Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1229-1242.doi: 10.3864/j.issn.0578-1752.2021.06.013

• HORTICULTURE • Previous Articles     Next Articles

Spatial Distribution of Phytic Acid and Minerals’ Availability in Pomelo Fruit

Biao SONG1,2,3(),KaiYue XU2,3,XiaoHua WANG2,3,JiuXin GUO2,3,LiangQuan WU2,3,Da SU1,3()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002
    2College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002
    3International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-06-17 Accepted:2020-09-24 Online:2021-03-16 Published:2021-03-25
  • Contact: Da SU E-mail:761546511@qq.com;suda@fafu.edu.cn

Abstract:

【Objective】This study was aimed to elucidate the spatial distribution of phytic acid (PA), mineral concentration and their availabilities in pomelo fruits, and these findings could provide theoretical bases for biofortification of mineral nutrition and comprehensive nutritional evaluation of pomelo fruit. 【Method】Five representative pomelo cultivars (white-fleshed pomelo, golden-pomelo, red-fleshed pomelo, three-red pomelo, and red-albedo pomelo) grown in Pinghe County, Fujian Province, were used in the present study. At the ripening stage, the representative fruits from each cultivar were selected and divided the whole fruit into four spatial parts, i.e. flavedo, albedo, segment membrane and juice sac. The PA, mineral concentration and their availabilities were analyzed by iron precipitation spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and molar ratio of phytic acid to minerals in different spatial locations of pomelo fruit. In addition, Zn bioavailability was also evaluated by the ternary model, a mathematical model of zinc absorption in human intestine. 【Result】The concentration of phosphorus (total phosphorus) and inorganic phosphorus was highest in juice sac, but the concentration of PA was the lowest in juice sac. The PA concentration decreased persistently from the outer (flavedo) to the inner (pulp), i.e. flavedo > albedo > segment membrane > juice sac. The concentration of phytate-phosphorus in juice sac was only 4% of total phosphorus, while that in peel was 30%. In addition, the significant cultivar differences of PA were recorded in juice sac. The concentration of PA in juice sac of different pomelo cultivars was the highest in red-fleshed pomelo, while which was the lowest in three-red pomelo and white-fleshed pomelo, with 2.6-fold difference. However, non-significant difference was found in phosphorus and inorganic phosphorus among different pomelo cultivars. From the perspective of mineral distribution in pomelo, the higher concentration of calcium (Ca) was recorded in peel (flavedo, albedo, and segment membrane), while the higher concentration of phosphorus was found in juice sac. Iron (Fe) in peel was significantly higher than that in juice sac, and the variation was the largest in flavedo and juice sac. Influenced by both PA and minerals in different spatial location of pomelo fruit, [PA]/[Mg] and [PA]/[Fe] was the highest in flavedo, [PA]/[Zn] and [PA]/[Mn] was the highest in albedo, whereas [PA]/[Ca] was the highest in the juice sac. There were also significant cultivar differences in the mineral availability in juice sac. The [PA]/[Fe] of golden-pomelo was nearly six times higher than that of red-albedo pomelo. The [PA]/[Zn] of red-albedo pomelo was 3.6 times higher than that of white-fleshed pomelo and three-red pomelo. Generally, among the five pomelo cultivars, three-red pomelo and white-fleshed pomelo had the relatively low PA while high mineral availabilities. 【Conclusion】Significant cultivar and spatial positional differences existed in PA, minerals and their availabilities in pomelo fruits. Phosphorus in the pomelo juice sac mainly existed in the form of inorganic phosphorus, rather than PA. The results suggested that the inhibitory effect of PA on mineral availability was relatively small and limited in the juice sac. However, the concentration of PA in peel (flavedo, albedo) was relatively higher. Therefore, it is necessary to pay attention to the minerals availabilities during pomelo peel related deep food processing.

