Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 1025-1036.doi: 10.3864/j.issn.0578-1752.2022.05.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer

FANG HaoYuan1(),YANG Liang1,WANG HongZhuang1,CAO JinCheng1,REN WanPing2,WEI ShengJuan1(),YAN PeiShi1   

  1. 1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095
    2College of Animal Science, Xinjiang Agricultural University, Urumqi 830052
  • Received:2021-01-12 Accepted:2021-07-28 Online:2022-03-01 Published:2022-03-08
  • Contact: ShengJuan WEI E-mail:haoyuanf@126.com;sjwei@njau.edu.cn

Abstract:

【Objective】 This study was conducted to explore the effects of cross-ventilation system on cowshed thermal environment, physiological and biochemical indexes, and production performance of beef cattle under the high temperature and humidity climate in summer of southern China, to evaluate the technical and economic effects of the environment control system for beef cattle heatstroke prevention. 【Method】 One-factor completely randomized design was introduced in this study. Thirty healthy 8-month-old Simmental bulls with similar body weight ((290.05±7.60)kg) were randomly assigned into two adjacent sheds with the same structure. The experimental group was equipped with the cross-ventilation system, and natural ventilation was used in the control group. The experimental period was from June 30 to July 16, 2019, a total of 17 days, in which the pre-test period was the first 3 days, and the formal period was the last 14 days. The wind speed, dry-bulb temperature and wet-bulb temperature were measured at 5:00, 10:00, 14:00, 18:00 and 22:00 every day in the first 7 days of the formal test period. The temperature-humidity index and sensible temperature were calculated. Meanwhile, the rectal temperature and respiratory rate of beef cattle were measured. During the whole formal period, the feeding amount was recorded every day, and the remaining materials were cleaned and weighed at 6 a.m of the next day to calculate the feed intake. From 7:00 to 8:00 in the morning on the first day and the fourteenth day of the formal test period, all cattle were weighed before feeding to calculate the average daily gain, feed weight ratio and other production performance indicators, and the economic benefit was evaluated. Simultaneously, the blood and fecal samples were collected for determination of inorganic ions, biochemical indexes and hormone levels in serum and cortisol levels in feces. 【Result】 The results showed that: (1) in the experimental group, the cross-ventilation system could significantly increase the wind speed in the shed (P < 0.01), thus significantly reduced the sensible temperature, the rectal temperature at 10:00, 14:00, 18:00, 22:00, and the respiratory rate of beef cattle at 10:00, 14:00, 18:00 (P < 0.01). Compared with the control group, with the increase of ambient temperature, the increase of rectal temperature and respiratory rate in the experimental group decreased by 45% and 42%, respectively. There was no significant difference in dry-bulb temperature, relative humidity and temperature-humidity index between the experimental group and the control group (P > 0.05). (2) At the end of the experiment, the serum calcium content in the experimental group was significantly lower than that in the control group (P < 0.05), while no difference was found concerning the contents of potassium ion, sodium ion, magnesium ion and chloride ion (P > 0.05). The results of serum biochemical indexes showed that the contents of heat stress protein 70, total protein, triglyceride and glucose in bovine of the experimental group were significantly higher than those in the control group (P < 0.05), and no significant difference was observed for the contents of serum albumin, globulin and total cholesterol (P > 0.05). The results of hormone levels showed that the levels of cortisol in feces and serum of the cattle in experimental group were significantly lower than those in control group (P < 0.05), and triiodothyronine and thyroxine had no significant difference in cattle between the experimental group and the control group (P > 0.05). (3) The production performance test showed that there was no significant difference in initial body weight and end body weight between the experimental group and the control group (P > 0.05), while the average daily gain (P < 0.01) and average dry matter intake (P < 0.05) of the experimental group were significantly higher than those of the control group, the feed-to-weight ratio of the experimental group was significantly lower than that of the control group (P < 0.05), and the profit in the experimental group was increased by 10.68%. 【Conclusion】 The cross-ventilation system could significantly increase the air velocity of the shed, reduce the sensible temperature, improve the metabolism of Simmental cattle, promote the production performance, and increase the economic benefits for beef cattle production in high temperature and humidity environment.

