Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 856-873.doi: 10.3864/j.issn.0578-1752.2022.05.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China

FENG XuanJun1(),PAN LiTeng1(),XIONG Hao1,WANG QingJun1,LI JingWei1,ZHANG XueMei1,HU ErLiang1,LIN HaiJian1,ZHENG HongJian2,LU YanLi1()   

  1. 1Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan
    2Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403
  • Received:2021-08-24 Accepted:2021-10-21 Online:2022-03-01 Published:2022-03-08
  • Contact: YanLi LU E-mail:xuanjunfeng@sicau.edu.cn;441400904@qq.com;yanli.lu82@hotmail.com

Abstract:

【Objective】To investigate the agronomy, yield and quality traits of 120 sweet and waxy maize inbred lines, and analyze the correlation between different traits and evaluate the breeding potential by using candidate inbred lines. 【Method】 Investigating the general agronomic traits (flowering time, plant height, ear height), yield traits (fresh bud ear weight, fresh ear weight, fresh kernel weight, etc.) and quality traits (residue rate, brix, crude protein, crude starch, crude fat, etc.). The top 50% inbred lines with high yield and brix, and low residue rate were selected to determine the General Combining Ability (GCA) via diallel crossing. The same method was used to investigate the traits of the hybrid combinations, and the artificial score of taste was applied to six traits of smell, cheerful color, waxy/sweetness, flavor, tenderness and fineness, and the comprehensive score was obtained. The utilization value of the hybrid combinations was evaluated by comparing with the control varieties. 【Result】 The coefficients of variation of residue rate, yield, and sugar content of the tested inbred lines reached 20%, 30%, and 10%, respectively, implying there is a large genetic variation. The generalized heritability of most traits such as residue rate, yield and sugar content are above 50%, indicating that these traits have high genetic stability. In the sweet corn population, flowering time is negatively correlated with sugar content, and positively correlated with yield and residue rate. Yield is positively correlated with residue rate, but has no significant correlation with sugar content. These results suggested that it is not easy to have both good taste and high yield in sweet corn breeding, and that moderate early flowering materials will be better in field. In the waxy corn population, residue rate is negatively correlated with flowering time and yield traits, while the sugar content has no significant correlation with flowering time and yield traits. These results suggested that good taste and high yield can be achieved simultaneously in waxy maize breeding, and that moderate late flowering will be better in field. In the candidate sweet corn inbred lines, there are 3 lines have been identified to have positive GCA value for yield traits, brix, and negative GCA value for the residue rate, respectively. In the candidate waxy corn inbred lines, there are 3, 3, and 4 lines have been identified to have positive GCA value for yield traits, brix, and negative GCA value for the residue rate, respectively. Six sweet corn hybrid combinations and six waxy corn hybrid combinations with great comprehensive breeding potential have been isolated. Four black sweet corn hybrid combinations with application potential, and one inbred line SICAU76 with great application value in black grain have been isolated. 【Conclusion】The sweet and waxy corn inbred lines collected in this study have a large degree of genetic variation. The agronomic, yield, and quality traits of sweet and waxy corn have some intrinsic correlation. According to the correlation between flowering time and quality traits, moderate early flowering materials for sweet corn production, and moderate late flowering materials for waxy corn production will be better in field.

Key words: fresh corn, yield, quality, breeding potential

Table 1

Analysis of variance about 17 traits of sweet corn (F value)"

变异来源
Source of
variation
自由度
df
抽雄期
DTT
吐丝期
DTS
散粉期
DTA
散粉吐
丝间期
ASI
株高
PH
穗位高
EH
鲜苞
穗重
FBEW
鲜穗重
FEW
鲜籽
粒重
FKW
干籽
粒重
DKW
出籽率
KR
含水量
WC
糖度
BR
皮渣率
RR
粗蛋白
CP
粗淀粉
CS
粗脂肪
CF
年份
Year
1 169.23*** 131.96*** 172.09*** 1.86 8.30** 44.19*** 23.64*** 9.40** 3.56 1.35 0.27 4.86* 15.80*** 1.74 5.91* 488.14*** 11.40*
材料
Line
48 10.04*** 7.51*** 8.07*** 3.12*** 25.96*** 19.71*** 10.29*** 10.17*** 4.01*** 2.82*** 3.75*** 3.78*** 5.66*** 7.05*** 4.07*** 1.65* 3.69***
年份×材料
Year×Line
48 1.52 0.93 1.01 1.17 1.29 1.44 1.43 1.91** 1.57* 1.61* 1.16 1.03 1.07 1.78* 1.58* 1.06 1.36

Table 2

Analysis of Variance about 17 traits of waxy corn (F value)"

变异来源
Source of
variation
自由度
df
抽雄期
DTT
吐丝期
DTS
散粉期
DTA
散粉吐
丝间期
ASI
株高
PH
穗位高
EH
鲜苞
穗重
FBEW
鲜穗重
FEW
鲜籽
粒重
FKW
干籽
粒重
DKW
出籽率
KR
含水量
WC
糖度
BR
皮渣率
RR
粗蛋白
CP
粗淀粉
CS
粗脂肪
CF
年份
Year
1 134.65*** 121.92*** 146.07*** 9.52** 44.24*** 141.28*** 35.20*** 18.45*** 5.62* 8.89** 0.19 7.90** 18.53*** 28.81*** 3.65 798.90*** 6.82*
材料
Line
70 14.54*** 11.49*** 10.92*** 1.78** 26.24*** 20.11** 6.11*** 5.76*** 2.83*** 2.70*** 3.01*** 13.10*** 3.31*** 4.36*** 5.21*** 2.81*** 2.10***
年份×材料
Year×Line
70 0.78 0.61 0.97 1 0.87 1.47* 0.79 1.03 0.79 0.74 0.91 1.85** 1.16 2.11*** 1.64** 1.82** 1.02

Table 3

Descriptive statistics of various traits of sweet and waxy corn inbred lines"

