Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 522-532.doi: 10.3864/j.issn.0578-1752.2021.03.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane

LI Hao1(),WEI BenHui2(),HUANG JinLing1,LI ZhiGang1,WANG LingQiang1,LIANG XiaoYing1,LI SuLi1()   

  1. 1College of Agriculture, Guangxi University, Nanning 530004
    2Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2020-04-27 Accepted:2020-09-03 Online:2021-02-01 Published:2021-02-01
  • Contact: SuLi LI E-mail:dlihao@126.com;weibenhui@126.com;lisuli88@163.com

Abstract:

【Objective】By exploring the root cellular physiological mechanism on sugarcane yield and sugar content under the new farming method of Fenlong, this paper provided a theoretical basis for the promotion of Fenlong cultivation technology.【Method】Guitang 42 was used as the tested sugarcane variety, the conventional rotary tillage (CK, the depth of ploughing was 25 cm) and Fenlong cultivation (the depth of ploughing was 40 cm) were carried out to investigate the soil available nutrient, agronomic characters, yield and sugar content, root vitality, cellular ultrastructure and the enzyme of respiratory metabolic of sugarcane root.【Result】(1) The alkaline N and available P of new plant of Fenlong cultivation were 8.7% and 17.9% significantly higher than those under CK, respectively, and the alkaline N and available P of ratoon cane were 10.4% and 25.6% significantly higher than those under CK, respectively. (2) The emergence rate and tillering rate of Fenlong were increased by 25.0% and 17.4%, respectively, and regenerated sugarcane increased by 30.6% and 11.7%, respectively. Compared with conventional cultivation, the plant height, stem diameter, single stem weight, effective stem and yield of new planting sugarcane under Fenlonng cultivation increased by 13.2%, 17.6%, 29.0%, 5.3% and 12.9%, respectively, and regenerated sugarcane with Fenlonng cultivation increased by 7.6%, 22.2%, 70.3%, 18.7% and 12.9%, respectively. (3) The length, diameter, volume, root tip number, surface area, fresh weight and dry weight of root under Fenlong cultivation were 20.9%-42.3%, 12.3%-71.0%, 33.3%-71.0%, 6.4%-61.6%, 21.8%-64.1%, 26.8%-64.4% and 32.6%-95.3% significantly greater under CK, respectively. (4) Under Fenlong cultivation conditions, root hair area and cells were longer, the root hair arrangement was looser and more orderly, the root tip cell wall was thickened, the cytoplasm, rough endoplasmic reticulum and Golgi body were more abundant, the number of mitochondria was more and the crest was clear, and the nuclear structure was more compact than those under CK. The root hair length, root hair density, total root hair length per unit area and the number of mitochondria in cells were 53.3%, 73.0%, 111.1% and 37.5% higher than those under CK, respectively. The Fenlong tillage ratoon sugarcane above indicators also increased by 38.9%, 95.9%, 82.6% and 53.8%, respectively, and the same index was significantly different among different cultivation methods. (5) The root activity of sugarcane with Fenlong cultivation in seedling stage, elongation stage and maturity stage with Fenlong cultivation were 1.29 times, 1.39 times and 1.25 times significantly higher than CK, respectively. (6) The activity of malate dehydrogenase, cytochrome oxidase and polyphenol oxidase of sugarcane with Fenlong cultivation increased significantly at seedling stage and elongation stage. In the seedling stage, the activities of MDH? PPO and CytcA510 in newly planted sugarcane were 22.9%, 28.1% and 38.9% significantly higher than those under CK, and the indexes of ratoon cane were 23.0%, 20.3% and 27.7% significantly higher than those under CK, respectively. At the elongation stage, the activities of malate dehydrogenase, cytochrome oxidase and polyphenol oxidase of sugarcane with Fenlong cultivation were 21.2%, 41.8% and 33.7% significantly higher than those under CK, respectively; THE indexes of regenerated sugarcane were 27.4%, 26.8% and 53.3% higher than those of under CK, respectively; THE activities of MDH and PPO were significantly higher than those under CK.【Conclusion】 Fenlong cultivation of sugarcane could improve the soil available nutrient, improve the morphology and tissue cell structure of sugarcane roots, improve the activity of enzymes related to respiratory metabolism, thereby promoting the absorption of water and fertilizer by roots, facilitating growth and development on the ground, and increasing sugarcane yield and sugar content.