Key words: the cross-ventilation, beef cattle, thermoregulation, physiology and biochemistry indexes, production performance, economic benefit

Fig. 1

Cowshed graph and measurement points ▲is measuring point of environmental indicators a. Barn plan and measurement points; b. Barn elevation and measurement points"

Table 1

Composition and nutrient levels of concentrates (air- dry basis, %)"

项目Items 含量 Content(%)
精料组成 Composition
玉米 Corn 50.0
小麦麸皮 Wheat bran 5.0
豆粕 Soybean meal 9.0
花生粕 Peanut meal 10.0
玉米胚芽粕 Corn germ meal 7.5
玉米干酒糟Corn DDG 12.5
小苏打 NaHCO3 1.5
石粉 Limestone 1.0
磷酸氢钙 CaHPO4 1.5
预混料1) Premix 1.0
食盐 Salt 1.0
合计 Total 100.0
营养水平2) Nutrient levels
增重净能 NEg(MJ/kg) 6.23
干物质 DM 90.27
有机物 OM 81.55
粗蛋白 CP 17.95
粗脂肪 EE 3.61
钙 Ca 1.22
总磷TP 0.55

Fig. 2

Temperature and humidity index of two groups of the cowshed in different time periods"

Table 2

Thermal environment in two stalls"

组别
Groups
干球温度
Dry-bulb temperature (℃)
相对湿度
Relative humidity (%)
风速
Velocity (m/s)
体感温度
Effective temperature (℃)
对照组 Control group 27.91±0.94 80.26±4.53 0.19A±0.01 25.37A±0.24
试验组 Treatment group 27.84±0.98 81.11±5.11 1.66B ±0.01 22.07B±0.45

Fig. 3

Rectal temperature and respiratory rate of two groups of cattle"

Fig. 4

Correlation between dry-bulb temperature and rectal temperature or respiratory rate"

Table 3

Serum inorganic ions of two groups of cattle"

项目Items 组别Groups 第1天 The 1st day 第14天 The 14th day
K+ (mmol·L-1) 对照组 Control group 4.21±0.17 4.31±0.06
试验组 Treatment group 4.38±0.08 4.67±0.18
Na+ (mmol·L-1) 对照组 Control group 162.64±3.17 164.39±4.22
试验组 Treatment group 172.11±5.67 173.85±5.38
Ca2+ (mmol·L-1) 对照组 Control group 2.19a±0.02 2.50bx±0.05
试验组 Treatment group 2.19±0.01 2.27y±0.03
Mg2+ (mmol·L-1) 对照组 Control group 1.33±0.01 1.32±0.01
试验组 Treatment group 1.33±0.01 1.32±0.01
Cl- (mmol·L-1) 对照组 Control group 95.72±0.19 95.45±0.29
试验组 Treatment group 96.58±0.37 96.05±0.39

Table 4

Blood biochemical indexes of two groups of cattle"

项目Items 组别Groups 第1天 The 1st day 第14天 The 14th day
总蛋白TP (g·L-1) 对照组 Control group 55.06a±1.70 48.83bx±1.11
试验组 Treatment group 54.10±2.89 55.48y±1.62
白蛋白ALB (g·L-1) 对照组 Control group 27.85±1.14 25.05±0.77
试验组 Treatment group 27.81±2.56 25.75±0.59
球蛋白GLB (g·L-1) 对照组 Control group 27.21±2.10 23.78±1.62
试验组 Treatment group 26.29±4.40 31.08±2.60
总胆固醇T-CHO (mmol·L-1) 对照组 Control group 3.79±0.24 3.34±0.24
试验组 Treatment group 3.61±0.16 3.29±0.20
甘油三酯TG (mmol·L-1) 对照组 Control group 0.99±0.06 0.97x±0.04
试验组 Treatment group 1.10a±0.02 1.25by±0.07
葡萄糖Glu (mmol·L-1) 对照组 Control group 5.09±0.29 4.96x±0.33
试验组 Treatment group 5.56±0.36 6.09y±0.46
热应激蛋白70 HSP70 (pg·mL-1) 对照组 Control group 457.22a±29.41 583.57bx±26.56
试验组 Treatment group 467.30±21.54 445.20y±19.04

