Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1482-1498.doi: 10.3864/j.issn.0578-1752.2021.07.013

• EFFICIENT UTILIZATION OF FERTILIZER AND WATER • Previous Articles     Next Articles

Effects of Different Irrigation and Nitrogen Application Regimes on the Yield, Nitrogen Utilization of Rice and Nitrogen Transformation in Paddy Soil

CAO XiaoChuang1,WU LongLong1,ZHU ChunQuan1,ZHU LianFeng1,KONG YaLi1,LU RuoHui2,KONG HaiMin2,HU ZhaoPing3,DAI Feng4,ZHANG JunHua1(),JIN QianYu1   

  1. 1China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 310006
    2Zhejiang Cultivated Land Quality and Fertilizer Administration Station, Hangzhou 310020
    3Kingenta Ecological Engineering Group Co., Ltd./State Key Laboratory of Nutrition Resources Integrated Utilization, Linyi 276700, Shandong
    1Shaoxing Wotu Agricultural Science and Technology Co., Ltd., Shaoxing 312000, Zhejiang
  • Received:2020-07-04 Accepted:2020-09-29 Online:2021-04-01 Published:2021-04-22
  • Contact: JunHua ZHANG E-mail:zhangjunhua@caas.cn

Abstract:

【Objective】 In order to provide a theoretical basis for rational management of irrigation and nitrogen (N), the effects of the different water and nitrogen application models on the nitrogen absorption and translocation, and nitrogen use efficiency of indica hybrid rice, nitrogen transformation characteristic in paddy soil and their relationships with rice yield were studied. 【Method】 Using the indica hybrid rice Zhongzheyou 1 as experimental material, a two-factor experiment was conducted in 2018 and 2019, including two irrigation regimes (flood irrigation, FI; alternate wet and dry irrigation, AWD) and five nitrogen application types (zero nitrogen, N0; traditional nitrogen level, PUN100; 80% of traditional nitrogen level, PUN80; 80% of control-released nitrogen fertilizer plus biochar, CRFN80-BC; 80% of stable compound nitrogen fertilizer plus biochar, SFN80-BC). The grain yield, nitrogen absorption and utilization of rice, and nitrogen transformation characteristic in paddy soil were measured.【Result】(1) AWD significantly increased the rice yield in relative to that under FI conditions, and rice yields under CRFN80-BC and SFN80-BC treatments were significantly higher than that under PUN80 and even PUN100 treatments (P<0.05). Their values were 9 721 kg·hm-2 and 10 056 kg·hm-2 in 2018, and 9 492 kg·hm-2 and 9 907 kg·hm-2 in 2019, respectively, which was closely related to the increased rice spikelet or tillering number under the AWD condition. (2) Compared with N0, PUN100 and PUN80 treatments, AWD significantly improved the nitrogen accumulation of leaf and stem-sheath before the heading stage, nitrogen translocation and the contribution of nitrogen translocation to panicle from the heading to maturity stage under CRFN80-BC and SFN80-BC treatments. It also significantly increased the contents of the dissolved total nitrogen (DTN) and NO3- in 0-30 cm soil depths at the maturity stage, but greatly suppressed the concentrations of DTN, NH4+ and NO3- in soil leachate. (3) Rice grain yield was significantly and positively correlated with the nitrogen accumulation of nutritional organs (e.g. leaf and stem-sheath), nitrogen translocation and their nitrogen contribution to panicle, and nitrogen use efficiency and soil nitrogen availability at the maturity stage. It indicated that the suitable water and nitrogen management could collaboratively improve the fluency of the nitrogen absorption-translocation in rice and nitrogen availability in paddy soil, which were beneficial for the improvement of rice yield and nitrogen use efficiency.【Conclusion】 Given the results of grain yield, nitrogen utilization and nitrogen availability in rice paddy of the two years, it could be concluded that control-released/stable compound fertilizers combined with biochar could significantly increase the construction of high-yield rice population, rice nitrogen absorption and translocation, and nitrogen use efficiency under AWD irrigation condition, and also reduce the nitrogen leaching loss in paddy soil.

Key words: alternate wet and dry irrigation, control-released/stable compound fertilizers, nitrogen absorption and utilization, nitrogen transformation, yield, rice

Table 1

Grain yield and its yield components of rice in different treatments"