性状
Traits
类型
Types
平均值±标准差
Mean±SD
变幅
Range
变异系数
Coefficient of variation (%)
广义遗传力H2
Broad-sense heritability(H2)
抽雄期
DTT (d)
S 70.2±4.3 55.5—77.3 6.2 0.85
W 71.4±3.8 48.8—78.5 5.3 0.94
吐丝期
DTS (d)
S 74.8±4.1 60.5—81.0 5.5 0.87
W 74.1±3.6 58.3—82.8 4.9 0.93
散粉期
DTA (d)
S 73.8±3.7 61.8—80.3 5.0 0.88
W 73.7±3.3 57.8—81.5 4.5 0.91
散粉吐丝间期ASI (d) S 1.4±1.0 0.3—6.3 68.7 0.63
W 1.0±0.6 0.0—3.5 60.8 0.44
株高
PH (cm)
S 161.4±32.2 106.5—226.3 20.0 0.95
W 171.6±27.4 109.3—223.9 16.0 0.96
穗位高
EH (cm)
S 52.4±17.4 19.0—91.6 33.1 0.93
W 67.3±17.1 22.7—129.4 25.4 0.93
鲜苞穗重
FBEW (g)
S 212.5±71.4 102.0—356.8 33.6 0.87
W 180.8±45.2 59.2—293.7 25.0 0.86
鲜穗重
FEW (g)
S 129.2±45.6 43.0—225.6 35.3 0.82
W 109.2±30.4 46.2—215.2 27.8 0.83
鲜籽粒重
FKW (g)
S 70.7±27.4 5.0—125.5 38.7 0.62
W 58.9±17.8 18.6—123.3 30.2 0.69
干籽粒重
DKW (g)
S 17.2±6.0 1.1—26.8 34.6 0.41
W 23.5±7.2 7.6—45.6 30.8 0.68
出籽率
KR (%)
S 53.2±11.4 6.4—70.6 21.4 0.71
W 53.5±9.0 32.5—68.7 16.8 0.69
含水量
WC (%)
S 75.0±3.3 66.0—80.2 4.3 0.75
W 60.0±4.3 48.8—68.2 7.1 0.87
糖度
BR (%)
S 17.7±1.8 14.2—23.9 10.0 0.84
W 15.3±1.5 10.2—18.8 10.1 0.66
皮渣率
RR (%)
S 11.2±2.2 7.0—15.9 19.9 0.78
W 9.7±2.3 6.4—19.5 23.7 0.55
粗蛋白
CP (%)
S 9.0±1.1 6.3—12.7 12.4 0.67
W 10.5±1.1 8.0—12.9 10.0 0.69
粗淀粉
CS (%)
S 67.8±1.2 64.3—71.4 1.8 0.35
W 69.1±1.0 66.3—71.1 1.4 0.35
粗脂肪
CF (%)
S 3.4±0.4 2.8—4.2 11.8 0.68
W 2.8±0.3 1.9—3.5 10.3 0.51

Fig. 1

Correlation of different traits A: Sweet corn; B: Waxy corn. DTT: Day to tasseling; DTS: Day to silking; DTA: Day to anthesis; ASI: Anthesis silking interval; PH: Plant height; EH: Ear height; FBEW: Fresh bud ear weight; FEW: Fresh ear weight; FKW: Fresh kernel weight; DKW: Dry kernel weight; KR: Kernel rate; WC: Water content; BR: Brix; RR: Residue rate; CP: Crude protein; CS: Crude starch; CF: Crude fat. *P<0.05; **P<0.01; ***P<0.001. The same as below"

Table 4

General combining ability (GCA) of each trait of 6 sweet corn inbred lines and 7 waxy corn inbred lines"

自交系
Inbred lines
抽雄期
DTT
(d)
吐丝期
DTS
(d)
散粉期
DTA
(d)
散粉吐丝间期ASI
(d)
株高
PH
(cm)
穗位高
EH
(cm)
鲜苞穗重
FBEW
(g)
鲜穗重
FEW
(g)
鲜籽粒重
FKW
(g)
干籽粒重
DKW
(g)
出籽率
KR
(%)
含水量
WC
(%)
糖度
BR
皮渣率
RR
(%)
粗蛋白
CP
(%)
粗淀粉
CS
(%)
粗脂肪
CF
(%)
SHTL03 -1.53e -1.08d -0.78d -0.01a -15.66d -12.03d -5.27b -2.88b 3.49c 1.41b 2.14a -0.28b 0.66a 0.69a -0.84c -0.30b -0.02abc
SICAU66 0.32bc 0.53b 0.20bc 0.01a 0.05b 4.54b 37.39a 26.25a 10.48bc -0.07b -2.46c 1.44a -0.44c -0.27bc -0.15b 0.22a -0.09c
SICAU72 0.66b -0.08bc 0.41ab -0.32b 4.91b 3.22b 35.15a 31.97a 26.18a 4.32a 1.74a 1.15a 0.19ab 0.22ab -0.21b 0.21a -0.06bc
SICAU75 1.44a 1.21a 0.74a 0.12a 14.73a 13.76a 47.78a 27.88a 15.93b 2.18ab -1.09bc 1.07a -0.16bc -0.01b 0.28a 0.14a 0.08a
SICAU76 -0.71d -0.08bc -0.26cd 0.09a 2.46b -2.25c -56.93c -40.15c -25.81d -3.28c 0.38ab -1.76c -0.43c -0.70c 0.45a -0.16b 0.05ab
SICAU77 -0.29c -0.63cd -0.42d 0.10a -7.27c -7.62d -57.67c -43.16c -29.32d -4.35c -0.38b -1.64c 0.30ab 0.18ab 0.38a -0.14b 0.04ab
SHWL22 -0.59d -1.26e -0.71c 0.08ab -7.42b -5.59c -21.57e -34.31d -11.03c -2.84b 4.51a -0.86cd 0.49a -0.04 0.30a 0.22a 0.00b
SHWL44 -0.98d -0.58d -0.85c 0.28a -5.53b -3.63c -11.88de -0.30b 11.15a 3.80a 4.63a 0.74b -0.02bc 0.04 -0.05b -0.08bc 0.06ab
SICAU03 0.90a 0.64a 0.77a -0.12b 0.68a -4.38c -5.14cd -12.77c -12.14c -3.15b -2.47c -1.25d 0.08ab 0.26 0.11ab 0.01abc 0.09a
SICAU12 0.41b 0.05bc 0.17b -0.14b 4.52a 8.52a 15.76a 18.97a 3.64b 1.26a -2.57c 0.08bc -0.08bc -0.39 0.26a 0.21ab -0.03b
SICAU21 -0.75d -0.22cd -0.70c 0.25a 2.80a 3.60b 6.64ab 12.65a 13.16a 1.26a 2.82b 2.29a -0.30bc 0.42 -0.34c -0.06abc -0.21c
SICAU34 -0.05c 0.09bc 0.16b 0.02ab 4.90a 6.03ab 2.29bc 0.07b 4.89b 4.00a 2.01b -1.24d -0.36c -0.23 -0.05b -0.18c 0.05ab
SICAU47 0.63ab 0.46ab 0.74a -0.25b -6.15b -9.88d -6.21cd -11.25c -18.36d -6.51c -5.28d -0.50cd 0.46a -0.01 -0.09bc -0.01abc 0.04ab

Table 5

SCA of different sweet corn hybrid combinations"