Key words: Fenlong, sugarcane, root, cell structure, physiology

Fig. 1

Growth and development of Fenlong sugarcane a: Fenlong operation; b: Seedling stage of sugarcane, CK: Sugarcane grows under tractor tillage, Fenlong: Sugarcane grows under Fenlong tillage; c: Elongation stage of sugarcane; d: Mature stage of sugarcane"

Table 1

Soil available nutrient of Fenlong"

种植方式
Planting method
处理
Treatment
碱解氮
Available N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
新植蔗
New planting sugarcane
CK 291.67±5.83b 11.11±0.26b 714.03±14.28a
粉垄 Fenlong 317.00±61.36a 13.10±1.10a 715.80±28.21a
宿根蔗
Stubble cane
CK 352.00±4.90b 10.84±0.24b 588.51±11.77a
粉垄 Fenlong 388.67±12.21a 13.61±0.90a 568.65±82.31a

Table 2

Agronomic trait and process maturity indexes"

种植方式
Planting method
处理
Treatment
出苗率
Seedling rate
(%)
分蘖率
Tillering rate
(%)
株高
Plant height
(cm)
茎径
Stem diameter
(cm)
单茎重
Single stem weight (kg/plant)
有效茎
Effective stems (plant/hm2)
产量
Yield
(kg·hm-2)
甘蔗糖分
Sugar content
(%)
新植蔗
New planting
sugarcane
CK 32.0±1.03b 51.20±1.25b 295.0±2.57b 2.56±0.03b 1.83±0.06a 61477±91b 109814±2252b 13.86±0.33b
粉垄Fenlong 40.0±0.89a 60.10±2.01a 334.0±2.31a 3.01±0.08a 2.36±0.08b 64719±102a 130555±3539a 15.50±0.45a
宿根蔗
Stubble cane
CK 17.3±2.20b 56.40±9.50a 251.9±2.80b 2.39±0.90b 1.28±0.06b 41520±75b 82589±1360b 15.20±0.60a
粉垄Fenlong 22.6±2.30a 63.00±7.90a 271.2±5.60a 2.92±0.50a 2.18±0.04a 49274±98a 93257±1718a 15.80±0.10a

Fig. 2

Root morphology of Fenlong sugarcane a: Root of Ck ; b: Root of Fenlong"

Table 3

Root morphology of Fenlong sugarcane"

种植方式
Planting method
生长期
Growth period
处理
Treatment
根长
Root length
(cm)
根表面积
Root surface area
(cm2)
根直径
Root diameter
(mm)
根体积
Root volume
(cm3/plant)
根尖数
Total root
(No./plant)
根鲜重
Root fresh weight
(g/plant)
根干重
Root dry matter
(g/plant)
新植蔗
New planting
sugarcane
苗期
Seeding stage
CK 13.64±1.21b 139.87±12.21b 0.70±0.021b 12.17±0.41b 3730.78±52.21b 10.94±0.22b 2.38±0.26b
粉垄Fenlong 18.20±1.41a 170.29±9.21a 0.93±0.041a 16.22±0.33a 6030.23±32.01a 16.69±0.71a 3.80±0.31a
伸长期
Elongation stage
CK 22.73±2.21b 263.90±2.21b 1.33±0.02b 22.95±0.53b 7039.20±56.02b 20.65±0.12b 4.49±0.02b
粉垄Fenlong 32.34±1.31a 321.30±12.11a 1.75±0.03a 30.60±1.21a 11377.80±39.02a 33.94±0.32a 6.28±0.03a
成熟期
Mature stage
CK 30.73±2.21b 377.02±25.00b 1.90±0.02b 32.79±3.50b 10056.00±102.00b 29.50±1.50b 6.42±0.31b
粉垄Fenlong 40.34±1.23a 459.13±21.00a 2.50±0.03a 43.72±2.41a 16254.00±145.00a 44.21±1.10a 12.54±0.41a
宿根蔗
Stubble
cane
苗期
Seeding stage
CK 20.64±1.21b 517.43±84.00a 0.65±0.10a 27.99±5.46b 1085.24±5.46b 13.94±0.32b 3.38±0.36b
粉垄Fenlong 28.20±1.41a 685.73±63.00a 0.73±0.05a 41.48±5.45a 1285.87±5.45a 18.69±0.81a 4.80±0.39a
伸长期
Elongation stage
CK 36.73±2.21b 738.17±105.78b 0.93±0.11b 38.47±5.47b 1527.08±37.57b 25.65±0.32b 5.49±0.22b
粉垄Fenlong 48.34±1.31a 1211.47±169.42a 1.59±0.18a 65.79±9.02a 2182.17±30.92a 38.94±0.52a 7.28±0.23a
成熟期
Mature stage
CK 50.73±2.21b 1454.72±206.73b 1.63±0.21b 58.16±14.05b 2555.17±68.77b 32.50±0.50b 8.42±0.41b
粉垄Fenlong 61.34±1.23a 1788.26±129.18a 1.91±0.17a 80.35±7.09a 2719.78±66.23a 41.21±0.56a 12.54±0.61a