年份
Y
处理 Treatment有效穗
Effective panicle
(×104 hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Spikelet
结实率
Grain filling rate
(%)
产量
Yield
(kg·hm-2)
氮肥类型
N
灌溉模式
W
2018
N0FI15.9±0.1f24.7±0.1a139.1±1.1f80.9±0.3b6851±148h
AWD14.3±0.1g24.4±0.1bc154.3±2.9e85.2±0.2a7440±84g
PUN100FI21.4±0.3b24.3±0.1c155.4±1.8e73.3±0.3d8385±138e
AWD21.9±0.1ab23.9±0.1e164.3±3.9cd77.2±0.2c9105±216c
PUN80FI18.0±0.1e24.5±0.1bc165.9±4.9cd74.1±0.2d7806±87f
AWD19.1±0.1d24.6±0.1ab171.7±4.3abc77.0±0.4c8301±138e
CRFN80-BCFI20.6±0.1c24.5±0.1bc168.2±2.7bcd70.6±0.3e8690±260de
AWD22.2±0.2a24.1±0.1d174.7±1.1ab76.6±0.4c9721±200b
SFN80-BCFI21.5±0.1b24.7±0.1a167.8±3.7bcd70.8±0.4e8810±109cd
AWD22.2±0.2a24.3±0.1c176.6±1.2a76.6±0.4c10056±115a
F
F value
W17.8**31.1**39.9**571.7**82.9**
N637.3**11.5**45.3**331.3**77.9**
W×N28.5**4.0*1.3ns9.6**4.0*
2019
N0
FI15.3±0.1f24.4±0.1a130.0±1.8d87.0±0.5b6554±151h
AWD13.8±0.2g24.2±0.1bc147.6±1.3c91.6±0.4a7119±98g
PUN100
FI20.6±0.3b24.1±0.2bcd146.6±1.6c78.9±0.7d8061±226e
AWD20.8±0.1ab23.6±0.1de155.7±2.7b83.0±0.4c8927±188c
PUN80
FI17.3±0.1e24.3±0.1ab155.8±2.2b79.7±0.5d7684±76g
AWD18.3±0.1d24.4±0.1a163.5±2.5a82.8±0.3c8136±227e
CRFN80-BC
FI19.8±0.2c24.3±0.1ab157.2±1.2b76.0±0.6e8475±188d
AWD21.3±0.1a23.9±0.1cd163.3±1.8a82.4±0.8c9492±151b
SFN80-BCFI20.8±0.1ab24.5±0.1a156.9±1.2b76.2±0.8e8739±76cd
AWD21.3±0.1a24.1±0.1bcd165.0±2.0a82.4±0.7c9907±188a
F
F value
W11.0**33.0**202.0**574.7**186.0**
N560.7**12.9**153.3**336.1**216.0**
W×N23.8**3.8*8.8**9.5**5.1**
F
F value
Y1.2ns10.5**11.9**21.8**0.7ns
W×Y0.4ns0.04ns0.2ns1.2ns0.04ns
N×Y0.8ns0.04ns0.7ns0.8ns0.47ns
W×N×Y0.2ns0.08ns0.1ns0.02ns0.14ns

Fig. 1

Nitrogen contents in steam-sheaths, leaves and panicles of rice at different growth stagesN0: Zero nitrogen; PUN100:Traditional nitrogen level; PUN80: 80% of traditional nitrogen level; CRFN80-BC: 80% of control-released fertilizer-nitrogen (CRF-N) plus biochar; SFN80-BC: 80% of stable fertilizer-nitrogen (SF-N) plus biochar. FI: Flood irrigation; AWD: Alternate wet and dry irrigation. Bars marked with the different letters indicate significant difference at P<0.05. The same as below"

Table 2

Nitrogen accumulation and its ratio to total in main growth stages of rice"

生育期
Growth
stage
处理 Treatment茎鞘Stem-sheath叶片Leaf穗Panicle氮积累总量
Total nitrogen accumulation
氮肥类型
N
灌溉模式
W
氮积累量
Nitrogen accumulation
(kg·hm-2)
比例
Ratio
(%)
氮积累量
Nitrogen accumulation
(kg·hm-2)
比例
Ratio
(%)
氮积累量
Nitrogen accumulation
(kg·hm-2)
比例
Ratio
(%)
分蘖盛期
Tillering
N0
FI35.0g41.5ab49.2e58.5de84.2gh
AWD41.3e37.9cde67.8b62.1abc109.0d
PUN100
FI45.3d39.8bc68.6b60.2cd113.7c
AWD34.1g37.4e57.0c62.6a91.0f
PUN80
FI30.5h37.6de50.5d62.4ab80.9h
AWD31.4h36.8e54.0de63.2a85.3g
CRFN80-BC
FI38.8f40.7b56.9c59.3d95.6e
AWD51.3b38.0cde83.7a62.0abc135.0b
SFN80-BC
FI49.0c42.8a65.4b57.2e114.4c
AWD56.2a39.6bcd85.7a60.4bcd141.8a
F
F value
W106.1**37.2**184.0**37.2**303.4**
N555.0**10.0**95.2**10.0**336.4**
W×N171.9**1.3ns66.3**1.3ns167.2**
齐穗期
Heading

