Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 339-349.doi: 10.3864/j.issn.0578-1752.2022.02.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Single-Sided Application of Humic Acid on Maize Root Growth

ZHOU LiPing1(),YUAN Liang2,ZHAO BingQiang2(),LI YanTing2   

  1. 1Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin 300384
    2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2020-12-28 Accepted:2021-04-07 Online:2022-01-16 Published:2022-01-26
  • Contact: BingQiang ZHAO E-mail:zhoulipingcaas@126.com;zhaobingqiang@caas.cn

Abstract:

【Objective】 Humic acid has complex structure and diverse functions. Studying the direct and indirect effects of humic acid on the growth of maize roots and revealing the regulation mechanism of humic acid on maize roots can provide the theoretical support for further research on the development and application of humic acid fertilizer synergists. 【Method】 A hydroponic experiment was carried out using Hoagland nutrition solution as the basic cultural liquid and maize cultivar of ‘Zheng Dan 958’ as material with a split-root design. The method of field plot split zone experiment was adopted and eight test treatments was set which was CK-control side (CK-C), CK-control side (CK-C) ), HA-non-applied side (HA-C), HA-applied side (HA-T), OHA3-non-applied side (OHA3-C), OHA3-applied side (OHA3-T), OHA6-non-applied side ( OHA6-C) and OHA6-applied side (OHA6-T) to study its effects on biomass, root vitality, root morphology and main chemical components of maize different organs. 【Result】 (1) Single-sided application of humic acid to separate roots significantly increased the fresh root weight of maize on the applied and unapplied sides. Compared with the control, the fresh root weight of maize with the applied side was increased by 21.9%-78.6%, which with the unapplied side was increased by 27.9%-49.3%. (2) The addition of humic acid significantly increased the maize root activity and the total TTC reduction of maize on the applied side and the non-applied side. Compared with the control, the maize root activity and total root TTC reduction of the OHA6-applied side increased the most, which increased by 76.9% and 216.9%, respectively. Compared with the control, HA-applied side and OHA3-applied side treatments increased the maize root activity by 59.8% and 35.1%, respectively. Compared with the control, OHA6-non-applied side, HA-non-applied side and OHA3-non-applied side treatments increased the maize root activity by 62.2%, 53.6% and 25.5%, respectively. (3) Adding humic acid treatment significantly increased the root volume, root surface area, average root diameter, root length and root number on the non-applied and applied sides of maize. (4) Single root application of humic acid could effectively increase the content of maize root ester compounds, protein, amino acids, nucleic acid cellulose and polysaccharides. The application side of humic acid treatment was more conducive to maize root carbohydrates than the non-application side. However, the untreated side under humic acid treatment was more conducive to the accumulation of maize root nucleic acid. The carbohydrate content of the aboveground parts of maize treated with humic acid was significantly higher than that under the blank treatment. 【Conclusion】 Regardless of whether it was HA or OHA3 and OHA6, when humic acid was applied to separate roots on one side, the growth and activity of maize roots on the side where humic acid was applied were significantly higher than those on the side without humic acid, indicating that humic acid had a direct effect on root regulation. The root growth of the whole plant treated with humic acid on one side was better than that under the control treatment without humic acid on both sides, indicating that humic acid also had an indirect effect in regulating root growth. The root growth of the whole plant treated with humic acid on one side was better than that under the control treatment without humic acid on both sides, indicating that humic acid also had an indirect effect in regulating root growth.

Key words: humic acid, maize, split root test, FTIR technology, weathered coal

Fig. 1

Drawing device of root-splitting experiment"

Fig. 2

FTIR spectra of maize roots with local stimulation of humic acids"

Fig. 3

FTIR spectra of maize shoots with local stimulation of humic acids"

Table 1

Effect of local stimulation of humic acids on maize weight"