Key words: pomelo, phytic acid, fruit nutrition, mineral availability, quality

Fig. 1

The whole and cross section and different tissues of pomelo fruit a: White-fleshed pomelo, b: Golden-pomelo, c: Red-fleshed pomelo, d: Three-red pomelo, e: Red-albedo pomelo"

Table 1

Fruit appearance and basic fruit quality indexes of the pomelo cultivars"

品种
Cultivar
白肉蜜柚
White-fleshed pomelo
黄金蜜柚
Golden-pomelo
红肉蜜柚
Red-fleshed pomelo
三红蜜柚
Three-red pomelo
红棉蜜柚
Red-albedo pomelo
平均值
Mean
变异系数
CV
单果重 Mean fruit weight (g) 1717.6±97.7a 2028.7±502.9a 1624.3±164.1a 1456.7±243.6a 1577.6±244.7a 1681 0.19
果皮重 Peel weigh (g) 526.6±2.0a 469.4±146.8a 547.8±20.8a 403.0±61.2ab 176.9±129.1b 424.7 0.37
果实横纵比 Fruit aspect ratio 0.94±0.04a 0.91±0.11a 0.91±0.05a 0.88±0.01a 0.92±0.03a 0.91 0.06
果肉横纵比 Flesh aspect ratio 1.00±0.07a 1.01±0.09a 1.06±0.11a 1.01±0.04a 1.02±0.11a 1.02 0.08
果皮厚度 Peel thick (mm) 15.8±0.8b 13.3±0.8b 22.2±1.8a 16.5±1.8b 16.3±1.8b 16.8 0.19
果形指数 Fruit shape index 1.08±0.05a 1.07±0.11a 1.10±0.06a 1.13±0.02a 1.09±0.04a 1.09 0.05
果皮含水率 Peel moisture content (%) 0.80±0.01a 0.79±0.01a 0.80±0.01a 0.79±0.00a 0.78±0.00a 0.79 0.01
果肉含水率 Pulp moisture rate (%) 0.87±0.00a 0.87±0.01a 0.86±0.00a 0.86±0.00a 0.86±0.00a 0.86 0.01
可食率 Edible rate (%) 0.69±0.01b 0.77±0.02ab 0.66±0.03b 0.72±0.01b 0.88±0.10a 0.75 0.12
可溶性固形物含量 TSS (%) 12.6±1.1a 10.5±0.6b 11.8±0.7ab 11.8±0.5ab 11.7±0.4ab 11.7 0.08
可滴定酸 TA (%) 0.64±0.03a 0.37±0.00c 0.54±0.03ab 0.46±0.04bc 0.54±0.09ab 0.51 0.19
维生素C含量 Vc (mg·kg-1) 198.2±0.0ab 215.1±11.7a 199.9±7.8ab 194.8±11.7ab 191.4±5.9b 199.9 0.06
固酸比 TSS/TA ratio 20.4±1.8c 27.4±1.3a 22.0±0.6bc 25.9±2.1ab 21.9±3.0bc 23.5 0.14

Table 2

The contents and distributions of phosphorus (P) fractions in pomelo fruit (g·kg-1, %)"