N0FI37.2f39.0e40.9h42.9bc17.3e18.1a95.2i
AWD51.5e39.8e53.8g41.6cd24.1bcd18.6a129.3h
PUN100FI89.1b43.7cd90.3c44.3ab24.5bc12.0cd203.9cd
AWD82.7c43.4cd82.6d43.3bc25.3b13.3b190.6d
PUN80FI66.7d44.8bc64.4f43.2bc17.8e12.0cd148.8g
AWD84.8c51.7a60.7f37.0e18.6e11.3d164.0f
CRFN80-BCFI82.7c46.9b71.2e40.4d22.3d12.6bc176.1e
AWD92.9b42.5cd99.7b45.8a25.6b11.7d218.2bc
SFN80-BC
FI92.4b47.1b81.2d41.4cd22.5cd11.5d196.0d
AWD98.3a42.2d104.0a44.6ab30.9a13.2b233.1a
F
F value
W59.4**0.6ns142.6**0.1ns96.0**5.3*372.4**
N266.7**32.9**377.8**8.0**54.7**210.8**960.3**
W×N133.5**18.9**64.9**19.8**14.4**9.4**72.5**
成熟期
Maturity
N0FI59.0a30.9a19.5d10.2f112.3g58.9g190.7g
AWD46.7d25.3b16.8e9.1g121.8f65.7cde185.3g
PUN100FI57.1ab22.5c38.6a15.2a157.7de62.3f253.2cd
AWD55.7b20.8d37.7a14.1bc174.6ab65.1de268.0a
PUN80FI43.3e19.2e30.2bc13.4cd151.8e67.4ab225.1f
AWD49.2c20.9d27.6c11.7e158.2de67.3ab234.9e
CRFN80-BCFI49.7c20.2de31.5b15.3a165.0cd67.0e246.2d
AWD51.6c20.4de38.9a12.8d162.6cd64.3abc253.0cd
SFN80-BC
FI49.1c19.0e39.0a15.1ab170.1bc65.9bcd258.2bc
AWD43.8e16.7f39.2a15.0ab179.2a68.3a262.1ab
F
F value
W19.9**31.4**0.3ns1.8ns23.8**36.8**11.2**
N59.4**155.8**180.5**82.4**155.3**41.0**233.4**
W×N38.5**20.1**10.3**12.1**3.7*26.9**3.6*

Table 3

N translocation and contribution of nitrogen translocation in stems-sheaths and leaves of rice from the heading to maturity stage"

处理 Treatment茎鞘 Stem-sheath叶片 Leaf穗 Panicle
氮肥类型
N
灌溉模式
W
氮转运量
Nitrogen translocation
(kg·hm-2)
氮转运率
Efficiency of nitrogen translocation
(%)
氮转运量
Nitrogen translocation
(kg·hm-2)
氮转运率
Efficiency
of nitrogen translocation
(%)
氮增加量
Nitrogen increment (kg·hm-2)
转运氮
贡献率
Contribution rate of nitrogen translocation (%)
叶转运氮
贡献率
Contribution rate of leaf nitrogen translocation (%)
茎鞘转运氮
贡献率
Contribution rate of stem-sheath nitrogen translocation (%)
N0FI-21.8h-58.7h21.4g52.2d95.2d-0.5g22.4f-23.0h
AWD4.8g9.2g36.9ef68.7a98.1d42.8f37.8b4.9g
PUN100FI32.0de35.9def51.8b57.3c133.4c62.9c38.9b24.0cd
AWD27.0ef32.6f44.9c54.2cd149.3a48.2e30.0c18.1ef
PUN80FI23.4f34.9ef34.3f53.2d133.7c43.0f25.6de17.4f
AWD35.5cd41.9bcd33.2f54.6cd139.5bc49.2e23.7ef25.5bcd
CRFN80-BCFI33.0de39.8de39.8de55.8cd143.1ab51.0e27.8cd23.2de
AWD41.4bc44.1bc60.9a61.0b137.2bc74.8b44.3a30.5b
SFN80-BC
FI43.3b46.8b42.3cd52.1d147.7a57.9d28.6c29.3bc
AWD54.5a55.4a64.8a62.3b148.5a80.6a43.8a36.8a
F
F value
W66.2*173.4**111.4**64.2**6.9*246.0**153.8**65.7**
N215.6**443.8**100.3**8.8**156.5**263.5**56.9**170.8**
W×N14.6**100.9**38.3**20.5**5.9**88.2**81.6**23.7**

Fig. 2

Contents of the different nitrogen forms in paddy soils at 15 cm, 30 cm and 60 cm depths at the main rice growth stages"

Table 4

Nitrogen use efficiency of rice in different treatments"