处理 Treatment 根鲜重 Root fresh weight (g) 根干重 Root dry weight (g) 地上部干重 Shoot dry weight (g)
CK CK-左对照侧 CK-C1 6.0±0.5 d 1.3±0.0 d 1.8±0.1 d
CK-右对照侧 CK-C2 6.2±0.4 d 1.2±0.1 d
HA HA-未施侧 HA-C 9.0±0.7 b 1.5±0.2 c 2.3±0.1 b
HA-施用侧 HA-T 9.4±0.7 b 2.0±0.2 b
OHA3 OHA3-未施侧 OHA3-C 7.7±0.5 c 1.5±0.2 c 2.1±0.2 c
OHA3-施用侧 OHA3-T 7.5±0.5 c 1.6±0.2 c
OHA6 OHA6-未施侧 OHA6-C 7.1±0.7 c 1.8±0.2 b 2.5±0.2 a
OHA6-施用侧 OHA6-T 11.0±1.0 a 2.3±0.2 a

Table 2

Effect of local stimulation of humic acids on maize root activity"

处理
Treatment
TTC还原强度
Root activity
(mg·g-1·h-1)
TTC还原总量
Root TTC reducing
amount (mg·h-1)
CK-左对照侧 CK-C1 1.8±0.1 e 10.8±1.3 e
CK-右对照侧 CK-C2 1.8±0.1 e 10.9±0.6 e
HA-未施侧 HA-C 2.8±0.2 b 24.7±1.8 b
HA-施用侧 HA-T 2.8±0.2 b 26.7±2.1 b
OHA3-未施侧 OHA3-C 2.2±0.2 d 17.3±2.1 d
OHA3-施用侧 OHA3-T 2.4±0.2 c 18.9±1.8 cd
OHA6-未施侧 OHA6-C 2.9±0.2 b 20.5±1.5 c
OHA6-施用侧 OHA6-T 3.1±0.2 a 34.6±4.0 a

Table 3

Effect of local stimulation of humic acids on maize root volume, root surface area and average root diameter"

处理 Treatment 根体积 Root volume (cm3) 根表面积 Root surface area (cm2) 根平均直径 Average root diameter (mm)
CK-左对照侧 CK-C1 1.4±0.1 d 37.4±4.0 d 0.39±0.04 c
CK-右对照侧 CK-C2 1.3±0.1 d 38.5±3.9 cd 0.41±0.03 bc
HA-未施侧 HA-C 2.1±0.4 b 41.1±2.9 cd 0.45±0.04 b
HA-施用侧 HA-T 2.2±0.1 ab 52.5±3.7 b 0.44±0.04 b
OHA3-未施侧 OHA3-C 1.5±0.1 cd 39.8±3.3 cd 0.4±0.02 c
OHA3-施用侧 OHA3-T 1.7±0.2 c 42.3±2.6 c 0.44±0.02 b
OHA6-未施侧 OHA6-C 2.0±0.2 b 48.8±5.0 b 0.43±0.03 bc
OHA6-施用侧 OHA6-T 2.4±0.2 a 58.4±5.1 a 0.54±0.04 a

Table 4

Effect of local stimulation of humic acids on maize root length"

处理 Treatment 总根长 Total root length (cm) 主根长 Main root length (cm) 侧根长 Lateral root length (cm)
CK-对照侧 CK-C1 627.7±62.1 e 153.9±15.9 e 473.8±59.1 e
CK-对照侧 CK-C2 636.5±42.8 e 156.9±6.4 e 479.7±48.6 e
HA-未施侧 HA-C 905.4±83.2 c 203.8±15.5 bc 701.6±86.8 cd
HA-施用侧 HA-T 1068.9±65.0 b 212.1±23.9 ab 856.8±83.0 b
OHA3-未施侧 OHA3-C 805.4±69.2 d 164.6±10.9 e 640.8±69.4 d
OHA3-施用侧 OHA3-T 917.7±131.2 c 172.6±24.3 de 745.1±121.2 c
OHA6-未施侧 OHA6-C 958.2±90.9 c 187.6±10.9 cd 770.6±92.2 bc
OHA6-施用侧 OHA6-T 1213.9±93.2 a 227.4±17.3 a 986.5±104.3 a

Table 5

Effect of local stimulation of humic acids on number of maize root"