果实部位
Fruit location
品种
Cultivar

P (g·kg-1)
植酸
PA (g·kg-1)
无机磷
Pi (g·kg-1)
植酸磷/磷
PAP/P (%)
无机磷/磷
Pi/P(%)
黄皮层
Flavedo
白肉蜜柚 White-fleshed pomelo 1.37±0.08c 1.25±0.05c 0.88±0.06bc 25.9±2.5c 64.7±6.8ab
黄金蜜柚 Golden-pomelo 1.07±0.02d 1.39±0.06c 0.77±0.05c 36.6±0.9a 71.3±3.9a
红肉蜜柚 Red-fleshed pomelo 1.72±0.02a 1.29±0.04c 1.13±0.05a 21.1±0.6d 65.7±2.4ab
三红蜜柚 Three-red pomelo 1.60±0.03ab 1.75±0.12b 0.90±0.04bc 30.9±1.8b 56.1±2.8b
红棉蜜柚 Red-albedo pomelo 1.54±0.10b 2.16±0.09a 0.97±0.05b 39.4±2.0a 63.2±4.2ab
平均数 Mean 1.46 1.57 0.93 30.8 64.2
变异系数 CV 0.16 0.23 0.14 0.23 0.10
白皮层
Albedo
白肉蜜柚 White-fleshed pomelo 0.57±0.01ab 0.76±0.01a 0.28±0.02a 37.7±0.5a 50.1±3.7a
黄金蜜柚 Golden-pomelo 0.51±0.04b 0.59±0.02b 0.27±0.03a 32.6±2.2ab 52.9±4.0a
红肉蜜柚 Red-fleshed pomelo 0.61±0.00a 0.57±0.03b 0.31±0.03a 26.2±1.5c 50.4±5.2a
三红蜜柚 Three-red pomelo 0.59±0.01a 0.61±0.07b 0.28±0.00a 29.1±3.2bc 46.8±1.3a
红棉蜜柚 Red-albedo pomelo 0.63±0.04a 0.58±0.06b 0.31±0.01a 26.1±3.0c 49.7±4.1a
平均数 Mean 0.58 0.62 0.29 30.3 50.0
变异系数 CV 0.08 0.13 0.09 0.16 0.08
囊衣
Segment
membrane
白肉蜜柚 White-fleshed pomelo 0.76±0.02c 0.49±0.02ab 0.38±0.04bc 18.0±0.45a 50.0±6.3ab
黄金蜜柚 Golden-pomelo 0.75±0.01c 0.38±0.04bc 0.31±0.01c 14.2±1.5ab 41.1±2.2b
红肉蜜柚 Red-fleshed pomelo 0.89±0.01a 0.33±0.03c 0.49±0.02a 10.4±1.0b 55.6±2.2a
三红蜜柚 Three-red pomelo 0.82±0.01b 0.47±0.05ab 0.45±0.03ab 16.1±1.9a 54.6±3.8a
红棉蜜柚 Red-albedo pomelo 0.77±0.04bc 0.50±0.04a 0.41±0.04ab 18.3±2.0a 53.5±2.2a
平均数 Mean 0.80 0.43 0.41 15.4 51.0
变异系数 CV 0.07 0.18 0.17 0.21 0.12
果肉
Juice sac
白肉蜜柚 White-fleshed pomelo 1.59±0.07a 0.14±0.02d 1.22±0.01a 2.55±0.31c 76.8±4.1a
黄金蜜柚 Golden-pomelo 1.60±0.01a 0.29±0.03b 1.22±0.06a 5.21±0.50a 76.5±4.1a
红肉蜜柚 Red-fleshed pomelo 1.70±0.06a 0.37±0.01a 1.14±0.07a 6.09±0.41a 67.4±6.7a
三红蜜柚 Three-red pomelo 1.59±0.05a 0.17±0.01d 1.19±0.03a 2.98±0.19c 75.0±3.9a
红棉蜜柚 Red-albedo pomelo 1.58±0.04a 0.23±0.01c 1.15±0.02a 4.12±0.15b 73.2±3.0a
平均数 Mean 1.61 0.24 1.19 4.18 73.8
变异系数 CV 0.04 0.36 0.04 0.33 0.07

Table 3

The contents and distributions of minerals in pomelo fruit"

果实部位
Fruit location
品种
Cultivar

P (g·kg-1)

Ca (g·kg-1)

Mg (g·kg-1)

Fe (mg·kg-1)

Zn (mg·kg-1)

