Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1499-1511.doi: 10.3864/j.issn.0578-1752.2021.07.014

Previous Articles     Next Articles

Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases

CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu()   

  1. China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 311400
  • Received:2020-07-06 Accepted:2020-09-03 Online:2021-04-01 Published:2021-04-22
  • Contact: XiuFu ZHANG E-mail:Zhangxiufu@caas.cn

Abstract:

【Objective】 This study aimed to understand the yield formation characteristics and water use efficiency (WUE) of indica/japonica hybrid rice (IJHR) cultivar and their physiological bases under alternate wetting and soil drying (AWD) regime.【Method】The field experiment was conducted at Huangtianfan Experimental Farm which belonged to China National Rice Research Institute, Hangzhou, Zhejiang province, Southeast China, in 2018 and 2019. Two newly-bred IJHR cultivars, Yongyou 1540 and Chunyou 927, and two local high-yielding japonica hybrid rice (JHR) cultivars, Changyou 5 and Jiayou 5, were field grown. Two irrigation regimes, conventional irrigation (CI) and AWD, were imposed from 7 days after transplanting to maturity. The goals of this study were to investigate the effects of AWD on the grain yield and WUE of IJHR and its physiological bases. 【Result】Compared with those under CI regime, the grain yields of JHR cultivars were significantly decreased by 12.3%-12.8% under AWD regime, whereas the difference in grain yields of IJHR cultivars was not significant between CI and AWD regimes. Compared with the CI regime, AWD significantly reduced the amount of irrigation water and significantly increased WUE by 5.9%-8.3% and 13.7%-16.8% in JHR and IJHR cultivars, respectively. In comparison with JHR cultivars, IJHR cultivars showed greater tillering capacity, larger sink size and higher grain filling rate, higher leaf area duration and crop growth rate from heading to maturity, higher root oxidation activity, leaf photosynthetic rates, and activities of sucrose synthase and adenosine diphosphate-glucose pyrophosphorylase in grains at the first and second soil drying periods as well as re-watering periods after heading.【Conclusion】IJHR cultivars could obtain higher grain yields and higher WUE than JHR cultivars under AWD regime. Stronger physiological activities of root, including higher root oxidation activity at the first and second soil drying periods as well as re-watering periods after heading, and above ground plants, including higher leaf area duration, crop growth rate from heading to maturity, greater leaf photosynthetic rates, and activities of sucrose synthase and adenosine diphosphate-glucose pyrophosphorylase in grains at the first and second soil drying periods as well as re-watering periods after heading, contributed to their better yield performance and higher WUE of IJHR cultivars under AWD regime.

Key words: rice, alternate wetting and soil drying, indica-japonica hybrid rice, grain yield, water use efficiency, physiological bases

Table 1

Monthly total precipitation, sunshine hours, and average temperature during the rice growing seasons"

年份/气象条件
Year/ Meteorological condition
六月
June
七月
July
八月
August
九月
September
十月
October
2017
降雨量 Precipitation (mm) 112 218 164 72 62
日照时长 Sunshine (h) 98 220 208 185 157
平均气温 Temperature (℃) 26.5 28.6 28.5 26.8 22.5
2018
降雨量 Precipitation (mm) 71 182 151 84 77
日照时长 Sunshine (h) 118 241 185 178 164
平均气温 Temperature (℃) 26.8 28.9 28.1 26.5 22.8

Table 2

Analysis of variance on yield, WUE and some physiological traits of rice under different irrigation managements"

方差分析
Analysis of variance
产量
Grian yield
水分利用效率
Water use efficiency
茎蘖成穗率
Percentage of
productive tillers
作物生长速率
Crop growth rate
光合势
Leaf area duration
根系氧化力
Root oxidation activity
剑叶净光合速率
Flag leaf photosynthetic rate
蔗糖合酶 SuSase
腺苷二磷酸
葡萄糖焦磷
酸化酶
AGPase
年份 Year NS NS NS NS NS NS NS NS NS
年份×品种
Year ×Cultivar
NS NS NS NS NS NS NS NS NS
年份×处理
Year ×Treatment
NS NS NS NS NS NS NS NS NS

