Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1334-1340.doi: 10.3864/j.issn.0578-1752.2019.08.004

Special Issue: MALE STERILITY OF CROP

• MALE STERILITY OF CROP • Previous Articles     Next Articles

A Simplified Production Method of Hybrid F1 Seeds in Rapeseed

YANG GuangSheng,XIN Qiang,DONG FaMing,HONG DengFeng   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070
  • Received:2018-11-27 Accepted:2019-01-20 Online:2019-04-16 Published:2019-04-26

Abstract:

Safe and effective F1 seed production method is the key to hybrid production in rapeseed. Father parent lines with tribenuron-methyl resistance (or tolerance) and self-incompatiblity can be developed by means of backcross breeding. In the F1 hybrid seed production by using tribenuron-methyl as the male sterility induction agent, the father parent lines have no seedset by self-pollination because of their self-incompatibility, and are not affected by the chemical agent because of their tribenuron-methyl resistance (or tolerance). Therefore, the parental lines can be mixed sowing and the seeds can be mixed harvesting. Using the method we proposed, if the lines with tribenuron-methyl resistance (tolerance) and self-incompatiblity are already developed, hybrid breeding can be carried out immediately. It saves labor costs, improves seed production efficiency and increases seed purity because of the mixed sowing and mixed harvesting.

Key words: Brassica napus, hybrid, F1 seed production, chemical inducing male sterility, self-incompatibility

Fig. 1

A simplified production method of hybrid F1 seed in rapeseed: breeding and production procedure of father parent lines"

Fig.2

A simplified production method of hybrid F1 seed in rapeseed: Production procedure of parental lines A: Type1 female lines, widely used full male sterile lines in production. Tribenuron-methyl can be used as the male sterility induction agent to make male-fertile plants sterility and increase seed purity; B: Type2 female lines, Fertility segregated or instable male sterile lines; C: Type3 female lines, Conventional inbred lines and varieties"

Fig. 3

The development process of the pol CMS restorer 7-5STR with self-incompatibility and tribenuron-methyl resistance 7-5: A restorer of pol cytoplasmic male sterility; 12eRS7-4: A mutant of tribenuron-methyl resistance; SI Huaza 95F2: A self-incompatibility plant in the F2 population of Huayouza 95"