Mn (mg·kg-1)
黄皮层
Flavedo
白肉蜜柚 White-fleshed pomelo 1.37±0.08c 8.08±0.41bc 1.98±0.12b 30.0±1.0c 12.5±1.1bc 12.5±0.8c
黄金蜜柚Golden-pomelo 1.07±0.02d 7.62±0.72c 1.95±0.01b 111.6±3.0a 10.9±0.1c 12.8±0.2c
红肉蜜柚Red-fleshed pomelo 1.72±0.02a 7.70±0.31c 2.19±0.07ab 38.2±1.4b 13.3±0.4ab 15.6±0.4ab
三红蜜柚Three-red pomelo 1.60±0.03ab 9.28±0.35ab 2.17±0.07ab 34.5±0.6b 14.7±0.5a 15.7±0.6a
红棉蜜柚Red-albedo pomelo 1.54±0.10b 10.4±0.6a 2.43±0.16a 25.6±0.3d 13.8±0.6ab 14.3±0.4b
平均数Mean 1.46 8.61 2.14 48.0 13.0 14.2
变异系数CV 0.16 0.14 0.09 0.69 0.11 0.10
白皮层
Albedo
白肉蜜柚White-fleshed pomelo 0.57±0.01ab 2.56±0.03bc 0.86±0.01bc 77.5±0.3a 2.01±0.21c 3.62±0.22b
黄金蜜柚Golden-pomelo 0.51±0.04b 3.03±0.17a 0.94±0.07a 70.6±2.9b 2.84±0.24b 0.96±0.12c
红肉蜜柚Red-fleshed pomelo 0.61±0.00a 2.31±0.16c 0.79±0.04c 78.1±3.4a 2.98±0.18b 4.25±0.21a
三红蜜柚Three-red pomelo 0.59±0.01a 2.61±0.08bc 0.84±0.01bc 23.9±0.4c 7.80±0.10a 3.89±0.23ab
红棉蜜柚Red-albedo pomelo 0.63±0.04a 2.82±0.01ab 0.93±0.00ab 81.1±0.6a 2.84±0.24b 4.01±0.04ab
平均数Mean 0.58 2.66 0.87 66.3 3.69 3.34
变异系数CV 0.08 0.10 0.08 0.34 0.58 0.38
囊衣
Segment membrane
白肉蜜柚White-fleshed pomelo 0.76±0.02c 3.76±0.09a 1.12±0.02c 83.5±3.1a 2.34±0.27d 4.40±0.25ab
黄金蜜柚Golden-pomelo 0.75±0.01c 3.69±0.10a 1.18±0.00ab 85.5±2.7a 6.60±0.18b 4.09±0.39ab
红肉蜜柚Red-fleshed pomelo 0.89±0.01a 3.45±0.01b 1.22±0.02a 70.9±5.4b 9.39±0.24a 4.49±0.51ab
三红蜜柚Three-red pomelo 0.82±0.01b 3.69±0.04a 1.16±0.02bc 84.2±2.0a 4.59±0.21c 4.99±0.52a
红棉蜜柚Red-albedo pomelo 0.77±0.04bc 3.75±0.02a 1.18±0.01b 88.9±0.6a 6.51±0.04b 3.86±0.22b
平均数Mean 0.80 3.67 1.17 82.6 5.89 4.37
变异系数CV 0.07 0.03 0.03 0.08 0.41 0.12
果肉
Juice sac
白肉蜜柚White-fleshed pomelo 1.59±0.07a 0.88±0.14ab 0.67±0.04ab 19.8±2.2bc 8.66±0.13b 1.97±0.36a
黄金蜜柚Golden-pomelo 1.60±0.01a 1.02±0.00a 0.71±0.00a 15.9±0.8c 9.51±0.26ab 1.91±0.08a
红肉蜜柚Red-fleshed pomelo 1.70±0.06a 0.82±0.01b 0.70±0.02a 29.3±1.3b 9.85±0.15a 2.11±0.23a
三红蜜柚Three-red pomelo 1.59±0.05a 0.76±0.01b 0.64±0.02b 20.4±2.3bc 9.75±0.62a 2.13±0.47a
红棉蜜柚Red-albedo pomelo 1.58±0.04a 0.82±0.03b 0.70±0.01ab 76.7±9.4a 3.90±0.12c 2.58±0.06a
平均数Mean 1.61 0.86 0.68 32.4 8.33 2.14
变异系数CV 0.04 0.13 0.05 0.73 0.28 0.16

Table 4

The distributions of molar ratio of phytic acid (PA) and minerals in pomelo fruit"