组合
Combinations
抽雄期
DTT
(d)
吐丝期
DTS
(d)
散粉期
DTA
(d)
散粉吐丝间期ASI
(d)
株高
PH
(cm)
穗位高
EH
(cm)
鲜苞穗重
FBEW
(g)
鲜穗重
FEW
(g)
鲜籽粒重
FKW
(g)
干籽粒重
DKW
(g)
出籽率
KR
(%)
含水量
WC
(%)
糖度
BR
皮渣率
RR
(%)
粗蛋白
CP
(%)
粗淀粉
CS
(%)
粗脂肪
CF
(%)
SHTL03×SICAU66 -1.91 -1.41 -1.21 -0.58 -21.61 -15.1 -45.25 -36.7 -29.97 -8.28 -2.10 0.75 0.23 -0.80 -0.34 0.70 -0.17
SHTL03×SICAU72 5.36 5.74 5.71 0.35 11.64 5.24 22.57 39.62 36.16 13.05 2.07 -1.80 -1.10 -0.18 -0.19 -2.37 -0.14
SHTL03×SICAU75 6.57 7.12 6.05 -0.09 12.62 6.83 60.05 75.94 65.88 18.81 3.76 -1.19 -0.20 4.21 0.65 -2.16 0.04
SHTL03×SICAU76 -1.08 -1.19 -1.15 -0.26 -6.55 0.8 -11.04 -5.84 -4.92 -2.05 0.52 0.46 -0.85 -0.16 0.03 0.64 -0.13
SHTL03×SICAU77 4.64 3.95 4.21 -0.06 13.69 -0.05 43.98 13.53 4.39 5.27 -0.95 -2.58 -0.42 4.29 -0.23 -1.46 0.05
SICAU66×SHTL03 6.03 4.46 5.59 0.35 9.51 -0.47 17.00 16.45 18.08 5.72 1.96 -0.64 0.42 -1.37 -0.50 -2.33 -0.37
SICAU66×SICAU72 -2.66 -2.54 -2.43 -0.17 -11.43 -7.58 -30.26 -20.02 -17.96 -6.83 -1.23 1.06 -0.83 -0.46 0.42 0.93 -0.11
SICAU66×SICAU75 -3.12 -2.16 -2.76 0.39 -10.91 -1.13 -12.81 -7.08 -8.97 -4.46 -1.14 1.01 -0.78 -0.79 0.09 0.71 0.24
SICAU66×SICAU76 -1.47 -1.03 -1.76 -0.08 -4.88 -5.55 -6.40 10.96 7.68 6.46 -0.03 -1.83 1.03 -0.2 0.06 0.82 0.12
SICAU66×SICAU77 -3.05 -3.49 -3.27 -0.75 -19.25 -13.91 -42.49 -22.6 -22.35 -9.17 -3.05 2.42 0.35 -0.05 -0.12 1.13 0.09
SICAU72×SHTL03 -2.98 -2.93 -3.12 0.19 -12.86 -7.76 -24.38 -18.33 -13.97 -5.19 -0.96 1.13 0.11 -0.30 0.38 0.96 0.12
SICAU72×SICAU66 -3.33 -2.54 -2.93 -0.33 -3.30 -1.42 10.85 1.71 -3.18 -4.12 -1.12 1.09 -0.37 0.07 0.32 1.33 -0.16
SICAU72×SICAU75 -2.45 -1.38 -1.30 -0.44 -24.04 -17.45 -48.04 -38.22 -30.44 -7.80 -1.95 0.18 0.60 -0.70 0.00 1.26 -0.06
SICAU72×SICAU76 -4.47 -4.79 -5.14 -0.55 -2.08 -2.68 5.89 1.57 8.02 0.84 2.33 1.01 0.37 -0.11 0.62 1.31 0.23
SICAU72×SICAU77 -3.89 -4.04 -3.98 0.25 -2.32 -0.92 -13.86 4.95 6.11 0.10 1.57 1.07 1.99 -0.61 -1.00 0.99 -0.11
SICAU75×SHTL03 -2.93 -2.55 -2.95 -0.09 4.56 0.70 -9.80 -6.95 -1.96 -0.35 0.82 -0.04 0.98 0.05 -0.12 0.84 0.06
SICAU75×SICAU66 -2.62 -1.99 -2.93 0.39 0.25 3.53 -9.27 -13.97 -13.22 -5.80 -0.87 1.22 0.42 0.18 0.66 1.32 -0.09
SICAU75×SICAU72 -2.62 -2.54 -2.30 -0.28 -17.64 -12.65 -50.04 -28.31 -18.28 -4.61 0.24 -0.29 1.26 0.03 0.20 1.15 0.22
SICAU75×SICAU76 1.75 0.38 0.78 0.31 10.50 6.35 21.65 11.62 8.83 1.01 0.20 0.80 -0.92 -0.62 -0.28 -0.4 -0.02
SICAU75×SICAU77 6.33 7.67 5.69 0.81 24.63 14.63 114.45 82.88 67.00 17.75 4.09 -0.33 -0.59 0.97 0.03 -1.17 0.22
SICAU76×SHTL03 1.72 1.66 1.55 0.19 5.19 9.04 22.76 3.46 -14.35 -4.99 -4.59 0.56 -0.15 -1.16 -0.54 -0.47 0.00
SICAU76×SICAU66 -2.73 -2.20 -1.93 0.12 -5.42 -1.28 -11.74 -5.24 -3.91 -0.55 -0.28 -0.1 0.92 -0.62 -0.74 0.22 0.14
SICAU76×SICAU72 0.53 -0.34 0.11 0.25 23.77 10.70 -0.14 -11.06 -0.29 1.46 3.04 -0.34 0.47 -0.11 -0.06 -0.76 -0.01
SICAU76×SICAU75 4.75 3.13 4.20 -0.52 37.63 26.65 35.15 5.43 -2.58 -0.47 -2.76 -0.03 -1.43 -0.81 0.04 -2.43 -0.19
SICAU76×SICAU77 -3.02 -2.2 -2.48 -0.17 -16.20 -15.79 -59.36 -45.42 -36.34 -13.21 -3.65 1.91 0.02 -0.43 0.41 1.10 -0.03
SICAU77×SHTL03 1.05 0.45 0.96 0.19 -4.93 -3.88 8.25 -1.44 -6.16 0.30 -1.40 -1.18 0.59 -1.60 -0.12 -0.76 0.03
SICAU77×SICAU66 5.45 4.34 6.23 0.91 15.91 15.06 32.84 7.84 7.82 5.16 1.39 -1.74 -2.00 1.13 -0.10 -1.65 0.06
SICAU77×SICAU75 -2.67 -2.49 -2.64 -0.36 0.83 -1.01 -8.88 -3.5 -0.13 0.92 0.96 0.05 -0.26 -0.69 0.59 0.81 -0.01
SICAU77×SICAU76 4.23 3.46 4.19 -0.17 -1.80 8.49 -38.59 -21.57 -13.66 -1.05 1.18 -3.04 -0.63 0.13 0.84 0.14 -0.14

Table 6

SCA of different waxy corn hybrid combinations"