Fig. 3

The ultrastructure of Fenlong sugarcane root hair cell a: The root hair histomorphology of CK sugarcane; b: The root hair histomorphology of Fenlong sugarcane; c: The root hair of CK sugarcane; d: The root hair of Fenlong sugarcane; e: Ultrastructure of root hair cell in CK sugarcane; f: Ultrastructure of root hair cell in Fenlong sugarcane; g: Mitochondria ultrastructure of CK sugarcane; h: Mitochondria ultrastructure of Fenlong sugarcane. The arrow shows the root hair. N: Nuclei, M: Mitochondria, W: Cell wall; ER: Rough endoplasmic reticulum; V: Vacuole, Golgi apparatus"

Table 4

The ultrastructure of root hair cells in Fenlong sugarcane"

种植方式
Planting method
处理
Treatment
根毛平均长度
Average lenghth of root hair (mm)
根毛密度
Root hair density (ind/mm2)
单位面积根毛总长度
Total length of root per area (mm)
线粒体数目
Mitochondria number (No./cell)
新植蔗
New planting sugarcane
CK 0.15±0.01b 110.36±2.23b 18±0.15b 16±0.52b
粉垄Fenlong 0.23±0.02a 190.94±0.94a 38±0.12a 22±0.32a
宿根蔗
Stubble cane
CK 0.18±0.02b 92.36±2.23a 23±0.15b 13±0.42b
粉垄Fenlong 0.25±0.01a 180.94±0.94a 42±0.12a 20±0.42a

Fig. 4

Root vitality of Fenlong sugarcane Different letters indicated significant difference (P<0.05). The same as below"

Fig. 5

The activities of MDH, CytcA510, and PPO in Fenlong sugarcane roots"