部位
Fruitlocation
品种
Genotype
[PA]/[Ca]
[PA]/[Mg]
[PA]/[Fe]
[PA]/[Zn]
[PA]/[Mn]
黄皮层
Flavedo
白肉蜜柚 White-fleshed pomelo 0.0094±0.0009c 0.0234±0.0023cd 3.54±0.25c 10.0±0.7cd 8.37±0.88b
黄金蜜柚 Golden-pomelo 0.0111±0.0008abc 0.0263±0.0010bc 1.06±0.03e 12.6±0.5b 9.09±0.27b
红肉蜜柚 Red-fleshed pomelo 0.0102±0.0001bc 0.0217±0.0003d 2.85±0.05d 9.6±0.6d 6.88±0.07c
三红蜜柚 Three-red pomelo 0.0115±0.0008ab 0.0297±0.0019ab 4.30±0.35b 11.9±0.8bc 9.27±0.46b
红棉蜜柚 Red-albedo pomelo 0.0126±0.0008a 0.0328±0.0022a 7.12±0.38a 15.5±1.1a 12.60±0.5a
平均数 Mean 0.0110 0.0268 3.77 11.9 9.24
变异系数 CV 0.1167 0.1660 0.55 0.19 0.22
白皮层
Albedo
白肉蜜柚 White-fleshed pomelo 0.0179±0.0004a 0.0323±0.0002a 0.83±0.01b 37.4±3.3a 17.5±1.3b
黄金蜜柚 Golden-pomelo 0.0118±0.0004c 0.0231±0.0016b 0.71±0.04b 20.7±2.4b 51.6±7.6a
红肉蜜柚 Red-fleshed pomelo 0.0150±0.0011b 0.0266±0.0019b 0.62±0.03b 19.0±0.5b 11.2±0.9b
三红蜜柚 Three-red pomelo 0.0143±0.0015bc 0.0269±0.0028b 2.17±0.26a 7.8±0.8c 13.2±1.8b
红棉蜜柚 Red-albedo pomelo 0.0126±0.0012bc 0.0231±0.0023b 0.61±0.06b 20.4±2.1b 12.1±1.1b
平均数 Mean 0.0143 0.0264 0.98 21.1 21.1
变异系数 CV 0.1655 0.1464 0.63 0.47 0.77
囊衣
Segment
membrane
白肉蜜柚 White-fleshed pomelo 0.0079±0.0002ab 0.0160±0.0005a 0.50±0.01a 20.9±3.4a 9.23±0.20ab
黄金蜜柚 Golden-pomelo 0.0062±0.0007bc 0.0118±0.0012bc 0.37±0.03b 5.69±0.70bc 7.79±1.46bc
红肉蜜柚 Red-fleshed pomelo 0.0057±0.0006c 0.0099±0.0009c 0.39±0.04ab 3.45±0.35c 6.10±0.78c
三红蜜柚 Three-red pomelo 0.0077±0.0010ab 0.0149±0.0019ab 0.47±0.06ab 10.2±1.6b 7.83±0.37bc
红棉蜜柚 Red-albedo pomelo 0.0081±0.0007a 0.0156±0.0014a 0.48±0.04ab 7.59±0.68bc 10.70±0.50a
平均数 Mean 0.0071 0.0137 0.44 9.56 8.34
变异系数 CV 0.1596 0.1977 0.14 0.68 0.21
果肉
Juice sac
白肉蜜柚 White-fleshed pomelo 0.0102±0.0023d 0.0079±0.0012d 0.62±0.12c 1.65±0.20c 6.28±1.69b
黄金蜜柚 Golden-pomelo 0.0175±0.0017b 0.0154±0.0015b 1.57±0.15a 3.07±0.31b 12.8±0.7a
红肉蜜柚 Red-fleshed pomelo 0.0273±0.0011a 0.0192±0.0011a 1.06±0.06b 3.69±0.13b 14.6±2.0a
三红蜜柚 Three-red pomelo 0.0135±0.0011cd 0.0096±0.0007cd 0.71±0.14c 1.72±0.24c 6.80±1.63b
红棉蜜柚 Red-albedo pomelo 0.0170±0.0003bc 0.0122±0.0004c 0.26±0.02d 5.86±0.35a 7.42±0.21b
平均数 Mean 0.0171 0.0129 0.84 3.20 9.58
变异系数 CV 0.3547 0.3312 0.56 0.51 0.39

Fig. 2

Zn availability (TAZ) in the juice sac of five pommel fruits Different lowercase letters indicate signi?cant difference (P<0.05)"

Table 5

Correlation coefficients among the contents of fruit P components, minerals, and their molar ratio value in different fruit locations"