组合
Combinations
抽雄期
DTT
吐丝期
DTS
散粉期
DTA
散粉吐丝间期ASI 株高
PH
穗位高
EH
鲜苞穗重
FBEW
鲜穗重
FEW
鲜籽粒重
FKW
干籽粒重
DKW
出籽率
KR
含水量
WC
糖度
BR
皮渣率
RR
粗蛋白
CP
粗淀粉
CS
粗脂肪
CF
SHWL44×SHWL22 0.45 1.68 1.06 0.05 -32.79 -16.95 -67.30 -43.52 -39.11 -19.65 -4.77 2.54 0.07 2.19 -0.13 0.63 -0.14
SHWL44×SICAU03 -1.04 -1.39 -1.25 -0.09 3.91 -1.59 23.76 25.35 12.27 5.11 -0.60 0.03 0.65 0.25 -0.44 0.03 0.04
SHWL44×SICAU12 -0.05 0.21 -0.32 -0.06 -1.93 2.47 -3.64 -7.47 -6.62 -4.04 -1.16 0.42 -0.42 -0.58 0.41 -0.02 0.03
SHWL44×SICAU21 -0.06 -0.36 -0.62 -0.46 -9.11 -6.95 -45.51 -40.77 -28.69 -14.31 -2.23 2.51 -0.41 0.25 0.27 0.41 -0.17
SHWL44×SICAU34 -1.42 -1.50 -0.15 -0.06 0.02 1.42 13.84 12.23 11.74 4.78 1.24 0.04 0.26 -0.68 -0.16 0.39 0.07
SHWL44×SICAU47 7.73 5.79 6.44 -0.29 31.10 20.33 81.34 76.13 64.93 37.73 7.49 -6.75 0.89 -1.17 -0.38 -2.76 -0.01
SICAU03×SHWL22 -1.43 -1.88 -1.55 0.12 9.77 6.1 31.78 6.51 3.63 1.58 -0.12 -0.28 0.35 0.13 -0.24 0.12 0.05
SICAU03×SHWL44 -1.21 -1.56 -2.09 0.25 10.91 4.21 33.43 34.71 22.21 8.93 1.03 -0.01 0.61 -1.30 -0.25 -0.37 0.13
SICAU03×SICAU12 -1.43 -1.52 -1.27 -0.16 11.13 4.12 8.29 6.54 -6.19 -2.13 -3.30 0.23 -0.05 -0.48 0.43 0.52 0.18
SICAU03×SICAU21 -0.27 -0.75 -0.4 0.28 4.85 2.68 32.75 26.13 16.61 6.14 0.99 0.28 -0.75 -1.69 -0.6 0.79 -0.01
SICAU03×SICAU34 0.03 0.27 -0.10 0.01 -9.99 -4.19 -13.24 -13.18 -16.79 -8.84 -3.34 1.11 -1.02 -1.43 0.25 0.33 -0.05
SICAU03×SICAU47 1.52 2.57 2.16 -0.22 -28.78 -18.48 -90.91 -76.46 -43.32 -19.47 -1.74 1.36 0.37 2.61 0.80 -0.01 -0.04
SICAU12×SHWL22 -0.60 -0.12 -0.29 0.31 1.16 4.53 20.05 27.94 11.38 2.52 -3.19 1.82 -0.18 -0.16 0.34 0.13 -0.03
SICAU12×SHWL44 11.29 11.54 12.18 -0.73 22.94 30.17 12.03 -8.00 20.38 15.48 9.66 -5.12 -0.41 2.96 0.17 -1.87 -0.42
SICAU12×SICAU03 -0.76 -1.19 -0.94 -0.16 8.13 1.26 25.29 18.11 -1.19 1.38 -4.28 -0.51 -0.25 -0.66 0.24 0.32 0.18
SICAU12×SICAU21 0.06 0.01 0.03 -0.03 -4.73 -1.23 -8.32 -8.31 5.57 2.89 3.40 -0.78 0.09 0.02 -0.03 -0.39 0.05
SICAU12×SICAU34 -0.13 -0.47 -0.50 0.03 -6.39 -0.52 2.36 13.11 10.81 -0.16 0.98 2.36 0.06 1.95 -0.57 -0.09 -0.24
SICAU12×SICAU47 -1.15 -1.17 -1.41 -0.03 2.75 -1.18 12.86 13.73 -5.32 -1.35 -4.37 -0.43 0.84 -1.41 -0.08 0.74 -0.08
SICAU21×SHWL22 0.22 0.15 -0.09 -0.42 -3.65 -2.85 -21.82 -10.97 -7.77 -4.43 -0.87 0.89 -0.17 -1.07 0.38 0.01 -0.08
SICAU21×SHWL44 -0.06 0.81 0.21 0.88 -15.98 -9.15 -48.34 -29.35 -21.47 -10.94 -1.97 1.36 -0.71 0.77 0.47 0.44 -0.15
SICAU21×SICAU03 -0.43 -0.92 -0.57 -0.39 5.65 5.48 63.41 60.38 32.20 11.18 -0.60 1.02 -0.28 0.02 -0.56 -0.04 0.02
SICAU21×SICAU12 -0.60 0.01 -0.47 0.14 -8.59 -3.43 0.16 1.14 3.57 -5.2 0.74 3.40 -0.20 -0.14 -0.16 0.07 -0.28
SICAU21×SICAU34 -1.31 -1.03 -1.13 -0.03 2.53 1.26 -9.01 -10.47 -16.67 -8.94 -4.31 1.06 -0.18 -0.46 -0.02 -0.52 0.10
SICAU21×SICAU47 -1.00 -0.74 -0.87 0.07 1.90 2.27 33.49 37.53 23.05 10.79 1.32 -1.19 0.03 0.62 -0.51 0.35 -0.06
SICAU34×SHWL22 -0.47 -0.66 -0.62 -0.36 6.65 2.69 -2.14 -5.43 6.07 6.41 4.45 -2.75 -0.31 -0.12 0.00 0.25 0.09
SICAU34×SHWL44 -1.09 -1.17 -0.82 -0.06 9.42 5.42 12.50 19.82 15.73 6.65 0.54 -0.05 -0.03 -0.68 0.22 -0.02 0.29
SICAU34×SICAU03 0.20 0.44 -0.43 0.17 5.01 2.18 -5.41 -3.49 -2.28 0.33 0.40 -0.76 0.13 0.15 -0.09 -0.25 0.00
SICAU34×SICAU12 0.03 0.03 -0.17 -0.13 -3.73 0.88 -15.97 -8.45 -1.92 1.80 0.62 -1.00 0.01 0.56 0.04 0.36 -0.01
SICAU34×SICAU21 -1.48 -0.03 -1.30 0.47 13.06 6.33 14.99 11.81 11.09 7.98 0.76 -2.00 1.23 0.98 0.42 0.19 0.05
SICAU34×SICAU47 0.31 0.45 0.26 0.14 -3.23 -4.49 2.50 -8.96 -11.23 -6.73 -2.52 1.97 -0.97 -0.83 0.03 0.38 -0.13
SICAU47×SHWL22 -1.16 -1.86 -1.69 0.25 14.59 2.93 44.03 29.76 17.85 6.92 -0.42 0.03 0.28 -1.35 -0.23 -0.21 0.15
SICAU47×SHWL44 -1.44 -1.71 -1.73 -0.29 9.43 3.57 47.17 33.35 19.80 7.26 0.49 0.21 -0.30 -1.16 -0.31 -0.48 0.10
SICAU47×SICAU03 1.18 2.57 2.33 -0.06 -25.14 -15.04 -105.91 -92.45 -53.06 -22.47 -3.36 -0.32 0.12 2.01 0.78 0.23 -0.23
SICAU47×SICAU12 -0.82 -1.34 -1.08 0.14 4.95 1.52 2.03 13.20 -1.52 0.27 -2.55 -0.64 -0.22 -1.30 -0.17 -0.02 0.36
SICAU47×SICAU21 -1.83 -1.90 -1.54 -0.09 10.74 6.80 15.66 12.30 -0.87 -4.28 -2.31 2.72 0.37 0.89 -0.32 0.06 0.15
SICAU47×SICAU34 -0.03 -0.38 -0.24 -0.19 -5.30 -2.06 17.17 12.21 -4.35 -3.40 -3.74 0.98 -0.02 -0.39 -0.06 0.24 0.04