[1] 韦本辉. 旱地作物粉垄栽培技术研究简报. 中国农业科学, 2010,43(20):4330.
WEI B H. Research on smash-ridging cultivation techniques of dryland crops. Scientia Agricultura Sinica, 2010,43(20):4330. (in Chinese)
[2] 韦本辉. 粉垄活化资源构建绿色农业“3+1”产业体系的探讨. 农业科学与技术(英文版), 2017,18(2):380-384.
WEI B H. Discussion on the construction of green agriculture “3+1” industry system using Fenlong activated resources. Agricultural Science & Technology, 2017,18(2):380-384. (in Chinese)
[3] 韦本辉. 粉垄增产提质保水及倍用“天地资源”绿色发展的可能性. 农业科学与技术(英文版), 2017,18(9):1631-1637.
WEI B H. Discussion on green development of fenlong for yield increase, quality enhancing, water retaining and multiple use of natural resources. Agricultural Science & Technology, 2017,18(9):1631-1637. (in Chinese)
[4] 韦本辉. 中国发明第四套农耕方法“粉垄”. 农业科学与技术(英文版), 2017,18(11):2045-2048, 2052.
WEI B H. Fenlong cultivation-the fourth set of farming methods invented in China. Agricultural Science & Technology, 2017,18(11):2045-2048, 2052. (in Chinese)
[5] 韦本辉, 刘斌, 甘秀芹, 申章佑, 胡泊, 李艳英, 吴延勇, 陆柳英. 粉垄栽培对水稻产量和品质的影响. 中国农业科学, 2012,45(19):3946-3954.
WEI B H, LIU B, GAN X Q, SHEN Z Y, HU B, LI Y Y, WU Y Y, LU L Y. Effect of Fenlong cultivation on yield and quality of rice. Scientia Agricultura Sinica, 2012,45(19):3946-3954. (in Chinese)
[6] 韦本辉. 重构耕层可持续增产的“水稻粉垄生态高效栽培法”. 农业科学与技术(英文版), 2014,15(9):1526-1529.
WEI B H. Reconstruction of highly-efficient smash-ridging ecological cultivation method for sustainable yield-increasing of soil plough layers. Agricultural Science & Technology, 2014,15(9):1526-1529. (in Chinese)
[7] 韦本辉, 申章佑, 周佳, 周灵芝, 李艳英, 劳承英, 甘秀芹, 胡泊, 韦元波. 论粉垄“大科学”在人与自然共生中的作用与潜能. 农业科学与技术(英文版), 2017,18(12):2303-2308, 2311.
WEI B H, SHEN Z Y, ZHOU J, ZHOU L Z, LI Y Y, LAO C Y, GAN X Q, HU P, WEI Y B. Discussion on action and potential of Fenlong megascience in the symbiosis between human and nature. Agricultural Science & Technology, 2017,18(12):2303-2308, 2311. (in Chinese)
[8] 聂胜委, 张玉亭, 张巧萍, 郭庆, 汤丰收, 王洪庆, 何宁. 粉垄耕作对小麦玉米产量及耕层土壤养分的影响. 土壤通报, 2017,48(4):930-936.
NIE S W, ZHANG Y T, ZHANG Q P, GUO Q, TANG F S, WANG H Q, HE N. Effect of smashing ridge tillage on grain yields of winter wheat and summer maize and contents of soil nutrients. Chinese Journal of Soil Science, 2017,48(4):930-936. (in Chinese)
[9] 李轶冰, 逄焕成, 李华, 李玉义, 杨雪, 董国豪, 郭良海, 王湘峻. 粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响. 中国农业科学, 2013,46(14):3055-3064.
LI Y B, PANG H C, LI H, LI Y Y, YANG X, DONG G H, GUO L H, WANG X J. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in north Huang-Huai-Hai region. Scientia Agricultura Sinica, 2013,46(14):3055-3064. (in Chinese)
[10] 王世佳, 蒋代华, 朱文国, 张蓉蓉, 李军伟, 韦本辉. 粉垄耕作对农田赤红壤团聚体结构的影响. 土壤学报, 2020,57(2):326-335.
WANG S J, JIANG D H, ZHU W G, ZHANG R R, LI J W, WEI B H. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil. Acta Pedologica Sinica, 2020,57(2):326-335. (in Chinese)
[11] 韦增林, 张亮曼, 卢国培, 曹小琼, 韦思庚, 黎忠海, 王小明. 粉垄栽培对甘蔗产量及糖分影响初报. 甘蔗糖业, 2018(6):37-40.
WEI Z L, ZHANG L M, LU G P, CAO X Q, WEI S G, LI Z H, WANG X M. The effect of powder ridge cultivation on sugarcane yield and sugar. Sugarcane and Canesugar, 2018(6):37-40. (in Chinese)
[12] 韦本辉, 甘秀芹, 陈保善, 申章佑, 俞建, 宁秀呈, 陆柳英, 韦广泼, 胡泊, 莫润秀, 李艳英, 吴延勇. 粉垄整地与传统整地方式种植玉米和花生效果比较. 安徽农业科学, 2011,39(6):3216-3219.
WEI B H, GAN X Q, CHEN B S, SHEN Z Y, YU J, NING X C, LU L Y, WEI G P, HU P, MO R X, LI Y Y, WU Y Y. Comparison of the cultivation of maize and peanuts by smash-riding and traditional land preparation methods. Journal of Anhui Agricultural Sciences, 2011,39(6):3216-3219. (in Chinese)
[13] 王奇, 陈培赛, 周佳, 周灵芝, 劳承英, 尹昌喜, 韦本辉. 粉垄耕作对甘蔗农艺性状及产量的影响. 江苏农业科学, 2019,47(4):65-68.
WANG Q, CHEN P S, ZHOU J, ZHOU L Z, LAO C Y, YIN C X, WEI B H. Effects of smash-ridging cultivation on agronomic characters and yield of sugarcane. Jiangsu Agricultural Sciences, 2019,47(4):65-68. (in Chinese)
[14] 韦本辉, 甘秀芹, 申章佑, 宁秀呈, 陆柳英, 韦广泼, 李艳英, 胡泊, 刘斌, 吴延勇. 粉垄栽培甘蔗试验增产效果. 中国农业科学, 2011,44(21):4544-4550.
WEI B H, GAN X Q, SHEN Z Y, NING X C, LU L Y, WEI G P, LI Y Y, HU P, LIU B, WU Y Y. Yield increase of smash-ridging cultivation of sugarcane. Scientia Agricultura Sinica, 2011,44(21):4544-4550. (in Chinese)
[15] BAQUERO J E, Ralisch R, Medina C D C, FILHO J T, GUIMARÃES M D F. Soil physical properties and sugarcane root growth in a red oxiso. Revista Brasileira de Ciência do Solo, 2012,36(1):63-70.