处理 Treatment 总根数 Total number of root 主根数 Number of main root 侧根数 Number of lateral root
CK-对照侧 CK-C1 296.0±13.5 e 4.0±0.6 b 95.5±13.7 e
CK-对照侧 CK-C2 302.0±23.8 e 3.8±0.4 b 912.5±23.7 e
HA-未施侧 HA-C 408.2±33.8 cd 4.0±1.4 b 801.8±33.8 cd
HA-施用侧 HA-T 478.3±41.1 ab 5.2±1.8 a 1162.5±40.4 ab
OHA3-未施侧 OHA3-C 372.5±29.6 d 3.2±0.4 b 805.5±29.8 d
OHA3-施用侧 OHA3-T 424.2±42.1 c 3.7±0.5 b 827.3±42.6 c
OHA6-未施侧 OHA6-C 443.0±42.0 bc 4.2±0.4 ab 926.5±42.1 bc
OHA6-施用侧 OHA6-T 518.3±42.8 a 5.2±0.4 a 1295.5±42.8 a

Table 6

The transmittance peaks of the maize roots with local stimulation of humic acids"

处理
Treatment
透射率 Transmittance (%)
3420 cm-1 2920 cm-1 1735 cm-1 1655 cm-1 1518 cm-1 1380 cm-1 1250 cm-1 1050 cm-1
CK-左对照侧CK-C1 9.0 96.4 92.1 48.7 96.2 80.7 95.3 76.6
CK-右对照侧CK-C2 33.4 91.3 88.8 67.9 94.6 76.8 91.1 66.4
HA-未施侧 HA-C 31.4 81.3 77.6 61.6 85.4 60.5 74.7 44.0
HA-施用侧 HA-T 10.2 89.9 85.4 44.5 93.0 63.8 89.6 55.6
OHA3-未施侧 OHA3-C 26.1 83.6 79.7 57.3 89.7 55.5 79.8 43.6
OHA3-施用侧 OHA3-T 11.9 91.2 85.1 45.8 92.2 69.9 89.2 58.9
OHA6-未施侧 OHA6-C 11.0 82.9 76.2 42.4 89.2 49.8 78.5 38.2
OHA6-施用侧 OHA6-T 8.2 90.5 85.4 39.9 91.6 60.7 90.8 59.1

Table 7

The transmittance peaks of the maize shoots with local stimulation of humic acids"