处理Treatment氮回收利用率
Nitrogen recovery efficiency (%)
氮农学利用率
Nitrogen agronomy efficiency (kg·kg-1)
氮生理利用率
Nitrogen physiological efficiency (kg·kg-1)
氮偏生产力
Nitrogen partial factor productivity (kg·kg-1)
氮肥类型
N
灌溉模式
W
N0FI
AWD
PUN100FI37.8±0.8cd8.4±0.7de22.6±3.1c44.8±0.7f
AWD42.6±0.2bc10.0±0.6d23.5±1.3c49.6±0.6e
PUN80FI23.9±1.4e7.8±0.3e33.3±3.2b53.4±0.3d
AWD34.5±1.2d7.1±0.9e20.8±3.4c56.5±0.9c
CRFN80-BCFI38.6±2.4cd13.3±0.8c34.6±0.2ab58.9±0.8c
AWD47.0±0.5b16.5±0.6b35.0±1.3ab65.9±0.6b
SFN80-BC
FI46.9±2.3b15.2±0.3bc32.5±0.9b60.7±0.3b
AWD53.6±3.1a19.4±0.8a42.2±3.9a68.8±0.8a
F
F value
W33.4**19.4**154.0**0.04ns
N43.6**99.8**292.1**14.0**
W×N0.9ns5.3*5.8**6.6**

Fig. 3

Contents of the different N forms in soil leachate at 15 cm, 30 cm and 60 cm depths"

Table 5

Correlation coefficients of nitrogen accumulation, translocation, nitrogen use efficiency and soil nitrogen concentration with rice yield and its yield components"