Table 7

Comparison of yield, brix, residue ratio and taste traits between synthetic hybrid strain and control variety"

甜糯类型
Sweet or waxy
组合
Combinations
鲜苞穗重
FBEW (g)
显著性
Sig.
糖度
BR
显著性
Sig.
皮渣率
RR (%)
显著性
Sig.
品尝综合得分
Taste score
显著性
Sig.
甜玉米
Sweet corn
SHTL03×SICAU66 331.31 * 18.46 * 11.85 ** 55.50 ns
SHTL03×SICAU72 396.89 ns 17.72 ns 12.95 ** 53.68 ns
SHTL03×SICAU75 447.00 ns 18.27 ns 17.11 ** 56.71 ns
SHTL03×SICAU76 310.00 ** 17.48 ns 11.98 ** 54.75 ns
SHTL03×SICAU77 325.48 ** 18.51 ns 17.39 ** 52.00 ns
SICAU66×SHTL03 393.56 ns 18.59 * 11.27 ** 54.63 ns
SICAU66×SICAU72 386.72 ns 16.88 ns 11.71 ** 53.37 ns
SICAU66×SICAU75 416.80 ns 16.58 ns 11.15 * 52.43 ns
SICAU66×SICAU76 318.50 * 18.12 ns 11.05 ** 54.65 ns
SICAU66×SICAU77 281.67 *** 18.17 ns 12.08 ** 54.05 ns
SICAU72×SHTL03 349.94 ns 18.93 ** 12.83 ** 53.06 ns
SICAU72×SICAU66 427.83 ns 17.33 ns 12.23 ** 55.00 ns
SICAU72×SICAU75 379.33 ns 18.60 * 11.73 * 53.91 ns
SICAU72×SICAU76 328.56 * 18.02 ns 11.78 ** 53.88 ns
SICAU72×SICAU77 308.06 * 20.45 ** 12.01 ** 54.72 ns
SICAU75×SHTL03 377.15 ns 19.45 * 12.95 ** 53.35 ns
SICAU75×SICAU66 420.33 ns 17.78 ns 12.12 ** 54.73 ns
SICAU75×SICAU72 377.33 ns 19.25 * 12.46 ** 55.00 ns
SICAU75×SICAU76 356.94 ns 16.33 * 10.59 * 53.00 ns
SICAU75×SICAU77 449.00 ns 17.52 ns 13.36 ** 56.00 ns
SICAU76×SHTL03 305.00 ns 18.18 ns 11.04 ** 52.60 ns
SICAU76×SICAU66 313.16 * 18.17 ns 10.56 ** 51.81 ns
SICAU76×SICAU72 322.53 * 18.37 ns 11.42 ** 52.92 ns
SICAU76×SICAU75 370.44 ns 15.94 ** 10.70 ns 53.50 ns
SICAU76×SICAU77 170.48 *** 17.86 ns 11.27 * 52.86 ns
SICAU77×SHTL03 289.75 ** 19.09 * 11.65 ** 50.25 *
SICAU77×SICAU66 357.00 ns 15.82 ** 13.25 ** 52.60 ns
SICAU77×SICAU75 325.67 * 17.84 ns 11.71 ** 55.48 *
SICAU77×SICAU76 191.25 *** 17.62 ns 11.47 ** 54.75 ns
荣玉甜99
Rongyutian 99
406.63 17.55 9.53 53.11
糯玉米 Waxy corn SHWL44×SHWL22 225.33 *** 16.14 ** 7.72 ns 51.67 *
SHWL44×SICAU03 332.83 * 16.32 ** 7.83 * 53.42 ns
SHWL44×SICAU12 326.33 * 15.08 ** 8.14 ns 53.06 ns
SHWL44×SICAU21 275.33 ** 14.87 ** 8.14 ns 53.05 ns
SHWL44×SICAU34 330.33 * 15.48 ** 8.39 ns 50.58 **
SHWL44×SICAU47 389.33 ns 16.93 ** 8.41 ns 52.83 ns
SICAU03×SHWL22 331.17 * 16.52 ** 8.46 ns 53.95 ns
SICAU03×SHWL44 342.50 ns 16.28 ** 8.53 ns 52.14 ns
甜糯类型
Sweet or waxy
组合
Combinations
鲜苞穗重
FBEW (g)
显著性
Sig.
糖度
BR
显著性
Sig.
皮渣率
RR (%)
显著性
Sig.
品尝综合得分
Taste score
显著性
Sig.
SICAU03×SICAU12 345.00 ns 15.56 ** 8.55 ns 51.74 *
SICAU03×SICAU21 360.33 ns 14.64 * 8.61 ns 54.00 ns
SICAU03×SICAU34 310.00 * 14.30 * 8.67 ns 51.43 *
SICAU03×SICAU47 223.83 *** 16.51 ** 8.67 ns 52.42 ns
SICAU12×SHWL22 340.33 ns 15.82 ** 8.74 ns 52.45 ns
SICAU12×SHWL44 342.00 ns 15.09 ns 8.85 ns 53.29 ns
SICAU12×SICAU03 362.00 ns 15.35 ** 8.90 ns 52.61 ns
SICAU12×SICAU21 340.17 ns 15.31 ** 8.93 ns 51.91 *
SICAU12×SICAU34 346.50 ns 15.22 ** 8.94 ns 52.68 ns
SICAU12×SICAU47 348.50 ns 16.81 ** 9.14 ns 54.21 ns
SICAU21×SHWL22 289.33 ** 15.62 ** 9.27 ns 53.82 ns
SICAU21×SHWL44 272.50 *** 14.58 ** 9.43 ns 53.12 ns
SICAU21×SICAU03 391.00 ns 15.11 ** 9.47 ns 53.11 ns
SICAU21×SICAU12 348.65 ns 15.02 ** 9.58 ns 52.56 ns
SICAU21×SICAU34 326.00 * 14.75 ** 9.72 ns 50.12 ***
SICAU21×SICAU47 360.00 ns 15.78 ** 9.89 ns 53.59 ns
SICAU34×SHWL22 304.67 ** 15.41 ** 10.10 ns 51.21 *
SICAU34×SHWL44 329.00 * 15.20 ** 10.25 ns 50.75 **
SICAU34×SICAU03 317.83 ** 15.45 ** 10.25 ns 52.18 ns
SICAU34×SICAU12 328.17 * 15.17 ** 10.56 ns 53.17 ns
SICAU34×SICAU21 350.00 ns 16.17 ** 10.71 ns 51.00 *
SICAU34×SICAU47 324.67 ns 14.72 * 10.76 * 51.29 **
SICAU47×SHWL22 342.33 ns 16.82 ** 10.83 ns 54.31 ns
SICAU47×SHWL44 355.17 ns 15.74 ** 10.85 ns 52.52 ns
SICAU47×SICAU03 208.83 *** 16.26 ** 11.73 ns 54.08 ns
SICAU47×SICAU12 337.67 ns 15.75 ** 11.80 * 53.24 ns
SICAU47×SICAU21 342.17 ns 16.13 ** 12.15 ns 54.14 ns
SICAU47×SICAU34 339.33 ns 15.67 ** 12.40 * 51.83 *
荣玉糯100
Rongyunuo 100
376.17 11.83 9.24 54.08