处理
Treatment
透射率 Transmittance (%)
3420 cm-1 2920 cm-1 1735 cm-1 1655 cm-1 1518 cm-1 1380 cm-1 1250 cm-1 1050 cm-1
CK-左对照侧CK-C1 38.8 82.0 83.2 60.1 84.1 67.4 87.8 64.6
CK-右对照侧CK-C2 41.3 84.9 85.8 65.4 86.1 66.2 89.1 68.6
HA-未施侧 HA-C 25.3 83.4 84.2 52.2 87.9 73.1 92.5 65.3
HA-施用侧 HA-T 19.3 87.6 88.1 51.3 90.3 64.0 94.0 70.8
OHA3-未施侧 OHA3-C 28.5 88.5 88.8 59.5 91.9 66.8 94.4 72.8
OHA3-施用侧 OHA3-T 28.0 84.8 85.7 55.4 89.4 68.5 93.3 67.7
OHA6-未施侧 OHA6-C 22.1 82.9 84.8 50.8 87.1 72.0 91.5 64.3
OHA6-施用侧 OHA6-T 29.4 72.3 74.9 44.0 76.0 58.6 81.7 50.7
[1] 赵秉强, 林治安, 刘增兵. 中国肥料产业未来发展道路: 提高肥料利用率减少肥料用量. 磷肥与复肥, 2008, 23(6):1-4. doi: 10.3969/j. issn.1007-6220.2008.06.001.
ZHAO B Q, LIN Z A, LIU Z B. The future developing route for China's fertilizer industry—increasing the use efficiency and decreasing the consumption of fertilizer. Phosphate & Compound Fertilizer, 2008, 23(6):1-4. doi: 10.3969/j.issn.1007-6220.2008.06.001. (in Chinese)
[2] 赵秉强, 张福锁, 廖宗文, 许秀成, 徐秋明, 张夫道, 姜瑞波. 我国新型肥料发展战略研究. 植物营养与肥料学报, 2004, 10(5):536-545. doi: 10.3321/j.issn: 1008-505X.2004.05.017.
ZHAO B Q, ZHANG F S, LIAO Z W, XU X C, XU Q M, ZHANG F D, JIANG R B. Research on development strategies of fertilizer in China. Plant Nutrition and Fertilizer Science, 2004, 10(5):536-545. doi: 10.3321/j.issn: 1008-505X.2004.05.017. (in Chinese)
[3] 赵秉强. 发展尿素增值技术促进尿素产品技术升级. 磷肥与复肥, 2013, 28(2):6-7. doi: 10.3969/j.issn.1007-6220.2013.02.002.
ZHAO B Q. Developing value-added urea technology to promote technology upgrade of urea. Phosphate & Compound Fertilizer, 2013, 28(2):6-7. doi: 10.3969/j.issn.1007-6220.2013.02.002. (in Chinese)
[4] ROSE M T, PATTI A F, LITTLE K R, BROWN A L, JACKSON W R, CAVAGNARO T R. A meta-analysis and review of plant-growth response to humic substances. Advances in Agronomy. Amsterdam: Elsevier, 2014: 37-89. doi: 10.1016/b978-0-12-800138-7.00002-4.
[5] MUSCOLO A, SIDARI M, NARDI S. Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 2013, 129:57-63. doi: 10.1016/j.gexplo.2012.10.012.
doi: 10.1016/j.gexplo.2012.10.012
[6] GALAMBOS N, COMPANT S, MORETTO M, SICHER C, PUOPOLO G, WÄCKERS F, SESSITSCH A, PERTOT I, PERAZZOLLI M. Humic acid enhances the growth of tomato promoted by endophytic bacterial strains through the activation of hormone-, growth-, and transcription-related processes. Frontiers in Plant Science, 2020, 11:582267. doi: 10.3389/fpls.2020.582267.
doi: 10.3389/fpls.2020.582267
[7] CANELLAS L P, OLIVARES F L. Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant and Soil, 2017, 417(1):403-413. doi: 10.1007/s11104-017-3267-0.
doi: 10.1007/s11104-017-3267-0
[8] CHEN X G, KOU M, TANG Z H, ZHANG A J, LI H M, WEI M. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer. PLoS One, 2017, 12(12): e0189715. doi: 10.1371/journal.pone.0189715.
[9] GARCIA-MINA J M. Stability, solubility and maximum metal binding capacity in metal-humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 2006, 37(12):1960-1972. doi: 10.1016/j.orggeochem.2006.07.027.
doi: 10.1016/j.orggeochem.2006.07.027
[10] ZHOU L P, YUAN L, ZHAO B Q, LI Y T, LIN Z A. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PLoS One, 2019, 14(5):e0217469. doi: 10.1371/journal.pone.0217469.
[11] 赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.
ZHAO S J. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[12] 申建波, 毛达如. 植物营养研究方法. 3版. 北京: 中国农业大学出版社, 2011.
SHEN J B, MAO D R. Research methods of plant nutrition. Beijing: China Agricultural University Press, 2011. (in Chinese)
[13] DZIUBA B, BABUCHOWSKI A, NAŁĘCZ D, NIKLEWICZ M. Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. International Dairy Journal, 2007, 17(3):183-189. doi: 10.1016/j.idairyj.2006.02.013.
doi: 10.1016/j.idairyj.2006.02.013
