Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 5091-5103.doi: 10.3864/j.issn.0578-1752.2020.24.012

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Function Characterization of Chalcone Synthase Gene AgCHS1 in Ampelopsis grossedentata

XU Ming(),LIN ShiQiang,NI DongXin,YI HenJie,LIU JiangHong,YANG ZhiJian,ZHENG JinGui()   

  1. College of Agriculture, Fujian Agriculture and Forestry University/Key Laboratory of Crop Biotechnology in Fujian Province University/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002
  • Received:2020-05-14 Accepted:2020-07-15 Online:2020-12-16 Published:2020-12-28
  • Contact: JinGui ZHENG E-mail:xmfau@163.com;jgzheng@fafu.edu.cn

Abstract:

【Objective】Chalcone synthase(CHS) is the first key enzyme in the biosynthesis of plant flavonoids. In this study, the AgCHS1 was cloned from Ampelopsis grossedentata, the gene sequence and tissue specific expression were analyzed, and the gene function was characterized via in vitro enzymatic activity assay and transformation of N. tabacum, aiming to provide a theoretical basis for further elucidating the flavonoid accumulation of the A. grossedentata. 【Method】The primers were designed according to the transcriptome of A. grossedentata and the leaf cDNA and genomic DNA were used as templates to amplify the AgCHS1 with PCR. The sequence features were analyzed with bioinformatic methods. The MEGA6 and DNAMAN were used for multiple sequences alignment and phylogenetic tree construction. The AgCHS1 recombinant protein was obtained via prokaryotic expression, and the enzymatic activities of the protein on substrates were assayed by identifying the catalytic products with HPLC-MS. The expression of AgCHS1 in different organs was quantified by qRT-PCR, and the content of total flavonoids was determined by Al(NO3)3 colorimetric method. The overexpression vector was constructed and transformed to N. tabacum by using the leaf disk method. The transgenic plants were screened and the contents of anthocyanin and flavonol in the petal of T2 strain were measured.【Result】The ORF of AgCHS1 had a length of 1 182 bp and encoded 393 amino acids. The genomic DNA spanned 1 315 bp, containing 2 exons and 1 intron. The bioinformatic analysis showed that AgCHS1 was a stable hydrophilic protein. The results of sequence alignments indicated that the AgCHS1 possessed the signature sequence and enzymatic site residues of the chalcone synthase gene superfamily, including the binding site of malonyl-CoA and triple active center, which share a high similarity with the CHS proteins of other species. The phylogenetic analysis showed that AgCHS1 had a close relationship with and was in the same clade with the CHSs of Vitis vinifera and Vitis amurensis. The results of fluorescent qPCR showed that AgCHS1 expressed highest in the mature leaf and the flower, and lowest in the old leaf. There was a positive correlation between the expression level of AgCHS1 gene and the content of total flavonoids in different organs of A.grossedentata. The in vitro enzymatic analysis showed that the recombinant AgCHS1 was able to catalyze the substrates p-coumaroyl-CoA and CoA malonyl-CoA to produce naringenin, demonstrating the activity of chalcone synthase. 5 transgenic N. tabacum lines were obtained, 2 of which showed a significant deeper leaf color. The anthocyanin contented of the transgenic lines OE3 and OE4 increased by 56.6% and 25.3%, respectively, compared to the control. The flavonol content of line OE3 showed no significant difference, which of the line OE4 were increased by 39.1%.【Conclusion】The AgCHS1 was the key enzyme in the flavonoid biosynthesis of A. grossedentata, and the overexpression of AgCHS1 increased the contents of anthocyanin and flavonol in transgenic plants.

Key words: Ampelopsis grossedentata, chalcone synthetase, enzyme activity, anthocyanin, flavonol

Table 1

List of primers used in this study"

引物名称 Primer name 序列(5'-3') Primer sequence (5'-3') 用途 Purpose
AgCHS1-F GGATCCATGGTGTCGGTGCAGGAAATCAGA ORF序列扩增、载体构建
AgCHS1-R GAGCTCTCAGTGAGCCAGTGGTGCAGAC Amplification of ORF sequence and vector construction
AgCHS1-P1 ACTCCAGCCAACTGTGTCCA 转基因烟草的PCR鉴定
AgCHS1-P2 TGAGACCCACTTCACGCAA PCR identification of transgenic tobacco
AgCHS1-qF GCCTCAAACCCTCCGTCA 实时荧光定量PCR Quantitative real-time PCR
AgCHS1-qR GACCCACGAGTGAATCCAAGT Quantitative real-time PCR
NtEF1α-qF AATTTTGACCAAGATCGACAGG 烟草内参基因 Control
NtEF1α-qR CAGCAACAGTTTGACGCATG Reference gene in tobacco
AgGAPDH-qF CATCTCAGCCCCAAGCAA 藤茶内参基因
AgGAPDH-qR GTGGCAGTAATGGAGTGAACAG Reference gene in A.grossedentata

Fig. 1

Cloning and structure analysis of the AgCHS1 A: PCR amplification product of AgCHS1, M: DL5000; 1: The amplification product of ORF; 2: The amplification product of genomic DNA; B: Structure of AgCHS1"