Fig. 2

Excellent candidate hybrid combinations A: Sweet corn combinations; B: Waxy corn combinations; C: Four purple-black sweet corn combinations with the second-best comprehensive traits"

[1] 农业部玉米专家指导组. 2017年鲜食玉米生产技术指导意见. 中国农业信息, 2017(9):18.
Maize Expert Steering Group, Ministry of Agriculture. Technical guidance on fresh corn production in 2017. China Agricultural Information, 2017(9):18. (in Chinese)
[2] 徐丽, 赵久然, 卢柏山, 史亚兴, 樊艳丽. 我国鲜食玉米种业现状及发展趋势. 中国种业, 2020, 10:14-18.
XU L, ZHAO J R, LU B S, SHI Y X, FAN Y L. Present situation and development trend of fresh corn seed industry in China. China Seed Industry, 2020, 10:14-18. (in Chinese)
[3] 彭楷, 黄世欢, 闭献灿, 黄开健, 邹成林. 7个鲜食甜玉米品种比较试验初报. 广西农学报, 2020, 35(3):5-9.
PENG K, HUANG S H, BI X C, HUANG K J, ZOU C L. Preliminary report on comparison test of fresh sweet maize of seven varieties. Journal of Guangxi Agriculture, 2020, 35(3):5-9. (in Chinese)
[4] 卢华兵, 程增明, 吕学高, 石丽敏, 宋费玲, 朱正梅. 12个甜玉米新品种引种比较试验. 中国种业, 2021, 4:57-59.
LU H B, CHENG Z M, LÜ X G, SHI L M, SONG F L, ZHU Z M. Comparative experiment on introduction of 12 new sweet maize varieties. China Seed Industry, 2021, 4:57-59. (in Chinese)
[5] 李静楠, 陆顺生, 曾林, 宋云飞, 杨腊梅, 吴桂仙, 陈鄂. 鲜食甜玉米新品种筛选试验. 现代农业科技, 2018, 18:32-35.
LI J N, LU S S, ZENG L, SONG Y F, YANG L M, WU G X, CHEN E. Screening of fresh sweet maize variety. Modern Agricultural Science and Technology, 2018, 18:32-35. (in Chinese)
[6] 肖灿荣. 甜玉米新品种筛选试验. 福建农业科技, 2018, 18:16-19.
XIAO C R. Screening of new sweet maize varieties. Fujian Agricultural Science and Technology, 2018, 18:16-19. (in Chinese)
[7] 郑景文. 甜玉米品种比较试验. 河南农业, 2018, 4:46-47.
ZHENG J W. Comparative experiment of sweet maize varieties. Henan Agriculture, 2018, 4:46-47. (in Chinese)
[8] 赵艳花, 潘中涛, 汪朝明, 陈瑾. 黔中地区12个鲜食甜、糯玉米品种比较试验. 南方农业, 2021, 15(10):55-63.
ZHAO Y H, PAN Z T, WANG C M, CHEN J. Comparative experiment of 12 fresh sweet and waxy maize varieties in central Guizhou. Journal of Southern Agriculture, 2021, 15(10):55-63. (in Chinese)
[9] 薛国峰, 樊应虎, 韩学坤, 张运锋, 王会军, 陆秀春, 欧阳军, 李昌元. 21个鲜食甜、糯玉米品种筛选及性状研究. 湖南农业科学, 2020, 10:9-12.
XUE G F, FAN Y H, HAN X K, ZHANG Y F, WANG H J, LU X C, OUYANG J, LI C Y. Study on traits of 21 fresh sweet and waxy maize varieties and varietal selection. Hunan Agricultural Sciences, 2020, 10:9-12. (in Chinese)
[10] PARK K J, SA K J, KOH H J, LEE J K. QTL analysis for eating quality-related traits in an F2:3 population derived from waxy corn x sweet corn cross. Breed Science, 2013, 63(3):325-332.
doi: 10.1270/jsbbs.63.325
[11] PARK K J, SA K J, KIM B W, KOH H J, LEE J K. Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3 population derived from a waxy corn×sweet corn cross. Genes & Genomics, 2013, 36(2):179-189.
[12] DERMAIL A, SURIHARN B, LERTRAT K, CHANKAEW S, SANITCHON J. Reciprocal cross effects on agronomic traits and heterosis in sweet and waxy corn. Journal of Breeding and Genetics, 2018, 50(4):444-460.
[13] SALEH Z, MUSA Y, BDR M F, RIADI M, EFENDI R, AZRAI M. Diallel cross of six inbred waxy corn (Zea mays L.). International Journal of Sciences Basic and Applied Research, 2018, 38(2):254-261.
[14] FUENGTEE A, DERMAIL A, SIMLA S, LERTRAT K, SANITCHON J, CHANKAEW S, SURIHARM B. Combining ability for carbohydrate components associated with consumer preferences in tropical sweet and waxy corn derived from exotic germplasm. Turkish Journal of Field Crops, 2020, 25(2):147-155.
[15] DANUPOL K, BHALANG S, RATCHADA T, KAMOL L. Combining ability analysis in complete diallel cross of waxy corn (Zea mays var. ceratina) for starch pasting viscosity characteristics. Scientia Horticulturae, 2014, 175:229-235.
doi: 10.1016/j.scienta.2014.06.019
[16] 宋旭东, 黄小兰, 张振良, 冒宇翔, 陆虎华, 周广飞, 陈国清, 郝德荣, 胡加如, 石明亮. 10个糯玉米自交系穗部性状配合力及其遗传特性分析. 南方农业学报, 2020, 51(10):2447-2453.
SONG X D, HUANG X L, ZHANG Z L, MAO Y X, LU H H, ZHOU G F, CHEN G Q, HAO D R, HU J R, SHI M L. Combining ability for ear traits of ten waxy maize inbred lines. Journal of Southern Agriculture, 2020, 51(10):2447-2453. (in Chinese)
[17] 贺囡囡, 冯云敢, 蒙云飞, 韦爱娟, 韦桂旺. 23份超甜玉米自交系育种潜力分析. 西南农业学报, 2021, 34(2):236-243.