Table 5

Hormone levels in two groups of cattle"

项目Items 组别Groups 第1天 The 1st day 第14天 The 14th day
三碘甲腺原氨酸 T3 (nmol·L-1) 对照组 Control group 10.97±0.93 8.24±1.49
试验组 Treatment group 9.45±0.46 8.33±0.97
甲状腺素T4 (nmol·L-1) 对照组 Control group 126.31±10.93 101.95±4.99
试验组 Treatment group 123.62±13.27 120.93±7.41
血清皮质醇Serum cortisol (ng·mL-1) 对照组 Control group 153.01±17.32 175.82x±4.57
试验组 Treatment group 156.51±9.25 159.33y±5.02
粪便皮质醇Fecal cortisol (ng·g-1) 对照组 Control group 11.78a±0.66 20.16bx±1.58
试验组 Treatment group 13.16±0.99 11.31y±0.94

Table 6

Production performance of two groups of cattle"

项目
Items
对照组
Control group
试验组
Treatment group
初始体重 IW (kg) 289.20±10.95 290.90±10.91
结束体重 LW (kg) 309.18±11.20 313.80±10.72
平均日增重 ADG (kg·d-1) 1.43A±0.02 1.64B±0.01
干物质采食量 DMI (kg·d-1) 7.70a±0.02 7.84b±0.02
料重比 F/G 5.38a±0.12 4.78b±0.08

Table 7

Comparison of economic benefits"