[1] 范成明, 田建华, 胡赞民, 王珏, 吕慧颖, 葛毅强, 魏珣, 邓向东, 张蕾颖, 杨维才 . 油菜育种行业创新动态与发展趋势. 植物遗传资源学报, 2018,19(3):447-454.
FAN C M, TIAN J H, HU Z M, WANG J, LÜ H Y, GE Y Q, WEI X, DENG X D, ZHANG L Y, YANG W C . Advances of oilseed rape breeding. Journal of Plant Genetic Resources, 2018,19(3):447-454. (in Chinese)
[2] OGURA H . Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture, Kagoshima University, 1968,6(2):39-78.
[3] CHARNE D G, GRANT I, KRALING K, PATEL J D, PRUVOT J C, TULSIERAM L K . Oilseed Brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility. 2002, US, US6392127.
[4] FU T D, YANG G S, YANG X N . Studies on three line Polima cytoplasmic male sterility developed in B. napus. Plant Breeding, 1990,104:115-120.
[5] 杨光圣, 傅廷栋 . 甘蓝型油菜雄性不育-可育两用系选育成功. 中国农业科学, 1990(1):90.
YANG G S, FU T D . Success in the breeding of male sterile and fertile lines inBrassica Napus L. Scientia Agricultura Sinica, 1990(1):90. (in Chinese)
[6] 杨光圣, 傅廷栋, 杨小牛, 马朝芝 . 甘蓝型油菜生态雄性不育两用系的研究: I. 雄性不育两用系的遗传. 作物学报, 1995,21(2):129-135.
YANG G S, FU T D, YANG X N, MA C Z . Studies on the ecotypical male sterile line of Brassica napus L.: I. Heritance of the ecotypical male sterile line. Acta Agronomic Sinica, 1995,21(2):129-135. (in Chinese)
[7] 杨光圣, 傅廷栋, 马朝芝, 杨小牛 . 甘蓝型油菜生态雄性不育两用系的研究: II. 环境条件对雄性不育两用系的影响. 华中农业大学学报, 1997,16(5):330-334.
YANG G S, FU T D, MA C Z, YANG X N . Studies on the ecotypical male sterile line of Brassica napus L.: II. The influence of environment on the ecotypical male sterility. Journal of Huazhong Agricultural University, 1997,16(5):330-334. (in Chinese)
[8] 袁美, 杨光圣, 傅廷栋, 严红艳 . 甘蓝型油菜生态型细胞质雄性不育两用系的研究: III. 8-8112AB的温度敏感性及其遗传. 作物学报, 2003,29(3):330-335.
YUAN M, YANG G S, FU T D, YAN H Y . Studies on the ecotypical male sterile-fertile line of Brassica napus L.: III. Sensitivity to temperature of 8-8112AB and its inheritance. Acta Agronomic Sinica, 2003,29(3):330-335. (in Chinese)
[9] LIU Z, YANG Z H, WANG X, LI K D, AN H, LIU J, YANG G S, FU T D, YI B, HONG D F . A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Molecular Plant, 2016,9(7):1082-1084.
doi: 10.1016/j.molp.2016.04.004
[10] YI B, ZENG F Q, LEI S L, CHEN Y, YAO X Q, ZHU Y, WEN J, SHEN J X, MA C Z, TU J X, FU T D . Two duplicate CYP704B1- homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. The Plant Journal, 2010,63(6):925-938.
[11] 陈凤祥, 胡宝成, 李强生, 张曼琳 . 甘蓝型油菜细胞核不育材料9012A的发现与初步研究. 北京农业大学学报, 1993,19(增刊):57-61.
CHEN F X, HU B C, LI Q S, ZHANG M L . Discovery and study of genic male sterility (GMS) material 9012A in Brassica napus L. Acta Agricultural University Pekinensis, 1993,19(Suppl.):57-61. (in Chinese)
[12] 李树林, 钱玉秀, 吴志华 . 甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用. 上海农业学报, 1985,1(2):1-12.
LI S L, QIAN Y X, WU Z H . Inheritance of genic male sterility in Brassica napus and its application to commercial production. Acta Agriculturae Shanghai, 1985,1(2):1-12. (in Chinese)
[13] MARIANI C, DE BEUCKELEER M, TRUETTNER J, LEEMANS J, GOLDBERG R B . Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990,347(6295):737.
[14] 陈凤祥, 胡宝成, 李成, 李强生, 陈维生, 张曼琳 . 甘蓝型油菜细胞核雄性不育性的遗传研究: I隐性核不育系9012A的遗传. 作物学报, 1998,24(4):431-438.
CHEN F X, HU B C, LI C, LI Q S, CHEN W S, ZHANG M L . Genetic studies on GMS in Brassica napus L.: I. Inheritance of recessive GMS line 9012A. Acta Agronomic Sinica, 1998,24:431-438. (in Chinese)
[15] 董发明, 洪登峰, 刘平武, 谢彦周, 何庆彪, 杨光圣 . 甘蓝型油菜隐性细胞核雄性不育系9012AB遗传模式新释. 华中农业大学学报, 2010,29(3):262-267.
doi: 1000-2421(2010)03-0262-06
DONG F M, HONG D F, LIU P W, XIE Y Z, HE Q B, YANG G S . A novel genetic model for the recessive genic male sterility line 9012AB in rapeseed ( Brassica napus L.). Journal of Huazhong Agricultural University, 2010,29(3):262-267. (in Chinese)
doi: 1000-2421(2010)03-0262-06
[16] DONG F M, HONG D F, XIE Y Z, WEN Y P, DONG L, LIU P W, HE Q B, YANG G S . Molecular validation of a multiple-allele recessive genic male sterility locus (BnRf) in Brassica napus L. Molecular Breeding, 2012,30(2):1193-1205.
[17] DENG Z H, LI X, WANG Z Z, JIANG Y F, WAN L L, DONG F M, CHEN F X, HONG D F, YANG G S . Map-based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRf(b), a male sterility gene, in Brassica napus. Theoretical and Applied Genetics, 2016,129(1):53-64.