指标
Index
果肉
Pulp
果皮
Peel
全果实
Whole fruit
PA×P 0.547* 0.825** 0.225
PA×Ca 0.182 0.931** 0.943**
PA×Mg 0.620* 0.889** 0.917**
PA×Fe 0.043 -.534** -0.113
PA×Zn 0.167 0.778** 0.600**
PA×Mn -0.045 0.892** 0.912**
PA×[PA]/[Ca] 0.950** 0.263 -0.101
PA×[PA]/[Mg] 0.997** 0.671** 0.752**
PA×[PA]/[Fe] 0.575* 0.903** 0.870**
PA×[PA]/[Zn] 0.452 0.016 0.290*
PA×[PA]/[Mn] 0.934** -0.112 -0.005
Zn×Fe -0.930** -0.596** -0.589**
Zn×Mg -0.145 0.901** 0.678**
Zn×Ca 0.121 0.883** 0.618**
Zn×[PA]/[Zn] -0.795** -0.543** -0.499**
Zn×[PA]/[Fe] 0.678** 0.757** 0.704**
Zn×[PA]/[Mg] 0.192 0.212 0.131
Zn×[PA]/[Ca] 0.129 -0.186 -0.036
Fe×Mg 0.217 -0.460** -0.039
Fe×Ca -0.245 -0.490** -0.010
Fe×[PA]/[Zn] 0.887** 0.187 0.419**
Fe×[PA]/[Fe] -0.672** -0.787** -0.518**
Fe×[PA]/[Mg] 0.022 -0.409** 0.005
Fe×[PA]/[Ca] 0.127 -0.206 -0.334**
Mg×Zn -0.145 0.901** 0.678**
Mg×Fe 0.217 -0.460** -0.039
Mg×Ca 0.687** 0.986** 0.987**
Mg×[PA]/[Zn] 0.502 -0.294* 0.089
Mg×[PA]/[Fe] 0.343 0.791** 0.767**
[PA]/[Mg]×[PA]/[Fe] 0.581* 0.587** 0.596**
[PA]/[Mg]×[PA]/[Ca] 0.959** 0.880** 0.274*
[PA]/[Zn]×[PA]/[Fe] -0.275 -0.091 0.048

Fig. 3

Correlation coefficients among the contents of P components, minerals, and their molar ratio among various fruit location"

Fig. 4

Dendrogram calculated by the SPSS Ward method based on concentration of grain P components, minerals, and their molar ratio"