项目
Items
组别 Groups
对照组Control 试验组Treatment
收益
Economic
平均日增重Average daily weight gain (kg/(头?d)) 1.43 1.64
单价Unit price (元/kg) 30.00 30.00
增重收入 Income (元/(头?d)) 42.90 49.20
成本
Cost
风机投入成本
Cost of funs
用电量 Electricity consumption (kWh/(头?d)) 0 1.78
电价 Electricity price (元/(kWh)) 0.53 0.53
电费 Electric charge (元/(头·d)) 0 0.94
折旧成本 Depreciation (元/(头·d)) 0 2.56
风机成本总计 Total cost of turbine (元/(头·d)) 0 3.50
日粮成本
Cost of diet
日粮消耗量 Daily diet consumption (kg/(头·d)) 22.90 23.32
日粮折合单价 Unit price of diet (元/kg) 0.88 0.88
日粮成本总计 Total cost of diet (元/(头·d)) 20.15 20.52
总成本 Total cost (元/(头·d)) 20.15 24.02
毛利润 Gross benefits (元/(头·d)) 22.75 25.18
毛利润增值 Gross benefit increment (%) 10.68
[1] SEJIAN V, KUMAR D, GAUGHAN J B, NAQVI S M K. Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. Journal of Veterinary Behavior, 2017, 17:6-13. doi: 10.1016/j.jveb.2016.10.009.
doi: 10.1016/j.jveb.2016.10.009
[2] 李川, 吴武平, 张泳桢, 吴华东, 黄爱民, 杨食堂, 舒邓群. 不同角度的风机对肉牛生理指标和生产性能的影响. 家畜生态学报, 2015, 36(2):48-53.
LI C, WU W P, ZHANG Y Z, WU H D, HUANG A M, YANG S T, SHU D Q. Effect of fan angle on physiological and growth performance of beef cattle. Journal of Domestic Animal Ecology, 2015, 36(2):48-53. (in Chinese)
[3] 孙凯佳, 高腾云, 潘军, 曹玉凤, 王笑笑. 喷淋与吹风对热应激肉牛生产性能及生理指标的影响. 西北农林科技大学学报(自然科学版), 2011, 39(11):59-64, 70. doi: 10.13207/j.cnki.jnwafu.2011.11.033.
doi: 10.13207/j.cnki.jnwafu.2011.11.033
SUN K J, GAO T Y, PAN J, CAO Y F, WANG X X. Effects of sprinkling and Fanning on growth performance and physiological indices of heat-stressed beef cattle. Journal of Northwest A & F University (Natural Science Edition), 2011, 39(11):59-64, 70. doi: 10.13207/j.cnki.jnwafu.2011.11.033. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2011.11.033
[4] 丁露雨, 王美芝, 陈昭辉, 刘继军, 杨食堂, 周俊生. 南方开放式肉牛舍夏季喷雾降温效果. 农业工程学报, 2013, 29(2):224-231.
DING L Y, WANG M Z, CHEN Z H, LIU J J, YANG S T, ZHOU J S. Effects of spraying cooling on open beef cattle barn in Southern China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2):224-231. (in Chinese)
[5] 吴武平, 李川, 吴华东, 黄爱民, 张泳桢, 杨食堂, 舒邓群. 屋面喷淋通风降温系统对热应激肉牛血液生化指标的影响. 江西农业大学学报, 2016, 38(5):954-960, 967. doi: 10.13836/j.jjau.2016135.
doi: 10.13836/j.jjau.2016135
WU W P, LI C, WU H D, HUANG A M, ZHANG Y Z, YANG S T, SHU D Q. Effect of roof sprinkling ventilation and cooling system on blood biochemical indices of beef cattle in heat stress. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(5):954-960, 967. doi: 10.13836/j.jjau.2016135. (in Chinese)
doi: 10.13836/j.jjau.2016135
[6] DIKMEN S, LARSON C C, DE VRIES A, HANSEN P J. Effectiveness of tunnel ventilation as dairy cow housing in hot climates: rectal temperatures during heat stress and seasonal variation in milk yield. Tropical Animal Health and Production, 2020, 52(5):2687-2693. doi: 10.1007/s11250-020-02309-3.
doi: 10.1007/s11250-020-02309-3
[7] YOUNAS M, FUQUAY J W, SMITH A E, MOORE A B. Estrous and endocrine responses of lactating Holsteins to forced ventilation during summer. Journal of Dairy Science, 1993, 76(2):430-436. doi: 10.3168/jds.S0022-0302(93)77363-4.
doi: 10.3168/jds.S0022-0302(93)77363-4
[8] 丁丽, 范明杰, 王慧军. 吹风对缓解肉牛热应激的影响. 山东畜牧兽医, 2014, 35(9):18-19.
DING L, FAN M J, WANG H J. Effect of air blowing on relieving heat stress of beef cattle. Shandong Journal of Animal Science and Veterinary Medicine, 2014, 35(9):18-19. (in Chinese)