Fig. 1

Changes in soil water potentials under different irrigation managements throughout the rice growing season YY-1540: Yongyou 1540; CY-927: Chunyou 927; CY-5: Changyou 5; JY-5: Jiayou 5; CI: Conventional irrigation; AWD: Alternate wetting and soil drying. Vertical bars represent mean±standard error. Compared between the different treatments. The same as below"

Table 3

Grain yield and its yield components under different irrigation managements"

品种
Cultivar
处理
Treatment
稻谷产量
Grain yield
(t·hm-2)
穗数
Number of panicles
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets
(×103 m-2)
结实率
Filled grains
(%)
千粒重
1000-grain weight
(g)
甬优1540
YY-1540
CI 11.5a 202c 326a 65.7a 79.2c 23.0c
AWD 11.4a 198c 304b 59.9b 84.5b 23.3c
春优927
CY-927
CI 11.6a 189d 311b 58.8b 84.2b 24.7b
AWD 11.5a 186d 287c 53.2c 89.6a 25.0b
常优5号
CY-5
CI 10.1b 251a 186e 46.7d 84.4b 26.8a
AWD 8.86c 240b 169f 40.4e 85.3b 26.8a
嘉优5号
JY-5
CI 9.82b 248a 198d 48.9d 80.7c 25.8b
AWD 8.56c 235b 181e 42.3e 81.9c 25.9b
方差分析 ANOVA
品种 Cultivar (C) ** ** ** ** ** **
处理 Treatment (T) ** ** ** ** ** NS
品种×处理 C×T ** * * * ** *

Fig. 2

The amount of irrigation water (A) and water use efficiency (B) under different irrigation managements Different letters above the column indicate statistical significance at P = 0.05. The same as below"

Table 4

Number of tillers and percentage of productive tillers under different irrigation managements"

品种
Cultivar
处理
Treatment
茎蘖数 Number of tillers and mail stems (m-2) 茎蘖成穗率
Percentage of productive tillers (%)
拔节期 Jointing 齐穗期 Heading 成熟期 Maturity
甬优1540
YY-1540
CI 281c 208c 202c 71.7b
AWD 258d 207c 198c 76.2a
春优927
CY-927
CI 260d 198d 189d 72.7b
AWD 239e 197d 186d 77.5a
常优5号
CY-5
CI 360a 259a 251a 70.4b
AWD 315b 245b 240b 76.1a
嘉优5号
JY-5
CI 357a 255a 248a 69.4b
AWD 309b 241b 235b 75.9a
方差分析 ANOVA
品种 Cultivar (C) ** ** ** NS
处理 Treatment (T) ** ** ** **
品种×处理 C×T ** * * NS

Table 5

Leaf area index (LAI) and leaf area duration (LAD) of rice under different irrigation managements"

品种
Cultivar
处理
Treatment
叶面积指数 LAI (m2·m-2) 光合势 LAD (m2·m-2·d)
拔节期
Jointing
齐穗期
Heading
成熟期
Maturity
拔节前
Before Jointing
拔节-齐穗
Jointing-Heading
齐穗-成熟
Heading-Maturity
甬优1540
YY-1540
CI 4.67a 7.87a 1.85a 103a 251a 243a
AWD 3.71b 7.58a 1.80a 84.2b 226b 235a
春优927
CY-927
CI 4.88a 7.92a 1.91a 108a 256a 246a
AWD 3.87b 7.63a 1.88a 87.4b 220bc 238a
常优5号
CY-5
CI 3.52b 7.01b 1.14b 80.4b 211c 204b
AWD 2.30c 5.56c 0.77c 56.0c 157d 158c
嘉优5号
JY-5
CI 3.68b 6.97b 1.12b 83.6b 213c 202b
AWD 2.12c 5.48c 0.71c 52.4c 152d 155c
方差分析 ANOVA
品种 Cultivar (C) ** ** ** ** ** **
处理 Treatment (T) ** ** ** ** * **
品种×处理 C×T * ** * ** * *

Fig. 3

Rice shoot dry weight and crop growth rate under different irrigation managements"

Table 6

ROA and flag leaf photosynthetic rate of rice after heading under different irrigation managements"