[18] DUN X L, ZHOU Z F, XIA S Q, WEN J, YI B, SHEN J X, MA C Z, TU J X, FU T D . BnaC. Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. The Plant Journal, 2011,68(3):532-545.
[19] LI J, HONG D F, HE J P, MA L, WAN L L, LIU P W, YANG G S . Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Theoretical and Applied Genetics, 2012,125(2):223-234.
[20] XIA S Q, WANG Z X, ZHANG H Y, HU K N, ZHANG Z Q, QIN M M, DUN X L, YI B, WEN J, MA C Z, SHEN J X, FU T D, TU J X . Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. The Plant Cell, 2016,28(9):2060-2078.
[21] ZHAO L, JING X, CHEN L, LIU Y J, SU Y N, LIU T T, GAO C B, YI B, WEN J, MA C Z, TU J X, ZOU J T, FU T D, SHEN J X . Tribenuron-Methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Molecular Plant, 2015,8(12):1710-1724.
doi: 10.1016/j.molp.2015.08.009
[22] ZHAO L, DENG L, ZHANG Q, JING X, MA M, YI B, WEN J, MA C Z, TU J X, FU T D, SHEN J X . Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 2018,14(4):702-714.
doi: 10.1080/15548627.2017.1407888
[23] KITASHIBA H, NASRALLAH J B . Self-incompatibility in Brassicaceae crops: Lessons for interspecific incompatibility. Breeding Science, 2014,64(1):23-37.
doi: 10.1270/jsbbs.64.23
[24] NASRALLAH J B, NASRALLAH M E . Pollen-stigma signaling in the sporophytic self-incompatibility response. The Plant Cell, 1993,5(10):1325-1335.
[25] 马朝芝, 傅廷栋, 杨光圣, 涂金星, 杨小牛, 但芳 . 甘蓝型油菜双低自交不亲和系的选育. 华中农业大学学报, 1998,17(3):211-213.
MA C Z, FU T D, YANG G S, TU J X, YANG X N, DAN F . Breeding for self-incompatibility lines with double zero on Brassica napus L. Journal of Huazhong Agricultural University, 1998,17(3):211-213. (in Chinese)
[26] ZHAI W, ZHANG J F, YANG Y, MA C Z, LIU Z Q, GAO C B, ZHOU G L, TU J X, SHEN J X, FU T D . Gene expression and genetic analysis reveal diverse causes of recessive self-compatibility in Brassica napus L. BMC Genomics, 2014,15(1):1037.
[27] GAO C B, MA C Z, ZHANG X G, LI F P, ZHANG J F, ZHAI W, WANG Y Y, TU J X, SHEN J X, FU T D . The genetic characterization of self-incompatibility in a Brassica napus line with promising breeding potential. Molecular Breeding, 2013,31(2):485-493.
[28] GAO C B, ZHOU G L, MA C Z, ZHAI W, ZHANG T, LIU Z Q, YANG Y, WU M, YUE Y, DUAN Z Q, LI Y Y, LI B, LI J J, SHEN J X, TU J X, FU T D . Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L. Scientific Reports, 2016,6(5):337-355.
[29] TANG J Y, ZHANG J F, MA C Z, TANG W, GAO C B, LI F P, WANG X, LIU Y, FU T D . CAPS and SCAR markers linked to maintenance of self-incompatibility developed from SP11 in Brassica napus L. Molecular Breeding, 2009,24(3):245-254.
[30] ZHANG X G, MA C Z, FU T D, LI Y Y, WANG T H, CHEN Q, TU J X, SHEN J X . Development of SCAR markers linked to self-incompatibility in Brassica napus L. Molecular Breeding, 2007,21(3):305-315.
[31] ZHANG X G, MA C Z, TANG J Y, TANG W, TU J X, SHEN J X, FU T D . Distribution of S haplotypes and its relationship with restorer-maintainers of self-incompatibility in cultivatedBrassica napus. Theoretical and Applied Genetics, 2008,117(2):171-179.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[4] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[5] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[6] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[7] JU Ming, MIAO HongMei, HUANG YingYing, MA Qin, WANG HuiLi, WANG CuiYing, DUAN YingHui, HAN XiuHua, ZHANG HaiYang. Analysis of Cross Compatibility Variation Among Diverse Sesamum Species and Biological Characteristics of the Interspecific Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(20): 3897-3909.
[8] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[9] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[10] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[11] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[12] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[13] AiHua WANG,HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG. Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht. [J]. Scientia Agricultura Sinica, 2021, 54(5): 1043-1054.
[14] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[15] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!