[9] 蔡景义, 冯堂超, 师筑俊, 廖阔遥, 易宗容. 敞篷牛舍接力送风及饲粮添加铬改善肉牛生产性能. 农业工程学报, 2015, 31(15):191-195.
CAI J Y, FENG T C, SHI Z J, LIAO K Y, YI Z R. Fanning in open-topped cowshed and chromium added to diet improving growth performance of heat-stressed beef cattle. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15):191-195. (in Chinese)
[10] 王深圳. 夏季横向交互送风棚舍的温热环境及其肉牛的体温调节反应[D]. 南京: 南京农业大学, 2017.
WANG S Z. Thermal environment of the shed and thermoregulatory response of the beef cattle to add the profile cross ventilated in summer[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[11] 中华人民共和国农业部. 肉牛饲养标准: NY/T 815—2004. 北京: 中国农业出版社, 2004.
Ministry of Agriculture of the People’s Republic of China. Feeding standard of beef cattle: NY/T 815—2004. Beijing: Chinese Agriculture Press, 2004. (in Chinese)
[12] THOM E C. The discomfort index. Weatherwise, 1959, 12(2):57-61. doi: 10.1080/00431672.1959.9926960.
doi: 10.1080/00431672.1959.9926960
[13] 陈丽媛, 洪小华, 颜培实. 我国南方冬季和夏季肉牛体感温度研究. 畜牧与兽医, 2015, 47(2):40-44.
CHEN L Y, HONG X H, YAN P S. Effective temperature equation of cows during winter and summer seasons in Southern of China. Animal Husbandry & Veterinary Medicine, 2015, 47(2):40-44. (in Chinese)
[14] KHAN M Z, ALTMANN J, ISANI S S, YU J. A matter of time: evaluating the storage of fecal samples for steroid analysis. General and Comparative Endocrinology, 2002, 128(1):57-64. doi: 10.1016/S0016-6480(02)00063-1.
doi: 10.1016/S0016-6480(02)00063-1
[15] TERIO K A, BROWN J L, MORELAND R, MUNSON L. Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah. Zoo Biology, 2002, 21(3):215-222. doi: 10.1002/zoo.10036.
doi: 10.1002/zoo.10036
[16] AHMAD M, BHATTI J A, ABDULLAH M, JAVED K, ALI M, RASHID G, UDDIN R, BADINI A H, JEHAN M. Effect of ambient management interventions on the production and physiological performance of lactating Sahiwal cattle during hot dry summer. Tropical Animal Health and Production, 2018, 50(6):1249-1254. doi: 10.1007/s11250-018-1551-5.
doi: 10.1007/s11250-018-1551-5
[17] 罗宗刚, 王玲, 蔡明成, 伏彭辉, 周沛, 左福元. 热应激对不同杂交组合肉牛生理指标和血液生化指标的影响. 中国畜牧杂志, 2015, 51(11):82-85.
LUO Z G, WANG L, CAI M C, FU P H, ZHOU P, ZUO F Y. Effects of heat stress on physiological index and blood biochemical index of different hybrid beef cattle. Chinese Journal of Animal Science, 2015, 51(11):82-85. (in Chinese)
[18] MADER T L, JOHNSON L J. Tympanic temperature profiles of confined beef cattle. International Journal of Biometeorology, 2010, 54(6):629-635.
doi: 10.1007/s00484-009-0229-0
[19] 黄德均, 向白菊, 高立芳, 蒋安. 热应激对红安格斯牛、抗旱王牛及红抗杂交牛生理指标和血液生化指标的影响. 黑龙江畜牧兽医(下半月), 2019(8):35-39. doi: 10.13881/j.cnki.hljxmsy.2018.11.0379.
doi: 10.13881/j.cnki.hljxmsy.2018.11.0379
HUANG D J, XIANG B J, GAO L F, JIANG A. The effect of heat stress on physiological and blood biochemical indexes of Red Angus cattle, Droughtmaster cattle and Red Angus × Droughtmaster hybrid cattle. Heilongjiang Animal Science and Veterinary Medicine, 2019(8):35-39. doi: 10.13881/j.cnki.hljxmsy.2018.11.0379. (in Chinese)
doi: 10.13881/j.cnki.hljxmsy.2018.11.0379
[20] 刘庆华, 王根林. 热应激对奶牛血液流变学指标及血清无机离子浓度和酶活性的影响. 福建农林大学学报(自然科学版), 2007, 36(3):284-287.
LIU Q H, WANG G L. Effects of heat stress on hemorheology status and plasma inorganic ion concentration and plasma enzyme levels in dairy cows. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2007, 36(3):284-287. (in Chinese)