HE N N, FENG Y G, MENG Y F, WEI A J, WEI G W. Analysis on breeding potential of 23 super-sweet corn inbred lines. Southwest China Journal of Agricultural Sciences, 2021, 34(2):236-243. (in Chinese)
[18] 贺囡囡, 蒙云飞, 韦桂旺, 冯云敢, 韦爱娟, 张述宽. 19个糯玉米自交系11个农艺性状的配合力分析及其评价. 江苏农业科学, 2018, 46(16):76-80.
HE N N, MENG Y F, WEI G W, FENG Y G, WEI A J, ZHANG S K. Combining ability analysis and evaluation of 11 agronomic traits in 19 waxy maize inbred lines. Jiangsu Agricultural Sciences, 2018, 46(16):76-80. (in Chinese)
[19] 秦燕, 赵永康, 王飞, 郭泓鋆, 杨洪, 李兰. 10个糯玉米自交系主要性状的配合力分析. 贵州农业科学, 2018. 46(12):6-9.
QIN Y, ZHAO Y K, WANG F, GUO H J, YANG H, LI L. Combining ability of main traits of 10 waxy maize inbred lines. Guizhou Agricultural Sciences, 2018, 46(12):6-9. (in Chinese)
[20] 陈志坚. 87份糯玉米自交系的遗传多样性分析. 种子, 2020, 40(6):70-75.
CHEN Z J. Genetic diversity analysis of 87 inbred lines of waxy maize. Seed, 2020, 40(6):70-75. (in Chinese)
[21] KO W R, SA K J, ROY N S, CHOI H J, LEE J K. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers. Genetics and Molecular Research, 2016, 15(1): gmr.15017392.
[22] 林雪琼, 刘晓敏, 朱维, 王欣, 刘宇, 李小琴, 黄君. 140份甜玉米自交系耐铝性鉴定. 种子, 2021, 40(1):50-55.
LIN X Q, LIU X M, ZHU W, WANG X, LIU Y, LI X Q, HUANG J. Identification of aluminum tolerance in 140 sweet corn inbred lines. Seed, 2021, 40(1):50-55. (in Chinese)
[23] 王晓明, 谢振文, 曾慕衡, 乐素菊. 超甜玉米果穗形态和品质性状的杂种优势及遗传分析. 中国农业科学, 2005, 38(9):1931-1936.
WANG X M, XIE Z W, ZENG M H, LE S J. Heterosis and inheritance analysis of ear shape and quality characters in super sweet corn. Scientia Agricultura Sinica, 2005, 38(9):1931-1936. (in Chinese)
[24] 刘新月, 董安忆, 天馨玉, 王亚飞, 李娇, 杨亚桐, 段会军. 甜玉米自交系的品质性状分析. 贵州农业科学, 2020, 48(3):16-20.
LIU X Y, DONG A Y, TIAN X Y, WANG Y F, LI J, YANG Y T, DUAN H J. Analysis on quality traits of sweet corn germplasm resources. Guizhou Agricultural Sciences, 2020, 48(3):16-20. (in Chinese)
[25] 刘萍. 中国鲜食甜、糯玉米品种试验产量与品质评价体系的建设[D]. 扬州: 扬州大学, 2007.
LIU P. Establishment of yield and quality evaluation system for fresh sweet corn and waxy corn varietal experiment in China[D]. Yangzhou: Yangzhou University, 2007. (in Chinese)
[26] 刘福来, 黄远樟. 作物数量遗传学基础: 四配合力: 完全双列杂交(上). 遗传, 1979, 1(6):45-47.
LIU F L, HUANG Y Z. The basis of crop quantitative genetics: 4 Combining ability: Complete diallel cross (I). Genetics, 1979, 1(6):45-47. (in Chinese)
[27] 刘福来, 黄远樟. 作物数量遗传学基础: 五配合力: 完全双列杂交(下). 遗传, 1980, 2(1):43-48.
LIU F L, HUANG Y Z. The basis of crop quantitative genetics: 5 Combining ability: Complete diallel cross (II). Genetics, 1980, 2(1):43-48. (in Chinese)
[28] 白明兴, 陈奋奇, 陆晏天, 丁永福, 姬祥卓, 彭云玲. 玉米主要株型性状与产量的全基因组关联分析. 核农学报, 2020, 34(12):2673-2680.
BAI M X, CHEN F Q, LU Y T, DING Y F, JI X Z, PENG Y L. Genome-wide association analysis of major plant architecture traits and yield in maize. Journal of Nuclear Agricultural Sciences, 2020, 34(12):2673-2680. (in Chinese)
[29] 李真, 刘文童, 杨硕, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米花期性状的全基因组关联分析. 分子植物育种, 2020, 18(1):37-45.
LI Z, LIU W T, YANG S, GUO J J, ZHAO Y F, HUANG Y Q, CHEN J T, ZHU L Y. Genome-wide association analysis of flowering time related traits in maize (Zea mays L.). Molecular Plant Breeding, 2020, 18(1):37-45. (in Chinese)
[30] 谭禾平, 王桂跃, 赵福成, 包斐, 韩海亮, 楼肖成. 115个糯玉米品种农艺性状相关分析和聚类分析. 分子植物育种, 2021, 19(17):5848-5860.
TAN H P, WANG G Y, ZHAO F C, BAO F, HAN H L, LOU X C. Correlation and cluster analysis of agronomic characters of 115 waxy corn varieties. Molecular Plant Breeding, 2021, 19(17):5848-5860. (in Chinese)
[31] 吴方达, 李莺, 杨久臣, 马少康, 石磊, 肖远生, 赵新宏. 30个甜玉米品种在北京昌平区种植表现试验. 农业开发与装备, 2020(6):134-136.
WU F D, LI Y, YANG J C, MA S K, SHI L, XIAO Y S, ZHAO X H. Planting performance test of 30 sweet maize varieties in Changping District, Beijing. Agricultural Development and Equipment, 2020(6):134-136. (in Chinese)
[32] 王锦鹏, 李莺, 杨久臣, 马少康, 肖远生. 53个糯玉米品种在北京市昌平区种植对比试验. 现代农业科技, 2020(10):28-31.
WANG J P, LI Y, YANG J C, MA S K, XIAO Y S. Comparative experiment of 53 waxy maize varieties planted in Changping District, Beijing. Modern Agricultural Science and Technology, 2020(10):28-31. (in Chinese)