品种
Cultivar
处理
Treatment
根系氧化力
Root oxidation activity (μg α-NA·g-1 DW·h-1 )
剑叶净光合速率
Flag leaf photosynthetic rate (µmol·m-2·s-1 )
D1 W1 D2 W2 D1 W1 D2 W2
甬优1540
YY-1540
CI 560a 559b 418a 414b 24.6a 24.3b 21.8a 21.3b
AWD 553a 637a 409a 498a 24.3a 26.7a 21.5a 24.3a
春优927
CY-927
CI 569a 563b 420a 418b 24.9a 24.5b 22.1a 21.6b
AWD 557a 629a 415a 478a 24.2a 26.5a 21.9a 24.8a
常优5号
CY-5
CI 502b 490c 343b 334c 24.5a 24.3b 18.4b 18.1c
AWD 407c 478c 254c 292d 20.7b 23.9b 13.8c 15.5d
嘉优5号
JY-5
CI 496b 486c 358b 360c 24.6a 24.1b 18.1b 18.4c
AWD 415c 481c 269c 287d 21.0b 24.0b 13.9c 15.2d
方差分析 ANOVA
品种 Cultivar (C) ** ** ** ** ** ** ** **
处理 Treatment (T) ** ** ** ** ** ** ** **
品种×处理 C×T * ** ** * ** * * *

Table 7

Activities of SuSase and AGPase in grains of rice after heading stage under different irrigation managements"