指标
Index
有效穗
Effective panicle
千粒重
1000-grain weight
颖花数
Spikelets per panicle
结实率
Seed-setting rate
产量
Grain yield
分蘖期叶片氮累积 Leaf N accumulation at tillering stage0.474**-0.3360.463**0.0240.684**
分蘖期茎鞘氮累积 Stem-sheath N accumulation at tillering stage0.518**-0.1800.318-0.1390.631**
齐穗期叶片氮累积 Leaf N accumulation at heading stage0.877**-0.511**0.645**-0.447*0.898**
齐穗期茎鞘氮累积 Stem-sheath N accumulation at heading stage0.912**-0.3250.789**-0.634**0.897**
齐穗期穗氮累积 Panicle N accumulation at heading stage0.542**-0.521**0.452*0.0050.718**
成熟期叶片氮累积 Leaf N accumulation at maturity stage0.959**-0.390*0.577**-0.685**0.836**
成熟期茎鞘氮累积 Stem-sheath N accumulation at maturity stage0.033-0.138-0.595**0.066-0.280
成熟期穗氮累积 Panicle N accumulation at maturity stage0.892**-0.3540.801**-0.669**0.877**
叶片氮转运量 Leaf N translocation0.733**-0.534**0.620**-0.2500.843**
叶片氮转运率 Efficiency of leaf N translocation-0.211-0.2760.1650.527**0.114
茎鞘氮转运量 Stem-sheath N translocation0.825**-0.2620.869**-0.595**0.889**
茎鞘氮转运率 Efficiency of stem-sheath N translocation0.706**-0.2900.891**-0.558**0.790**
穗氮增加量 Panicle N translocation0.868**-0.2790.786**-0.738**0.814**
转运氮贡献率 Contribution rate of N translocation0.740**-0.407*0.802**-0.391*0.865**
叶片转运氮贡献率 Contribution rate of leaf N translocation0.376*-0.499**0.3460.1210.557**
茎鞘转运氮贡献率 Contribution rate of stem-sheath N translocation0.780**-0.2870.874**-0.565**0.854**
氮回收利用率 N recovery efficiency0.836**-0.2210.3690.1550.844**
氮农学利用率 N agronomy efficiency0.710**-0.0880.478*-0.0370.891**
氮偏生产力 N partial factor productivity0.3340.1180.807**0.1120.742**
氮生理利用率 N physiological efficiency0.2880.0750.401-0.1570.581**
成熟期稻田DTN DTN content in paddy soil at maturity stage0.681**0.477**-0.0280.649**-0.364*
成熟期稻田NH4+ NH4+ content in paddy soil at maturity stage-0.494**-0.404*0.443*-0.546**0.219
成熟期稻田NO3- NO3- content in paddy soil at maturity stage0.472**0.382*0.2550.314-0.386*
[1] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F.Nutrient use efficiencies of major cereal crops in China and measures for improvement. Scientia Agricultura Sinica, 2008, 45(5): 915-924. (in Chinese)
[2] 李保国, 黄峰. 1998-2007年中国农业用水分析. 水科学进展, 2010, 21(4): 575-583.
LI B G, HUANG F.Analysis of China’s agricultural water use in 1998-2007. Water Science Progress, 2010, 21(4): 575-583. (in Chinese)
[3] 张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003, 36(7): 800-806.
ZHANG H C, WANG X Q, DAI Q G, HUO Z Y, XU K.Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu. Scientia Agricultura Sinica, 2003, 36(7): 800-806. (in Chinese)
[4] JU X T, KOU C L, ZHANG F S, CHRISTIE P.Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143(1): 117-125.
[5] CONLEY D J, PAERL H W, HOWARTH R W, BOESCH D F, SEITZINGER S P, HAVENS K E, LANCELOT C, LIKENS G E.Controlling eutrophication: Nitrogen and phosphorus. Science, 2009, 323: 1014-1015.
[6] ZHANG W, DOU Z, HE P.Improvements in manufacture and agricultural use of nitrogen fertilizer in China offer scope for significant reductions in greenhouse gas emissions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 8375-8380.
[7] OITA A, MALIK A, KANEMOTO K, GESCHKE A, NISHIJIMA S, LENZEN M.Substantial nitrogen pollution embedded in international trade. Nature Geoscience, 2016, 9: 111-115.
[8] GU B J, JU X T, CHANG J, GE Y, VITOUSEK P M.Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 8792-8797.
[9] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
XU G W, WANG H Z, ZHAI Z H, SUN M, LI Y J.Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132-141. (in Chinese)
[10] 赵宏伟, 陈宾宾, 邹德堂, 刘忠良, 赵振东. 灌溉方式和氮肥用量对水稻群体生长特性的影响. 灌溉排水学报, 2016, 35(1): 32-35.
ZHAO H W, CHEN B B, ZOU D T, LIU Z L, ZHAO Z D.Impacts of irrigation mode and nitrogen amount on population growth characteristics of rice. Journal of Irrigation and Drainage, 2016, 35(1): 32-35. (in Chinese)
[11] CAO X C, ZHONG C, ZHU C Q, ZHANG J H, ZHU L F, WU L H, JIN Q Y.Variability of leaf photosynthetic characteristics and its relationships with rice resistance to water stress under different nitrogen nutrition. Physiologia Plantarum, 2019, 167: 613-627.
[12] ZHONG C, BAI Z G, ZHU L F, ZHANG J H, ZHU C Q, HUANG J L, JIN Q Y, CAO X C.Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 2019, 157: 269-282.
[13] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018, 44(4): 554-568.
XU Y J, XU Y D, LI Y Y, QIAN X Y, WANG Z Q, YANG J C.Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice. Acta Agronomica Sinica, 2018, 44(4): 554-568. (in Chinese)