[1] 方波, 赵其阳, 席万鹏, 周志钦, 焦必宁. 十种柚类及柚杂种果实中类黄酮含量的超高效液相色谱分析. 中国农业科学, 2013,46(9):1892-1902.
FANG B, ZHAO Q Y, XI W P, ZHOU Z Q, JIAO B N. Determination of flavonoids in 10 pummelo and pummelo hybrid fruits by ultra performance liquid chromatography. Scientia Agricultura Sinica, 2013,46(9):1892-1902. (in Chinese)
[2] 张世祺, 程琛, 林伟杰, 李歆博, 朱东煌, 陈立松, 郭九信, 李延. ‘琯溪蜜柚’园土壤和树体的硼素营养与果实粒化关系分析. 果树学报, 2019,36(4):468-475.
ZHANG S Q, CHENG C, LIN W J, LI X B, ZHU D H, CHEN L S, GUO J X, LI Y. Analysis of boron nutrition status in soils and trees and its relationship with fruit granulation in ‘Guanximiyou’ pomelo. Journal of Fruit Science, 2019,36(4):468-475. (in Chinese)
[3] LI Y, HAN M Q, LIN E, TEN Y, LIN J, ZHU D H, GUO P, WENG Y B, CHEN L S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. Journal of Soil Science and Plant Nutrition, 2015,15(3):615-628.
[4] ARUOMA O I, LANDES B, RAMFUL-BABOOLALL D, BOURDON E, NEERGHEEN-BHUJUN V, WAGNER K H, BAHORUN T. Functional benefits of citrus fruits in the management of diabetes. Preventive Medicine, 2012,54(Suppl.):S12-S16.
[5] GOULAS V, MANGANARIS G A. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry, 2012,131(1):39-47.
[6] 郑洁, 赵其阳, 张耀海, 焦必宁. 超高效液相色谱法同时测定柑橘中主要酚酸和类黄酮物质. 中国农业科学, 2014,47(23):4706-4717.
ZHENG J, ZHAO Q Y, ZHANG Y H, JIAO B N. Simultaneous determination of main flavonoids and phenolic acids in citrus fruit by ultra performance liquid chromatography. Scientia Agricultura Sinica, 2014,47(23):4706-4717. (in Chinese)
[7] BILBAO M D L M, ANDRES-LACUEVA C, JAUREGUI O, LAMUELA-RAVENTOS R M. Determination of flavonoids in a citrus fruit extract by LC-DAD and LC-MS. Food Chemistry, 2007,101(4):1742-1747.
[8] ZHANG M X, DUAN C Q, ZANG Y Y, HUANG Z W, LIU G J. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chemistry, 2011,129(4):1530-1536.
[9] BARROS H R D M, FERREIRA T A, GENOVESE M I. Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chemistry, 2012,134(4):1892-1898.
pmid: 23442635
[10] MATSUO Y, MIURA L A, ARAKI T, YOSHIE-STARK Y. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chemistry, 2019,279:356-363.
doi: 10.1016/j.foodchem.2018.11.146 pmid: 30611501
[11] AGÓCS A, NAGY V, SZABÓ Z, MÁRK L, OHMACHT R, DELI J. Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science & Emerging Technologies, 2007,8(3):390-394.
[12] TANG N, DENG W, HU N, CHEN N, LI Z G. Metabolite and transcriptomic analysis reveals metabolic and regulatory features associated with Powell orange pulp deterioration during room temperature and cold storage. Postharvest Biology and Technology, 2016,112:75-86.
[13] FU X Z, XIE F, CAO L, LING L L, CHUN C P, PENG L Z. Changes in mineral nutrition during fruit growth and development of ‘Seike’ and ‘Newhall’ navel orange as a guide for fertilization. Revista Brasilra de Fruticultura, 2019,41(5): e-111.
[14] CZECH A, ZARYCKA E, YANOVYCH D, ZASADNA Z, GRZEGORCZYK I, KLYS S. Mineral content of the pulp and peel of various citrus fruit cultivars. Biological Trace Element Research, 2020,193(2):555-563.
doi: 10.1007/s12011-019-01727-1 pmid: 31030384
[15] SHI J R, WANG H Y, SCHELLIN K, LI B L, FALLER M, STOOP J M, MEELEY R B, ERTL D S, RANCH J P, GLASSMAN K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 2007,25(8):930-937.
doi: 10.1038/nbt1322 pmid: 17676037
[16] IWAI T, TAKAHASHI M, ODA K, TERADA Y, YOSHIDA K T. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology, 2012,160(4):2007-2014.
pmid: 23090587
[17] MAGALLANES-LOPEZ A M, HERNANDEZ-ESPINOSA N, VELU G, POSADAS-ROMANO G, ORDOÑEZ-VILLEGAS V M G, CROSSA J, AMMAR K, GUZMÁN C. Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. Food Chemistry, 2017,237:499-505.
doi: 10.1016/j.foodchem.2017.05.110 pmid: 28764025
[18] WEI Y Y, SHOHAG M J I, YANG X E, ZHANG Y B. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Journal of Agricultural and Food Chemistry, 2012,60(45):11433-11439.
pmid: 23083412
[19] SU D, ZHOU L J, ZHAO Q, PAN G, CHENG F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 2018,66(7):1601-1611.
pmid: 29401375
[20] LIANG J F, HAN B Z, ROBERT NOUT M J, HAMER R J. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry, 2008,110(4):821-828.
doi: 10.1016/j.foodchem.2008.02.064 pmid: 26047266
[21] MILLER L V, KREBS N F, HAMBIDGE K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of Nutrition, 2007,137(1):135-141.
doi: 10.1093/jn/137.1.135 pmid: 17182814
[22] PATIL B S, JAYAPRAKASHA G K, CHIDAMBARA MUETHY K N, VIKRAM A. Bioactive compounds: historical perspectives, opportunities, and challenges. Journal of Agricultural and Food Chemistry, 2009,57(18):8142-8160.
doi: 10.1021/jf9000132 pmid: 19719126
[23] TOPUZ A, TOPAKCI M, CANAKCI M, AKINCI I, OZDEMIR F. Physical and nutritional properties of four orange varieties. Journal of Food Engineering, 2005,66(4):519-523.