品种
Cultivar
处理
Treatment
蔗糖合酶 SuSase (µmol·g-1 DW·min-1) 腺苷二磷酸葡萄糖焦磷酸化酶 AGPase (µmol·g-1 DW·min-1 )
D1 W1 D2 W2 D1 W1 D2 W2
甬优1540
YY-1540
CI 42.3a 41.2b 27.3a 27.0b 29.1a 29.4b 17.6a 17.3b
AWD 42.7a 50.0a 27.7a 33.7a 28.3a 36.0a 17.3a 23.1a
春优927
CY-927
CI 40.8a 40.2b 29.3a 28.8b 28.4a 29.0b 17.2a 16.9b
AWD 41.8a 48.2a 28.7a 36.8a 27.6a 36.6a 17.1a 22.4a
常优5号
CY-5
CI 31.7b 31.0c 21.1b 21.5c 23.6b 23.7c 11.4b 11.9c
AWD 24.4c 31.5c 12.0c 15.8d 18.5c 23.6c 6.34c 8.13d
嘉优5号
JY-5
CI 31.6b 31.3c 23.0b 22.6c 24.6b 24.2c 12.0b 11.7c
AWD 22.6c 29.6c 11.9c 17.3d 18.1c 23.2c 6.03c 7.97d
方差分析 ANOVA
品种 Cultivar (C) ** ** ** ** ** ** ** **
处理 Treatment (T) ** ** * ** ** ** ** **
品种×处理 C×T ** * * * * ** ** *
[1] 邹应斌, 黄敏. 转型期作物生产发展的机遇与挑战. 作物学报, 2018,44(6):791-795.
ZOU Y B, HUANG M. Opportunities and challenges for crop production in China during the transition period. Acta Agronomica Sinica, 2018,44(6):791-795. (in Chinese)
[2] ZHANG G Q . Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. Journal of Integrative Agriculture. 2020,19(1):1-10.
[3] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016,49(2):207-218.
LIN J R, SONG X W, WU M G, CHENG S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Scientia Agricultura Sinica, 2016,49(2):207-218. (in Chinese)
[4] BELDER P, BOUMAN R. CABANGON G, LU G, QUILANG Y H, LI J, SPIERTZ J H, TUONG T P . Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004,65(3):193-210.
[5] BOUMAN B . A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems, 2007,93(1/3):43-60.
[6] WEI H H, MENG T Y, LI C, XU K, HUO Z Y, WEI H Y, GUO B W, ZHANG H C, DAI Q G . Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Research, 2017,204:101-109.
[7] WEI H Y, ZHANG H C, BLUMWALD E, LI H L, CHENG J Q, DAI Q G, HUO Z Y, XU M, GUO B W . Different characteristics of high yield formation between inbred japonica super rice and inter-sub- specific hybrid super rice. Field Crops Research, 2016,198:179-187.
[8] MENG T Y, WEI H H, LI X Y, DAI Q G, HUO Z Y . A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 2018,228:135-146.
[9] 周磊, 刘秋员, 田晋钰, 朱梦华, 程爽, 车阳, 王志杰, 邢志鹏, 胡雅杰, 刘国栋, 魏海燕, 张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异. 作物学报, 2020,46(5):772-786.
ZHOU L, LIU Q Y, TIAN J Y, ZHU M H, CHENG S, CHE Y, WANG Z J, XING Z P, HU Y J, LIU G D, WEI H Y, ZHANG H C. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series. Acta Agronomica Sinica, 2020,46(5):772-786. (in Chinese)
[10] LIANG K M, ZHONG X H, HUANG R R, LAMPAYAN R M, PAN J F, TIAN K, LIU Y . Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agricultural Water Management, 2016,163:319-331.
[11] ZHANG Y N, LIU M J, SAIZ G, DANNENMANN M, GUO L, TAO Y Y, SHI J C, ZUO Q, BUTTERBACH K, LI G Y, LIN S . Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Research, 2017,213:186-193.
[12] 张自常, 李鸿伟, 陈婷婷, 王学明, 王志琴, 杨建昌. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011,44(24):4988-4998.
ZHANG Z C, LI H W, CHEN T T, WANG X M, WANG Z Q, YANG J C. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice. Scientia Agricultura Sinica, 2011,44(24):4988-4998. (in Chinese)
[13] YANG J C, ZHOU Q, ZHANG J H . Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. The Crop Journal, 2017,5(2):151-158.
[14] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016,42(7):1026-1036.
CHU G, ZHAN M F, ZHU K Y, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agronomica Sinica, 2016,42(7):1026-1036. (in Chinese)
[15] ZHANG H, XUE Y G, WANG Z Q, YANG J C, ZHANG J H . An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 2009,49(6):2246-2260.
[16] 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019,25(8):1362-1372.
LU D K, DUAN H, WANG W W, LIU M S, WEI Y Q, XU G W. Comparison of rice root development and function among different degrees of dry-wet alternative irrigation coupled with nitrogen forms. Journal of Plant Nutrition and Fertilizers, 2019,25(8):1362-1372. (in Chinese)
[17] 陈鸿飞, 庞晓敏, 张仁, 张志兴, 徐倩华, 方长旬, 李经勇, 林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响. 作物学报, 2017,43(10):1507-1517.
CHEN H F, PANG X M, ZHANG R, ZHANG Z X, XU Q H, FANG C X, LI J Y, LIN W X. Effects of different irrigation and fertilizer application regimes on soil enzyme activities and microbial functional diversity in rhizosphere of ratooning rice. Acta Agronomica Sinica, 2017,43(10):1507-1517. (in Chinese)
[18] CARRIJO D R, LUNDY M E, LINQUIST B A . Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 2017,203:173-180.
[19] SAH R N, MIKKELSEN D S . Availability and utilization of fertilizer nitrogen by rice under alternate flooding; I. Kinetics of available nitrogen under rice culture. Plant Soil, 1983,75(2):221-226.
[20] ERIKSEN A B, KJELDBY M, NILSEN S . The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea. Plant Soil, 1985,84(3):387-401.
[21] CHU G, CHEN S, XU C M, WANG D Y, ZHANG X F . Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Research, 2019,243:107625.