[21] SCHNEIDER P L, BEEDE D K, WILCOX C J. Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. Journal of Animal Science, 1988, 66(1):112-125. doi: 10.2527/jas1988.661112x.
doi: 10.2527/jas1988.661112x
[22] BUFFINGTON D E, COLLAZO-AROCHO A, CANTON G H, PITT D, THATCHER W W, COLLIER R J. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Transactions of the ASAE, 1981, 24(3):711-714. doi: 10.13031/2013.34325.
doi: 10.13031/2013.34325
[23] 金鑫, 刘凯, 朱树群, 李胜利. 喷雾吹风和淋水吹风对奶牛热应激的影响. 中国奶牛, 2008(12):25-27.
JIN X, LIU K, ZHU S Q, LI S L. Effects of spray ventilation and shower ventilation on heat stress in dairy cows. China Dairy Cattle, 2008(12):25-27. (in Chinese)
[24] SRIKANDAKUMAR A, JOHNSON E H. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows. Tropical Animal Health and Production, 2004, 36(7):685-692. doi: 10.1023/b: trop.0000042868.76914.a9.
doi: 10.1023/b: trop.0000042868.76914.a9
[25] SHIAO T F, CHEN J C, YANG D W, LEE S N, LEE C F, CHENG W T K. Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area. Journal of Dairy Science, 2011, 94(11):5393-5404. doi: 10.3168/ jds.2010-3730.
doi: 10.3168/ jds.2010-3730
[26] ITOH F, OBARA Y, ROSE M T, FUSE H, HASHIMOTO H. Insulin and glucagon secretion in lactating cows during heat exposure1. Journal of Animal Science, 1998, 76(8):2182-2189. doi: 10.2527/1998.7682182x.
doi: 10.2527/1998.7682182x
[27] 伍晓雄, 张雄民, 赵京杨, 杨世锦, 徐小兰. 热应激对山羊生理生化指标的影响. 家畜生态, 2000, 21(3):7-9. doi: 10.3969/j.issn.1673-1182.2000.03.002.
doi: 10.3969/j.issn.1673-1182.2000.03.002
WU X X, ZHANG X M, ZHAO J Y, YANG S J, XU X L. Effect of heat stress on physiological and biochemical index in goats. Ecology of Domestic Animal, 2000, 21(3):7-9. doi: 10.3969/j.issn.1673-1182. 2000.03.002. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2000.03.002
[28] SCHARF B, CARROLL J A, RILEY D G, CHASE C C, COLEMAN S W, KEISLER D H, WEABER R L, SPIERS D E. Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus) Bos taurus cattle during controlled heat challenge1. Journal of Animal Science, 2010, 88(7):2321-2336. doi: 10.2527/jas.2009-2551.
doi: 10.2527/jas.2009-2551
[29] 朱雯, 任春环, 张彦, 张子军. 反刍动物肝脏糖异生及营养调控. 动物营养学报, 2019, 31(10):4434-4441. doi: 10.3969/j.issn.1006?267x.2019.10.004.
doi: 10.3969/j.issn.1006?267x.2019.10.004
ZHU W, REN C H, ZHANG Y, ZHANG Z J. Mechanisms of hepatic gluconeogenesis and nutritional regulation in ruminants. Chinese Journal of Animal Nutrition, 2019, 31(10):4434-4441. doi: 10.3969/j.issn.1006?267x.2019.10.004. (in Chinese)
doi: 10.3969/j.issn.1006?267x.2019.10.004
[30] SILVER J T, NOBLE E G. Regulation of survival gene hsp70. Cell Stress & Chaperones, 2012, 17(1):1-9. doi: 10.1007/s12192-011-0290-6.
doi: 10.1007/s12192-011-0290-6
[31] MANJARI R, YADAV M, RAMESH K, UNIYAL S, RASTOGI S K, SEJIAN V, HYDER I. HSP70 as a marker of heat and humidity stress in Tarai buffalo. Tropical Animal Health and Production, 2015, 47(1):111-116. doi: 10.1007/s11250-014-0692-4.
doi: 10.1007/s11250-014-0692-4
[32] MAGDUB A, JOHNSON H D, BELYEA R L. Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows. Journal of Dairy Science, 1982, 65(12):2323-2331. doi: 10.3168/jds.S0022-0302(82)82504-6.
doi: 10.3168/jds.S0022-0302(82)82504-6
[33] YOUSEF M K, JOHNSON H D. Calorigenesis of dairy cattle as influenced by thyroxine and environmental temperature. Journal of Animal Science, 1966, 25(1):150-156. doi: 10.2527/jas1966.251150x.
doi: 10.2527/jas1966.251150x
