通报, 2004,21(1):26-36.
HU W, HOU X L, SHI G J . Vernalization characteristics and mechanism of plant vernalization. Chinese Bulletin of Botany, 2004,21(1):26-36. (in Chinese)
[23] 杨国浪, 张小强, 徐长虹, 拉巴仓决 . 油菜年河18号经济性状与产量的相关性分析. 浙江农业科学, 2019,60(2):186-188.
YANG G L, ZHANG X Q, XU C H, LA B C J,. Correlation analysis between economic characteristics and yield of rape Nianhe 18. Journal of Zhejiang Agricultural Sciences, 2019,60(2):186-188. (in Chinese)
[24] 田华, 段美洋, 王兰 . 植物硝酸还原酶功能的研究进展. 中国农学通报, 2009,25(10):96-99.
TIAN H, DUAN M Y, WANG L . Research progress of nitrate reductase function in plants. Chinese Agricultural Science Bulletin, 2009,25(10):96-99. (in Chinese)
[25] 龚士琛 . 玉米幼苗硝酸还原酶活性受低温的影响. 玉米科学, 2003,11(2):73-74.
GONG S Z . The influence of on nitric reductase active in maize seedling stage in low temperature. Journal of Maize Sciences, 2003,11(2):73-74. (in Chinese)
[26] 闫利恒, 代海芳, 贺杰 . 小麦春化脱春化、抗寒处理后POD活性变化的研究. 中国农学通报, 2014,30(9):99-104.
YAN L H, DAI H F, HE J . The research on POD isozyme activity change of wheat after treatmention of vernalization devernalization or cold acclimation. Chinese Agricultural Science Bulletin, 2014,30(9):99-104. (in Chinese)
[27] KAR R K, CHOUDHURI M A . Possible mechanisms of lighter induced chlorophyll degradation in senescing leaves of Hydrilla verticillata. Physiologia Plantarum, 1987,70(4):729-734.
[28] 李琦瑶, 王树声, 周培禄, 刘光亮, 曾文龙, 周道金, 郑璇, 陈爱国 . 低温胁迫对烟苗叶形及生理特性的影响. 中国烟草科学, 2018,39(1):17-23
LI Q Y, WANG S S, ZHOU P L, LIU G L, ZENG W L, ZHOU D J, ZHENG X, CHEN A G . Effects of low temperature stress on leaf shape and physiological characteristics in tobacco seedlings. Chinese Tobacco Science, 2018,39(1):17-23. (in Chinese)
[29] 黄伟超, 范宇博, 王泳超 . 低温胁迫对玉米幼苗抗氧化系统及渗透调节物质的影响. 中国农学通报, 2018,34(24):6-12.
HUANG W C, FAN Y B, WANG Y C . Low temperature stress and maize seedlings: Effect on antioxidant enzyme system and osmotic regulation. Chinese Agricultural Science Bulletin, 2018,34(24):6-12. (in Chinese)
[30] 于龙龙, 袁星星, 邵奇, 陈新, 崔晓燕, 王学军 . 不同春化时间对菜用豌豆幼苗保护酶活性及可溶性蛋白含量的影响. 福建农业学报, 2016,31(5):460-464.
YU L L, YUAN X, SHAO Q, CHEN X, CUI X Y, WANG X J . Effects of vernalization duration on activity of protective enzyme and content of soluble protein in leaves of peas. Fujian Journal of Agricultural Sciences, 2016,31(5):460-464. (in Chinese)
[31] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜 . 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019,45(1):118-130.
CHANG B W, ZHONG P, LIU J, TANG Z H, GAO Y B, YU H J, GUO W . Effects of low temperature stress and gibberellin on seed germination and seeding physiological responses in peanut seedlings. Acta Agronomica Sinica, 2019,45(1):118-130. (in Chinese)
[32] LI C Y, XU W, LIU L W, YANG J, ZHU X K, GUO W S . Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chinese Journal of Applied Ecology, 2015,26(7):2015-2022.
[33] 周碧燕, 李宇彬, 陈杰忠, 季作梁, 胡志群 . 低温胁迫和喷施ABA对荔枝内源激素和成花的影响. 园艺学报, 2002,29(6):577-578.
ZHOU B Y, LI Y B, CHEN J Z, JI Z L, HU Z Q . Effects of low temperature stress and ABA on flower formation and endogenous hormone of litchi. Acta Horticulturae Sinica, 2002,29(6):577-578. (in Chinese)
[34] 王兴, 于晶, 杨阳, 苍晶, 李卓夫 . 低温条件下不同抗寒性冬小麦内源激素的变化. 麦类作物学报, 2009,29(5):827-831.
WANG X, YU J, YANG Y, CANG J, LI Z F . Changes of endogenous hormones of winter wheat varieties with different cold-resistances under low temperature. Journal of Triticeae Crops, 2009,29(5):827-831. (in Chinese)
[1] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[2] SUN Jian,YAN XiaoWen,LE MeiWang,RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing. Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period [J]. Scientia Agricultura Sinica, 2019, 52(7): 1215-1226.
[3] TIAN ChunYan, TAO LianAn, YU HuaXian, DONG LiHua, JING YanFen, BIAN Xin, LANG RongBin, ZHOU QingMing, AN RuDong, SUN YouFang, YANG LiHe. Drought Resistance Evolution of F1 andF2 Hybrids from Five Climatic Ecotypes Saccharum spontaneum L. [J]. Scientia Agricultura Sinica, 2017, 50(22): 4408-4420.
[4] LI JiaJia, ZHENG ShuangYu, SUN GenLou, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress [J]. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682.
[5] HE Yi-Zhong-1, CHEN Zhao-Xing-1, 2 , LIU Run-Sheng-1, FANG Yi-Wen-2, GU Zu-Liang-3, YAN Xiang-2, CHEN Hong-3, ZHANG Hong-Ming-2, TANG Huan-Qing-3, CHENG Yun-Jiang-1. Effects of Different Storage Methods on Fruit Quality of ‘Newhall’ Navel Orange (Citrus sinensis Osbeck‘Newhall’) in Southern Jiangxi Province [J]. Scientia Agricultura Sinica, 2014, 47(4): 736-748.
[6] ZHANG Shuang-Xi, XU Zhao-Shi, ZHANG Gai-Sheng, LI Lian-Cheng, CHEN Xiao, CHEN Ming, MA You-Zhi. Creation of Drought-Resistant Variety and Analysis of Physiological Mechanism of W16 Transgenic Wheat [J]. Scientia Agricultura Sinica, 2011, 44(24): 4971-4979.
[7] WANG Gui-bo,DING Ming-xing,GUO Ni-ni,ZHUO Guo-rong,ZHANG Qian-qian,GUO Cheng
. Effects of Electroacupuncture Anesthesia Combined with Xylidinothiazoline on Pain Threshold and Physiological and Biochemical Indexes in Goats
[J]. Scientia Agricultura Sinica, 2010, 43(5): 1066-1074 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!