[14] 彭玉, 孙永健, 蒋明金, 徐徽, 秦俭, 杨志远, 马均. 不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响. 作物学报, 2014, 40(5): 859-870.
PENG Y, SUN Y J, JIANG M J, XU H, QIN J, YANG Z Y, MA J.Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and distribution in rice. Acta Agronomica Sinica, 2014, 40(5): 859-870. (in Chinese)
[15] FIERER N, SCHIMEL J P.Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34(6): 777-787.
[16] YANG Y D, WANG Z M, HU Y G, ZENG Z H.Irrigation frequency alters the abundance and community structure of ammonia-oxidizing archaea and bacteria in a northern Chinese upland soil. European Journal of Soil Biology, 2017, 83: 34-42.
[17] LIANG X Q, CHEN Y X, NIE Z Y, YE Y S, LIU J, TIAN G M, WANG G H, TUONG T P.Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices. Environmental Science and Pollution Research, 2013, 20(10): 6980-6991.
[18] LIU L J, CHEN T T, WANG Z Q, ZHANG H, YANG J C, ZHANG J H.Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Research, 2013, 154: 226-235.
[19] SHEN J B, CUI Z L, MIAO Y X, MI G H, ZHANG H Y, FAN M S, ZHANG C C, JIANG R F, ZHANG W F, LI H G, CHEN X P, LI X L, ZHANG F S.Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Global Food Security, 2013, 2(1): 1-8.
[20] 刘兆辉, 吴小宾, 谭德水, 李彦, 江丽华. 一次性施肥在我国主要粮食作物中的应用与环境效应. 中国农业科学, 2018, 51(20): 3827-3839.
LIU Z H, WU X B, TAN D S, LI Y, JIANG L H.Application and environmental effects of one-off fertilization technique in major cereal crops in China. Scientia Agricultura Sinica, 2018, 51(20): 3827-3839. (in Chinese)
[21] 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究. 农业环境科学学报, 2013, 32(8): 1682-1689.
YU Y Q, XUE L H, YANG L Z.Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region. Journal of Agro-Environment Science, 2013, 32(8): 1682-1689. (in Chinese)
[22] FU J, WU Y L, WANG Q H, HU K L, WANG S Q, ZHOU M H, HAYASHI K, WANG H Y, ZHAN X Y, JIAN Y W, CAI C, SONG M F, LIU K W, WANG Y Y, ZHOU F, ZHU J Q.Importance of subsurface fluxes of water, nitrogen and phosphorus from rice paddy fields relative to surface runoff. Agricultural Water Management, 2019, 213: 627-635.
[23] 闫湘, 金继运, 何萍, 梁鸣早. 提高肥料利用率技术研究进展. 中国农业科学, 2008, 41(2): 450-459.
YAN X, JIN J Y, HE P, LIANG M Z.Recent advances in technology of increasing fertilizer use efficiency. Scientia Agricultura Sinica, 2008, 41(2): 450-459. (in Chinese)
[24] YANG Y C, ZHANG M, LI Y C, FAN X H, GENG Y Q.Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield. Soil Science Society of America Journal, 2012, 76(6): 2307-2317.
[25] 严田蓉, 何艳, 唐源, 彭志芸, 马鹏, 余华清, 丁峰, 王春雨, 孙永健, 杨志远, 马均. 缓释尿素与普通尿素配施对直播杂交籼稻叶片生长及产量的影响. 植物营养与肥料学报, 2019, 25(5): 729-740.
YAN T R, HE Y, TANG Y, PENG Z Y, MA P, YU H Q, DING F, WANG C Y, SUN Y J, YANG Z Y, MA J.Effects of slow-release urea combined with conventional urea on leaf growth and yield formation of indica hybrid rice under direct seeding cultivation. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 729-740. (in Chinese)
[26] 朱从桦, 张玉屏, 向镜, 张义凯, 武辉, 王亚梁, 朱德峰, 陈惠哲. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52(23): 4228-4239.
ZHU C Y, ZHANG Y P, XIANG J, ZHANG Y K, WU H, WANG Y L, ZHU D F, CHEN H Z.Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice. Scientia Agricultura Sinica, 2019, 52(23): 4228-4239. (in Chinese)
[27] 斯林林, 周静杰, 吴良欢, 胡兆平. 生物炭配施缓控释肥对稻田田面水氮素动态变化及径流流失的影响. 环境科学, 2018, 39(12): 5383-5390.
SI L L, ZHOU J J, WU L H, HU Z P.Dynamics and runoff losses of nitrogen in paddy field surface water under combined application of biochar and slow/controlled-release fertilizer. Environmental Science, 2018, 39(12): 5383-5390. (in Chinese)
[28] FENG Y F, SUN H J, XUE L H, WANG Y M, YANG L Z, SHI W M, XING B S.Sawdust biochar application to rice paddy field: Reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization. Environmental Science and Pollution Research, 2018, 25(9): 8388-8395.
[29] HUANG M, LIU Y, QIN H D, JIANG L G, ZOU Y B.Fertilizer nitrogen uptake by rice increased by biochar application. Biology and Fertility of Soils, 2014, 50(6): 997-1000.
[30] 范龙, 单双吕, 张恒栋, 陈佳娜, 赵春容, 曹放波, 王玉梅, 黄敏, 邹应斌. 生物炭施用对早稻产量形成的影响. 中国稻米, 2017, 23(4): 107-110, 14.
FAN L, SHAN S L, ZHANG H D, CHEN J N, ZHAO C R, CAO F B, WANG Y M, HUANG M, ZOU Y B.Effects of biochar addition on yield formation in early rice. China Rice, 2017, 23(4): 107-110, 14. (in Chinese)
[31] 华元刚, 闫良, 茶正早, 罗微, 林钊沐. 砂页岩发育的砖红壤上氮和钾素垂直运移特征初步研究. 热带作物学报, 2012, 33(5): 804-810.