[34] 李川. 喷雾通风降温系统对热应激肉牛的生理机能和生产性能的影响[D]. 南昌: 江西农业大学, 2016.
LI C. Effect on spray ventilation cooling system on physiology function and growth performance for beef cattle in heat stress[D]. Nanchang: Jiangxi Agricultural University, 2016. (in Chinese)
[35] SAPOLSKY R M, SHARE L J. Rank-related differences in cardiovascular function among wild baboons: Role of sensitivity to glucocorticoids. American Journal of Primatology, 1994, 32(4):261-275. doi: 10.1002/ajp.1350320404.
doi: 10.1002/ajp.1350320404
[36] HARPER J M, AUSTAD S N. Fecal glucocorticoids: A noninvasive method of measuring adrenal activity in wild and captive rodents. Physiological and Biochemical Zoology: PBZ, 2000, 73(1):12-22. doi: 10.1086/316721.
doi: 10.1086/316721
[37] DELFINO J G, MATHISON G W. Effects of cold environment and intake level on the energetic efficiency of feedlot steers. Journal of Animal Science, 1991, 69(11):4577-4587. doi: 10.2527/1991.69114577x.
doi: 10.2527/1991.69114577x
[1] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[2] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[3] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[4] MI XiaoTian,SHI Lei,HE Gang,WANG ZhaoHui. Fertilizer Reduction Potential and Economic Benefits of Crop Production for Smallholder Farmers in Shaanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(20): 4370-4384.
[5] LI YongHua,WU XuePing,HE Gang,WANG ZhaoHui. Benefits of Yield, Environment and Economy from Substituting Fertilizer by Manure for Wheat Production of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890.
[6] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[7] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[8] ZHANG XinXin,SHI Lei,HE Gang,WANG ZhaoHui. Potential of Fertilizer Reduction and Benefits of Environment and Economic for Cereal Crops Production in Shaanxi Province [J]. Scientia Agricultura Sinica, 2020, 53(19): 4010-4023.
[9] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[10] SUN ShiJun,ZHU ZhenChuang,CHEN ZhiJun,YANG Dan,ZHANG XuDong. Effects of Different Colored Plastic Film Mulching and Planting Density on Soil Temperature, Evapotranspiration and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2019, 52(19): 3323-3336.
[11] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[12] Xia XU,YaNan ZHAO,YuFang HUANG,JunYing YAN,YouLiang YE. Fertilization Effect of Wheat Under Different Soil Fertilities [J]. Scientia Agricultura Sinica, 2018, 51(21): 4076-4086.
[13] ZHAO YaLi, LIU WeiLing, CHENG SiXian, ZHOU YaNan, ZHOU JinLong, WANG XiuLing, ZHANG MouBiao, WANG Qun, LI ChaoHai . Effects of Pattern of Deep Tillage on Topsoil Features, Yield and Water Use Efficiency in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2018, 51(13): 2489-2503.
[14] YU ShuTing, ZHAO YaLi, WANG YuHong, LIU WeiLing, MENG ZhanYing, MU XinYuan, CHENG SiXian, LI ChaoHai. Improvement Effects of Rotational Tillage Patterns on Soil in the Winter Wheat-Summer Maize Double Cropping Area of Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2017, 50(11): 2150-2165.
[15] LI Ruo-nan, WU Xue-ping, ZHANG Yan-cai, WANG Li-ying, CHEN Li-li, ZHAI Feng-zhi. Effects of Reduced Application of Nitrogen and Irrigation on Soil Nitrate Nitrogen Content and Nitrogen Balance in Greenhouse Production [J]. Scientia Agricultura Sinica, 2016, 49(4): 695-704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!