[16] ARRUDA E M, ALMEIDA R F D, DOMINGUES L A D S, JUNIOR A C D S, MORAES E R D, BARROS L R, SOUSA J L D O, LANA R M Q . Soil porosity and density in sugarcane cultivation under different tillage systems. African Journal of Agricultural Research, 2016,11(30):2689-2696.
[17] OTTO R, SILVA A P, FRANCO H C J, OLIVEIRA E C A, TRIVELIN P C O. High soil penetration resistance reduces sugarcane root system development. Soil & Tillage Research, 2011,117:201-210.
[18] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
BAO S D. . Soil Agrochemical Analysis. 3rd edition. Beijing: China Agriculture Press, 2000. (in Chinese)
[19] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
GAO J F. Plant Physiology Experiment Guide. Beijing: Higher Education Press, 2006.(in Chinese)
[20] 叶尚红. 植物生理生化实验教程. 第2版. 昆明: 云南科技出版社, 2007: 212.
YE S H. Plant Physiology and Biochemistry Experiment Course. 2th edition. Kunming: Yunnan Science and Technology Press, 2007: 212(in Chinese)
[21] 褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014,40(5):850-858.
CHU G, LIU J, ZHANG H, YANG J C. Morphology and physiology of roots and their relationships with yield formation in super rice. Acta Agronomica Sinica, 2014,40(5):850-858. (in Chinese)
[22] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011,44(1):36-46.
YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011,44(1):36-46. (in Chinese)
[23] YAO Y Z. Effects of ridge tillage on photosynthesis and root characters of rice. Chilean Journal of Agricultural Research, 2015,75(1):35-41.
[24] HAWES M C, GUNAWARDENA U, MIYASAKA S, ZHAO X W. The role of root border cells in plant defense. Trends in Plant Science, 2000,5(3):128-133.
doi: 10.1016/s1360-1385(00)01556-9 pmid: 10707079
[25] ZHAI L C, XU P, ZHANG Z B, WEI B H, JIA X L, ZHANG L H. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate. Agronomy Journal, 2019,111(2):666-676.
[26] HERMAN E M, LARKINS B A. Protein storage bodies and vacuoles. The Plant Cell, 1999,11(4):601-613.
doi: 10.1105/tpc.11.4.601 pmid: 10213781
[27] 李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展. 植物生理学报, 2011,47(10):957-966.
LI Z X, QIN S J, LÜ D G, NIE J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors. Plant Physiology Journal, 2011,47(10):957-966. (in Chinese)
[28] SHUKLA S K, YADAV R L, GUPTA R, SINGH A K, AWASTHI S K, GAUR A. Deep tillage, soil moisture regime, and optimizing N nutrition for sustaining soil health and sugarcane yield in subtropical india. Communications in Soil Science and Plant Analysis, 2018,49(4):444-462.
[29] WASAYA A, TAHIR M, MANAF A, AHMED M, KALEEM S, AHMAD I. Improving maize productivity through tillage and nitrogen management. African Journal of Biotechnology, 2011,10(82):19025-19034.
[30] 郑俊鶱, 孙艳, 韩寿坤, 张浩. 土壤紧实胁迫对黄瓜根系呼吸代谢的影响. 应用生态学报, 2013,24(3):741-746.
ZHENG J X, SUN Y, HAN S K, ZHANG H. Effects of soil compaction stress on respiratory metabolism of cucumber root. Chinese Journal of Applied Ecology, 2013,24(3):741-746. (in Chinese)
[31] SURENDRAN U, RAMESH V, JAYAKUMAR M, MARIMUTHU S, SRIDEVI G. Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India. Soil & Tillage Research. 2016,158:10-21.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[3] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[4] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[5] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[6] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[7] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[8] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[9] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[10] LIU ShuSen,SUN Hua,SHI Jie,GUO Ning,MA HongXia,ZHANG HaiJian. Grading Criterion of Maize Root Rot Based on Aboveground Symptoms and the Relationship Between Severity and Agronomic Traits [J]. Scientia Agricultura Sinica, 2022, 55(20): 3939-3947.
[11] ZHOU LiPing,YUAN Liang,ZHAO BingQiang,LI YanTing. Effects of Single-Sided Application of Humic Acid on Maize Root Growth [J]. Scientia Agricultura Sinica, 2022, 55(2): 339-349.
[12] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[13] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[14] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[15] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!