HUA Y G, YAN L, CHA Z Z, LUO W, LIN Z M.Vertical leaching character of N and K element in latosol developed from sandshale. Chinese Journal of Tropical Crops, 2012, 33(5): 804-810. (in Chinese)
[32] 霍中洋, 杨雄, 张洪程, 葛梦婕, 马群, 李敏, 戴其根, 许轲, 魏海燕, 李国业, 朱聪聪, 王亚江, 颜希亭. 不同氮肥群体最高生产力水稻品种各器官的干物质和氮素的积累与转运. 植物营养与肥料学报, 2012, 18(5): 1035-1045.
HUO Z Y, YANG X, ZHANG H C, GE M J, MA Q, LI M, DAI Q G, XU K, WEI H Y, LI G Y, ZHU C C, WANG Y J, YAN X T.Accumulation and translocation of dry matter and nitrogen nutrition in organs of rice cultivars with different productivity levels. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1035-1045. (in Chinese)
[33] 金树权, 陈若霞, 汪峰, 姚红燕, 谌江华. 不同氮肥运筹模式对稻田田面水氮浓度和水稻产量的影响. 水土保持学报, 2020, 34(1): 242-248.
JIN S Q, CHEN R X, WANG F, YAO H Y, ZHAN J H.Effects of different nitrogen fertilizer application modes on the variation of nitrogen concentration in paddy field surface water and the yield of rice. Journal of Soil and Water Conservation, 2020, 34(1): 242-248. (in Chinese)
[34] 张绍文, 何巧林, 王海月, 蒋明金, 李应洪, 严奉君, 杨志远, 孙永健, 郭翔, 马均. 控制灌溉条件下施氮量对杂交籼稻 F优498氮素利用效率及产量的影响. 植物营养与肥料学报 2018, 24(1): 82-94.
ZHANG S W, HE Q L, WANG H Y, JIANG M J, LI Y H, YAN F J, YANG Z Y, SUN Y J, GUO X, MA J.Effects of nitrogen application rates on nitrogen use efficiency and grain yield of indica hybrid rice F You 498 under controlled intermittent irrigation. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 82-94. (in Chinese)
[35] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 蒋明金, 严田蓉, 郭长春, 马均. 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017, 31(5): 500-512.
LI N, YANG Z Y, DAI Z, SUN Y J, XU H, HE Y, JIANG M J, YAN T R, GUO C C, MA J.Effects of water-nitrogen management on root traits, nitrogen accumulation and utilization and grain yield in rice with different nitrogen use efficiency. Chinese Journal of Rice Science, 2017, 31(5): 500-512. (in Chinese)
[36] 纪雄辉, 郑圣先, 鲁艳红, 廖育林. 施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律. 中国农业科学, 2006, 39(12): 2521-2530.
JI X H, ZHENG S X, LU Y H, LIAO Y L.Dynamics of floodwater nitrogen and its runoff loss, urea and controlled release nitrogen fertilizer application regulation in rice. Scientia Agricultura Sinica, 2006, 39(12): 2521-2530. (in Chinese)
[37] 桂娟, 陈小云, 刘满强, 庄喜平, 孙震, 胡锋. 节水与减氮措施对稻田土壤微生物和微动物群落的影响. 应用生态学报, 2016, 27(1): 107-116.
GUI J, CHEN X Y, LIU M Q, ZHUANG X P, SUN Z, HU F.Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field. Chinese Journal of Applied Ecology, 2016, 27(1): 107-116. (in Chinese)
[38] BELDER P, BOYMAN B A M, CABANGON R, LU G A, QUILANG E J P, LI Y H, SPIERTZ J H J, TUONG T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004, 65(3): 193-210.
[39] WON J G, CHOI J S, LEE S P, LEE S H, CHUNG S O.Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science, 2005, 8(4): 487-492.
[40] 李超, 韦还和, 许俊伟, 王子杰, 许轲, 张洪程, 戴其根, 霍中洋, 魏海燕, 郭保卫. 甬优系列籼粳杂交稻氮素积累与转运特征. 植物营养与肥料学报, 2016, 22(5): 1177-1186.
LI C, WEI H H, XU J W, WANG Z J, XU K, ZHANG H C, DAI Q G, HUO Z Y, WEI H Y, GUO B W.Characteristics of nitrogen uptake, utilization and translocation in the indica-japonica hybrid rice of Yongyou series. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1177-1186. (in Chinese)
[41] 梁天锋, 徐世宏, 刘开强, 王殿君, 梁和, 董登峰, 韦善清, 周佳民, 胡钧铭, 江立庚. 栽培方式对水稻氮素吸收利用与分配特性影响的研究. 植物营养与肥料学报, 2010, 16(1): 20-26.
LIANG T F, XU S H, LIU K Q, WANG D J, LIANG H, DONG D F, WEI S Q, ZHOU J M, HU J M, JIANG L G.Studies on influence of cultivation patterns on characteristics of nitrogen utilization and distribution in rice. Plant Nutrition and Fertilizer Science, 2010, 16(1): 20-26. (in Chinese)
[42] 张耀鸿, 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006, 12(5): 616-621.
ZHANG Y H, ZHANG Y L, HUANG Q W, XU Y C, SHEN Q R.Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutrition and Fertilizer Science, 2006, 12(5): 616-621. (in Chinese)
[43] MAE T, OHIRA K.The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryze Sativa L.). Plant and Cell Physiology, 1981, 22(6): 1067-1074.
[44] PATIL M D, DAS B S, BARAK E, BHADORIA P B S, POLAK A. Performance of polymer-coated urea in transplanted rice: Effect of mixing ratio and water input on nitrogen use efficiency. Paddy and Water Environment, 2010, 8: 189-198.
[45] 魏中伟, 马国辉, 龙继锐, 宋春芳. 5-氨基乙酰丙酸叶面肥对杂交晚稻光合作用和产量的影响. 湖南农业科学, 2013(7): 65-67, 72.
WEI Z W, MA G H, LONG J R, SONG C F. Effects of 5-aminolevulinic acid on photosynthesis and yield of hybrid late rice. Hunan Agricultural Sciences, 2013(7): 65-67, 72. (in Chinese)