[33] MEHTA B K, HOSSAIN F, MUTHUSAMY V, ZUNJARE R U, SEKHAR J C, GUPTA H S. Analyzing the role of sowing and harvest time as factors for selecting super sweet (-sh2sh2) corn hybrids. Indian Journal of Genetics and Plant Breeding, 2017, 77(3):348.
[34] 黄爱花, 黄开健, 彭楷, 黄世欢, 毕献灿, 翟瑞宁, 莫润秀, 郑德波, 邹成林, 韦新兴, 谭华. 叶面喷施硒肥对甜玉米籽粒富硒、重金属含量及产量的影响. 南方农业学报, 2019. 50(1):40-44.
HUANG A H, HUANG K J, PENG J, HUANG S H, BI X C, ZHAI R N, MO R X, ZHENG D B, ZOU C L, WEI X X, TAN H. Effects of foliar spraying of selenium fertilizer on selenium-enriched content, heavy metal contentandyield of sweet corn grain. Journal of Southern Agriculture, 2019, 50(1):40-44. (in Chinese)
[35] KHANDURI A, HOSSAIN F, LAKHERA P C, PRASANNA B M. Effect of harvest time on kernel sugar concentration in sweet corn. Indian Journal of Genetics and Plant Breeding, 2011, 71(3):1-4.
[36] 张凯迪. 鲜食玉米籽粒皮渣率的差异及其与品质和产量的关系[D]. 扬州: 扬州大学, 2008.
ZHANG K D. Genotypic difference of residue ratio for fresh maize and its relations with quality and yield[D]. Yangzhou: Yangzhou University, 2008. (in Chinese)
[37] WANG Q J, JIANG Y, LIAO Z Q, XIE W B, ZHANG X M, LAN H, HU E L, XU J, FENG X J, WU F K, LIU Y X, LU Y L. Evaluation of the contribution of teosinte to the improvement of agronomic, grain quality and yield traits in maize (Zea mays). Plant Breeding, 2019, 139(3):589-599.
doi: 10.1111/pbr.v139.3
[38] 李伟忠, 徐佳, 安英辉, 姜森, 蒋洪蔚, 胡国华, 陈庆山. 黑龙江省玉米品质性状与农艺性状的灰色关联分析. 黑龙江农业科学, 2011, 9:1-3.
LI W Z, XU J, AN Y H, JIANG S, JIANG H W, HU G H, CHEN Q S. Grey relational analysis on agronomic traits and quality traits of maize in Heilongjiang. Heilongjiang Agricultural Sciences, 2011, 9:1-3. (in Chinese)
[39] BORRÁS L, CURÁ J A, OTEGUI M E. Maize kernel composition and post-flowering source-sink ratio. Crop Science, 2002, 42(3):781.
[40] SETTER T L, FLANNIGAN B A. Sugar and starch redistribution in maize in response to shade and ear temperature treatment. Crop Science, 1986, 26:575-579.
doi: 10.2135/cropsci1986.0011183X002600030031x
[41] BOOMSMA C R, SANTINI J B, WEST T D, BREWER J C, MCINTYRE L M, VYN T J. Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil and Tillage Research, 2010, 106(2):227-240.
doi: 10.1016/j.still.2009.12.006
[42] YANG N, LU Y L, YANG X H, HUANG J, ZHOU Y, ALI F, WEN W W, LIU J, LI J S, YAN J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014. 10(9):e1004573.
doi: 10.1371/journal.pgen.1004573
[43] LYU Y, LI T, ZHANG M, SHEN D, ZHANG S, ZHANG E. Correlation and principal component analysis on main agronomic traits of new waxy corn varieties. Agricultural Science & Technology, 2017, 18(9):1732-1737.
[44] 王桂跃, 赵福成, 韩海亮, 包斐, 谭禾平, 俞琦英. 浙江省鲜食玉米新品种产量、品质和抗性分析及其育种目标选择. 浙江大学学报(农业与生命科学版), 2018, 44(3):343-355.
WANG G Y, ZHAO F C, HAN H L, BAO F, TAN H P, YU Q Y. Analysis of yield, quality and resistance of fresh maize cultivars in Zhejiang Province and corresponding breeding objectives. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3):343-355. (in Chinese)
[45] DONG L, QI X T, ZHU J J, LIU C L, ZHANG X, CHENG B J, MAO L, XIE C X. Supersweet and waxy: Meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal, 2019. 17(10):1853-1855.
doi: 10.1111/pbi.v17.10
[46] GAO H, GADLAGE M J, LAFITTE H R, LENDERTS B, YANG M, SCHRODER M, FARRELL J, SNOPEK K, PETERSON D, FEIGENBUTZ L, JONES S, ST C G, RAHE M, SANYOUR D N, PENG C, WANG L, YOUNG J K, BEATTY M, DAHLKE B, HAZEBROEK J, GREENE T W, CIGAN A M, CHILCOAT N D, MEELEY R B. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nature Biotechnology, 2020, 38(5):579-581.
doi: 10.1038/s41587-020-0444-0
[47] 张新, 鲁晓民, 曹丽茹, 张前进, 魏昕, 郭金生, 王振华. 14份引进美国玉米自交系的配合力分析及应用评价. 中国农学通报, 2020, 36(8):27-31.
ZHANG X, LU X M, CAO L R, ZHANG Q J, WEI X, GUO J S, WANG Z H. 14 introduced american maize inbred lines: Combining ability and application evaluation. Chinese Agricultural Science Bulletin, 2020, 36(8):27-31. (in Chinese)
[48] FENG X J, PAN L T, WANG Q J, LIAO Z Q, WANG X Q, ZHANG X M, GUO W, HU E L, LI J W, XU J, WU F K, LU Y L. Nutritional and physicochemical characteristics of purple sweet corn juice before and after boiling. PLoS ONE, 2020, 15(5):e0233094.
doi: 10.1371/journal.pone.0233094
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!