[14] JACKSON M. Biomembrane structure from FTIR spectroscopy. Spectrochimica Acta Reviews, 1993, 15:53-69.
[15] GROUP C I A. Spectroscopic methods in organic chemistry. Chemistry in Australia, 2008, 75(5):31.
[16] SALZMANN D, HANDLEY R J, MÜLLER-SCHÄRER H. Functional significance of triazine-herbicide resistance in defence of Senecio vulgaris against a rust fungus. Basic and Applied Ecology, 2008, 9(5):577-587. doi: 10.1016/j.baae.2007.10.001.
doi: 10.1016/j.baae.2007.10.001
[17] 孙素琴, 周群, 陈建波. 中药红外光谱分析与鉴定. 北京: 化学工业出版社, 2010.
SUN S Q, ZHOU Q, CHEN J B. Analysis of traditional Chinese medicine by infrared spectroscopy. Beijing: Chemical Industry Press, 2010. (in Chinese)
[18] NELSON W H. Modern techniques for rapid microbiological analysis//VON NELSON W H. Modern Techniques for Rapid Microbial Analysis. VCH Verlagsgesellschaft, Weinheim: Wiley & Sons, 1991: 75-76.
[19] ZEROUAL W, DE CHOISY C, DOGLIA S M, BOBICHON H, ANGIBOUST J F, MANFAIT M. Monitoring of bacterial growth and structural analysis as probed by FT-IR spectroscopy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1994, 1222(2):171-178. doi: 10.1016/0167-4889(94)90166-X.
doi: 10.1016/0167-4889(94)90166-X
[20] 陆婉珍. 现代近红外光谱分析技术. 北京: 中国石化出版社, 2000.
LU W Z. Modern Near Infrared Spectroscopic Techniques. Beijing: China Petrochemical Press, 2000. (in Chinese)
[21] WONG P T, WONG R K, CAPUTO T A, GODWIN T A, RIGAS B. Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(24):10988-10992. doi: 10.1073/pnas.88.24.10988.
[22] SABIRJANOVNA T A, PASA S, ZHUMASILOVICH D U, TEMEL H, ORYNTAYEVNA N G. Complexation ability of modified Na-Humate and its application in removal of toxic metals from water. Desalination and Water Treatment, 2016, 57(2):776-790. doi: 10.1080/19443994.2014.969318.
doi: 10.1080/19443994.2014.969318
[23] BOGUTA P, D'ORAZIO V, SENESI N, SOKOŁOWSKA Z, SZEWCZUK-KARPISZ K. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. Journal of Environmental Management, 2019, 245:367-374. doi: 10.1016/j.jenvman.2019.05.098.
doi: 10.1016/j.jenvman.2019.05.098
[24] LI Y, FANG F, WEI J L, WU X B, CUI R Z, LI G S, ZHENG F L, TAN D S. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Scientific Reports, 2019, 9:12014. doi: 10.1038/s41598- 019-48620-4.
doi: 10.1038/s41598-019-48620-4
[25] KLUČÁKOVÁ M, PAVLÍKOVÁ M. Lignitic humic acids as environmentally-friendly adsorbent for heavy metals. Journal of Chemistry, 2017, 2017:7169019. doi: 10.1155/2017/7169019.
[26] JEMELJANOVA M, KLAVINS M, OZOLA R. Physical-chemical properties and possible applications of clay minerals and humic acid composite materials. 2019, 17(S1):1023-1032.
[27] ESHWAR M, SRILATHA M, REKHA K B, SHARMA S H K. Characterization of humic substances by functional groups and spectroscopic methods. International Journal of Current Microbiology and Applied Sciences, 2017, 6(10):1768-1774. doi: 10.20546/ijcmas.2017.610.213.
[28] CANELLAS L P, PICCOLO A, DOBBSS L B, SPACCINI R, OLIVARES F L, ZANDONADI D B, FAÇANHA A R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, 2010, 78(4):457-466. doi: 10.1016/j.chemosphere.2009.10.018.
doi: 10.1016/j.chemosphere.2009.10.018
[29] CANELLAS L P, DOBBSS L B, OLIVEIRA A L, CHAGAS J G, AGUIAR N O, RUMJANEK V M, NOVOTNY E H, OLIVARES F L, SPACCINI R, PICCOLO A. Chemical properties of humic matter as related to induction of plant lateral roots. European Journal of Soil Science, 2012, 63(3):315-324. doi: 10.1111/j.1365-2389.2012.01439.x.
doi: 10.1111/ejss.2012.63.issue-3
[30] HERDER G D, VAN ISTERDAEL G, BEECKMAN T, DE SMET I. The roots of a new green revolution. Trends in Plant Science, 2010, 15(11):600-607. doi: 10.1016/j.tplants.2010.08.009.
doi: 10.1016/j.tplants.2010.08.009
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!