[46] 王贺正, 马均, 李旭毅, 张荣萍. 水分胁迫对水稻籽粒灌浆及淀粉合成有关酶活性的影响. 中国农业科学, 2009, 42(5):1550-1558.
WANG H Z, MA J, LI X Y, ZHANG R P.Effects of water stress on grain filling and activities of enzymes involved in starch synthesis in rice. Scientia Agricultura Sinica, 2009, 42(5): 1550-1558. (in Chinese)
[47] 潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014, 28(4): 335-342.
PAN J F, LI G H, CUI K H.Re-partitioning of non-structural carbohydrates in rice stems and their roles in yield stability and stress tolerance. Chinese Journal of Rice Science, 2014, 28(4): 335-342. (in Chinese)
[48] PAN J F, CUI K H, WEI D, HUANG J L, XIANG J, NIE L X.Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Plant Physiology, 2011, 141(4): 321-331.
[49] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S, WANG W.Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001, 127(1): 315-323.
[50] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S.Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany, 2010, 52(364): 2169-2179.
[51] GEBBING T, SCHNYDER H.Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiology, 1999, 121(3): 871-878.
[52] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108.
HE J Z, ZHANG L M.Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology, 2013, 40(1): 98-108. (in Chinese)
[53] 鲁艳红, 聂军, 廖育林, 周兴, 谢坚, 汤文光, 杨增平. 不同控释氮肥减量施用对双季水稻产量和氮素利用的影响. 水土保持学报, 2016, 30(2): 155-161, 174.
LU Y H, NIE J, LIAO Y L, ZHOU X, XIE J, TANG W G, YANG Z P.Effects of application reduction of controlled release nitrogen fertilizer on yield of double cropping rice and nitrogen nutrient uptake. Journal of Soil and Water Conservation, 2016, 30(2): 155-161, 174. (in Chinese)
[54] 俞巧钢, 陈英旭. DMPP 对稻田田面水氮素转化及流失潜能的影响. 中国环境科学, 2010, 30(9): 1274-1280.
YU Q G, CHEN Y X.Influences of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrogen transformation and potential runoff loss in rice fields. China Environmental Science, 2010, 30(9): 1274-1280. (in Chinese)
[55] LI H, LIANG X Q, CHEN Y X, LIAN Y F, TIAN G M, NI W Z.Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. Journal of Environmental Sciences, 2008, 20(2): 149-155.
[56] 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23(2): 333-341.
CHEN C, GONG H Q, ZHANG J Z, GAO H J.Correlation between root morphology and nitrogen uptake of rice. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 333-341. (in Chinese)
[57] LAGOMARSINO A, AGNELLI A E, LINQUIST B, ADVIENTO- BORBE M A, AGNELLI A, GAVINA G, RAVAGLIA S, FERRARA R M. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere, 2016, 26(4): 533-548.
[58] 周旋, 吴良欢, 戴锋, 董春华. 生化抑制剂组合与施肥模式对黄泥田稻季田面水及渗漏液氮素动态变化的影响. 土壤, 2019, 51(3): 434-441.
ZHOU X, WU L H, DAI F, DONG C H.Effects of combined biochemical inhibitors and fertilization models on nitrogen dynamics in surface water and leachate from yellow clayey paddy field. Soils, 2019, 51(3): 434-441. (in Chinese)
[59] 潘圣刚, 黄胜奇, 曹凑贵, 蔡明历, 翟晶, 江洋, 张帆. 氮肥运筹对稻田田面水氮素动态变化及氮素吸收利用效率影响. 农业环境科学学报, 2010, 29(5): 1000-1005.
PAN S G, HUANG S Q, CAO C G, CAI M L, ZHAI J, JIANG Y, ZHANG F.Effects of nitrogen management on dynamics of nitrogen in surface water from rice field and nitrogen use efficiency. Journal of Agro-Environment Science, 2010, 29(5): 1000-1005. (in Chinese)
[60] 谢迎新, 赵旭, 熊正琴, 邢光熹. 污水灌溉对稻田土壤氮、磷淋失动态变化的影响. 水土保持学报, 2007, 21(4): 43-46.
XIE Y X, ZHAO X, XIONG Z Q, XING G X.Dynamic changes of nitrogen and phosphorus leaching from paddy soil via irrigation with contaminated river water. Journal of Soil and Water Conservation, 2007, 21(4): 43-46. (in Chinese)
[61] 郑圣先, 刘德林, 聂军, 戴平安, 肖剑. 控释氮肥在淹水稻田土壤上的去向及利用率. 植物营养与肥料学报, 2004, 10(2): 137-142.
ZHENG S X, LIU D L, NIE J, DAI P A, XIAO J.Fate and recovery efficiency of controlled release nitrogen fertilizer in flooding paddy soil. Plant Nutrition and Fertilizing Science, 2004, 10(2): 137-142. (in Chinese)
[62] 费频频. 脲酶/硝化抑制剂对稻田生态系统氮素流向的影响研究[D]. 杭州: 浙江大学, 2011.
FEI P P.The effects of urease/nitrification inhibitors on the nitrogen flow in paddy ecosystem[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[63] CUI P Y, FAN F L, YIN C, LI Z J, SONG A L, WAN Y F, LIANG Y C.Urea-and nitrapyrin-affected N2O emission is coupled mainly with ammonia oxidizing bacteria growth in microcosms of three typical Chinese arable soils. Soil Biology and Biochemistry, 2013, 66: 214-221.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!