[22] CHU G, CHEN T T, CHEN S, XU C M, WANG D Y, ZHANG X F . Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China. The Crop Journal, 2018,6(5):482-494.
[23] CHU G, CHEN T T, WANG Z Q, YANG J C, ZHANG J H . Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Research, 2014,162:108-119.
[24] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S, LIU L J . Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003,81(1):69-81.
[25] YANG J C, ZHANG J H, WANG Z Q, XU G W, ZHU Q S . Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology, 2004,135(3):1621-1629.
[26] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018,63(28/29):2932-2943.
YANG J C, ZHANG J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chinese Science Bulletin, 2018,63(28/29):2932-2943. (in Chinese)
[27] ZHOU Q, JU C X, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H . Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. Journal of Integrative Agriculture, 2017,16(5):1028-1043.
[28] HUANG M, YANG C L, JI Q M, JIANG L G, TAN J L, LI Y Q . Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Research, 2013,149:187-192.
[29] AO H J, PENG S B, ZOU Y B, TANG Q Y, VISPERAS R M . Reduction of unproductive tillers did not increase the grain yield of irrigated rice. Field Crops Research, 2010,116:108-115.
[30] 李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011,37(2):309-320.
LI J, ZHANG H C, GONG J L, CHANG Y, WU G C, GUO Z H, DAI Q G, HUO Z Y, XU K, WEI H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agronomica Sinica, 2011,37(2):309-320. (in Chinese)
[31] CHU G, WANG Z Q, ZHANG H, YANG J C, ZHANG J H . Agronomic and physiological performance of rice under integrative crop management. Agronomy Journal, 2016,108(1):117-128.
[32] CHU G, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H . Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation. Food and Energy Security, 2015,4(3):238-254.
[33] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014,47(7):1273-1289.
ZHANG H C, GONG J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014,47(7):1273-1289. (in Chinese)
[34] 朱德峰, 章秀福, 张玉屏. 水稻高产栽培技术的发展与展望. 中国农业科学, 2007,40(增刊 1):127-132.
ZHU D F, ZHANG X F, ZHANG Y P. Development and prospect of high-yielding cultivation technology in rice. Scientia Agricultura Sinica, 2007,40(Suppl.1):127-132. (in Chinese)
[35] BOYER J, WESTGATE M . Grain yields with limited water. Journal of Experimental Botany, 2004,55(407):2385-2394.
[36] SAINI H, WESTGATE M . Reproductive development in grain crops during drought. Advances in Agronomy, 2000,68:59-96.
[37] YANG J C, ZHANG J H, LIU K, WANG Z Q, LIU L J . Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. Journal of Plant Growth Regulation, 2007,26(4):318-328.
[38] ZHANG W Y, SHENG J Y, XU Y J, XIONG F, WU Y F, WANG W L, WANG Z Q, YANG J C, ZHANG J H . Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biology, 2019,19(1):409.
[39] ZHANG W Y, SHENG J Y, FU L D, XU Y J, XIONG F, WU Y F, WANG W L, WANG Z Q, ZHANG J H, YANG J C . Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice. Environmental and Experimental Botany, 2020,169:103887.
[40] KATO T, TAKEDA K . Associations among characters related to yield sink capacity in space-planted rice. Crop Science, 1996,36(5):1135-1139.
[41] ZHANG H, CHEN T T, WANG Z Q, YANG J C, ZHANG J H . Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. Journal of Experimental Botany, 2010,61(13):3719-3733.
[42] ZHANG H, LI H W, YUAN L M, WANG Z Q, YANG J C, ZHANG J H . Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. Journal of Experimental Botany, 2012,63(1):215-227.
[43] WANG G Q, LI H X, FENG L, CHEN M X, MENG S, YE N H, ZHANG J H . Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying. Journal of Experimental Botany, 2019,70(5):1597-1611.
[44] LIANG J S, ZHANG J H, CAO X Z . Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza Sativa) hybrids. Physiologia Plantarum, 2001,112(4):470-477.
[45] AHMADI A, BAKER D A . The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 2001,35(1):81-91.
[46] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011,44(1):36-46.
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011,44(1):36-46. (in Chinese)
[47] RAMASAMY S, BERGE H, PURUSHOTHAMAN S . Yield formation in rice in response to drainage and nitrogen application. Field Crops Research, 1997,51(1/2):65-82.
[48] 姜元华, 许俊伟, 赵可, 韦还和, 孙建军, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 甬优系列籼粳杂交稻根系形态与生理特征. 作物学报, 2015,41(1):89-99.
JIANG Y H, XU J W, ZHAO K, WEI H H, SUN J J, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W. Root system morphological and physiological characteristics of indica-japonica hybrid rice of Yongyou series. Acta Agronomica Sinica, 2015,41(1):89-99. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[12] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!