[24] RABOY V, YOUNG K A, DORSCH J A, COOK A. Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology, 2001,158(4):489-497.
[25] LOTT J N A, OCKENDEN I, RABOY V, BATTEN G D. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 2000,10(1):11-33.
[26] PERERA I, SENEWEERA S, HIROTSU N. Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice, 2018,11(1):4.
pmid: 29327163
[27] GUPTA R K, GANGOLIYA S S, SINGH N K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 2015,52(2):676-684.
doi: 10.1007/s13197-013-0978-y pmid: 25694676
[28] MALIK I O, E BABIKER E, E YOUSIF N, TINAY A H E. In vitro availability of minerals of some tropical and citrus fruits as influenced by antinutritional factors. Molecular Nutrition & Food Research, 2004,48(1):65-68.
[29] GREEN C O, WHEATLEY A O, BAILEY D, SOTELO A, ASEMOTA H. Nutritional composition of Jamaican citrus agro by-product with potential for nutraceutical product development. Research, 2014. doi: 10.13070/rs.en.1.771.
doi: 10.34133/2021/3565791 pmid: 33629070
[30] OLUREMI O I A, NGI J, ANDREW I A. Phytonutrients in citrus fruit peel meal and nutritional implication for livestock production. Livestock Research for Rural Development, 2007,19(7):1-5.
[31] 陈欢欢, 王玉雯, 张利军, 罗丽娟, 叶欣, 李延, 陈立松, 郭九信. 我国柑橘镁营养现状及其生理分子研究进展. 果树学报, 2019,36(11):1578-1590.
CHEN H H, WANG Y W, ZHANG L J, LUO L J, YE X, LI Y, CHEN L S, GUO J X. Advances in magnesium nutritional status and its mechanisms of physiological and molecule in citrus. Journal of Fruit Science, 2019,36(11):1578-1590. (in Chinese)
[32] SHARMA K, MAHATO N, CHO M H, LEE Y R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 2017,34:29-46.
doi: 10.1016/j.nut.2016.09.006 pmid: 28063510
[33] FRATIANNI F, COZZOLINO A, DE FEO V, COPPOLA R, OMBRA M N, NAZZARO F. Polyphenols, antioxidant, antibacterial, and biofilm inhibitory activities of peel and pulp of Citrus medica L., Citrus bergamia, and Citrus medica cv. Salò cultivated in Southern Italy. Molecules, 2019,24(24):4577.
[34] BOUDRIES H, SOUAGUI S, NABET N, YDJEDD S, KEFALAS P, MADANI K, CHIBANE M. Valorisation of clementine peels for the recovery of minerals and antioxidants: Evaluation and characterisation by LC-DAD-MS of solvent extracts. International Food Research Journal, 2015,22(3):1218-1226.
[35] ÖZCAN M M, HARMANKAYA M, GEZGIN S. Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits. Environmental Monitoring and Assessment, 2012,184(1):313-320.
pmid: 21409363
[36] GORINSTEIN S, MARTIN-BELLOSO O, PARK Y, HARUENKIT R, LOJEK A, CIZ M, CASPI A, LIBMAN I, TRAKHTENBERG S. Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 2001,74(3):309-315.
[37] LADO J, GAMBETTA G, ZACARIAS L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae, 2018,233:238-248.
[38] DING Y D, CHANG J W, MA Q L, CHEN L L, LIU S Z, JIN S, HAN J W, XU R W, ZHU A D, GUO J, LUO Y, XU J, XU Q, ZENG Y L, DENG X X, CHENG Y J. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiology, 2015,168(1):357-376.
pmid: 25802366
[39] SEYMOUR G B, ØSTERGAARD L, CHAPMAN N H, KNAPP S, MARTIN C. Fruit development and ripening. Annual Review of Plant Biology, 2013,64:219-241.
pmid: 23394500
[40] TADEO F R, CERCÓS M, COLMENERO‐FLORES J M, IGLESIAS D J, NARANJO M A, RÍOS G, CARRERA E, RUIZ-RIVERO O, LLISO G, MORILLON R, OLLITRAULT P, TALON M. Molecular physiology of development and quality of citrus. Advances in Botanical Research, 2008,47:147-223.
[41] GHASEMI S, KHOSHGOFTARMANESH A H, AFYUNI M, HADADZADEH H. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 2013,45:68-74.
[42] ROOS N, SØRENSEN J C, SØRENSEN H, RASMUSSEN S K, BRIEND A, YANG Z Y, HUFFMAN S L. Screening for anti-nutritional compounds in complementary foods and food aid products for infants and young children. Maternal and Child Nutrition, 2013,9(Suppl. 1):47-71.
[43] JOHNSON C R, THAVARAJAH D, THAVARAJAH P. The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (Lens culinaris L.). Journal of Food Composition and Analysis, 2013,31(1):82-86.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[3] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[6] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[7] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[8] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[9] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[10] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[11] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[12] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[13] YU WeiBao,LI Nan,KOU YiHong,CAO XinYou,SI JiSheng,HAN ShouWei,LI HaoSheng,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[14] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[15] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!