Fig. 2

Amino acid sequence alignment of AgCHS1 with other CHS enzymes"

Fig. 3

Phylogenetic tree analysis of AgCHS2 protein with other plant CHS proteins"

Fig. 4

The change of relative expression of AgCHS1 and total flavonoid content in different organs of A. grossedentata Different letters indicate statistical difference (P<0.05). The same as below"

Fig. 5

Ni column purification of recombinant AgCHS1 protein expressed in E. coli M: Protein Marker; 1: Centrifuged supernatant; 2: Flow through; 3: binding buffer elution; 4: Binding buffer + 60 mmol?L-1 imidazole elution; 5: Binding buffer + 90 mmol?L-1 imidazole elution; 5: Binding buffer + 250 mmol?L-1 imidazole elution"

Fig. 6

HPLC-MS identification of in vitro enzymatic reaction product of recombinant protein AgCHS1 HPLC chromatograms of the products in the reactions of AgCHS1 recombinant protein (A); naringen instandard (B) and the empty control (C); D-E: The masss pectrometric spectrum of reaction products; F-G: The mass spectrometric spectrum of the naringenin standard"

Fig. 7

Efects of overexpression AgCHS1 on the color, anthocyanin and flavonol content of tobacco A: PCR identification of transgenic tobacco; B: Petal phenotypes; C: AgCHS1 expression in petal; D: Relative anthocyanin content; E: Relative flavonol content; M: DNA marker DL1000; P: Plasmid control; WT: Wild type; OE1-5: different transgenic lines. Different letters indicate statistical difference (P<0.05)"

[1] FAN L, TONG Q, DONG W W, YANG G J, HOU X L, XIONG W, SHI C Y, FANG J G, WANG W Q. Tissue distribution, excretion, and metabolic profile of dihydromyricetin, a flavonoid from Vine Tea (Ampelopsis grossedentata) after oral administration in rats. Journal of Agricultural and Food Chemistry, 2017,65(23):4597-4604.
doi: 10.1021/acs.jafc.7b01155 pmid: 28534405
[2] 何桂霞, 裴刚杜, 方麓, 欧阳文, 李斌. 藤茶化学成分的研究. 中国现代中药, 2007,9(12):11-13.
HE G X, PEI G D, FANG L, OUYANG W, LI B. Studies on chemical constituents of Ampelopsis grossdentata. Modern Chinese Medicine, 2007,9(12):11-13. (in Chinese)
[3] 冉京燕, 方建国, 谢雪佳, 熊微, 王文清. 藤茶的本草资源学研究概况. 中草药, 2016,47(20):3728-3735.
RAN J Y, FANG J G, XIE X J, XIONG W, WANG W Q. Scientific research on herbal resource of vine tea. Chinese Traditional and Herbal Drugs, 2016,47(20):3728-3735. (in Chinese)
[4] 王元霞, 洪正善, 杨柯, 曾春晖. 藤茶中二氢杨梅素的研究进展. 沈阳药科大学学报, 2020,37(6):569-576.
WANG Y X, HONG Z S, YANG K, ZENG C H. Research progress of dihydromyricetin in Ampelopsis grossedentata. Journal of Shenyang Pharmaceutical University, 2020,37(6):569-576. (in Chinese).
[5] 王丹丹, 王文清, 施春阳, 熊微, 侯小龙, 方建国. 藤茶中二氢杨梅素含量变异研究进展. 中药材, 2015,38(9):1996-1999.
WANG D D, WANG W Q, SHI C Y, XIONG W, HUO X L, FANG J G. Research progress on variation of dihydromyricetin content in Ampelopsis grossedentata. Journal of Chinese Medicinal Materials, 2015,38(9):1996-1999. (in Chinese)
[6] TOHGE T, DE SOUZA L P, FERNIE A R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany, 2017,68(15):4013-4028.
doi: 10.1093/jxb/erx177 pmid: 28922752
[7] 包颖, 郭昌锋, 陈少华, 刘梅. 植物查尔酮合成酶超基因家族的分子进化. 植物学报, 2015,50(1):55-71.
BAO Y, GUO C F, CHEN S H, LIU M. Molecular evolution of chalcone synthase gene superfamily in plants. Bulletin of Botany, 2015,50(1):55-71. (in Chinese)
[8] CHEN S, PAN X H, LI Y T, CUI L J, ZHANG Y C, ZHANG Z M, PAN G T, YANG J, CAO P J, YANG A G. Identification and characterization of chalcone synthase gene family members in Nicotiana tabacum. Journal of Plant Growth Regulation, 2017,36:374-384.
doi: 10.1007/s00344-016-9646-6
[9] MA L Q, PANG X B, SENG Y H, PU G B, WANG H H, LEI C Y, WANG H, LI G F, LIU B Y, YE H C. A novel type III polyketide synthase encoded by a three-intron gene from Polygonum cuspidatum. Planta, 2009,229:457-469.
doi: 10.1007/s00425-008-0845-7
[10] YAHYAA M, ALI S, DAVIDOVICH-RIKANATI R, IBDAH M, SHACHTIER A, EYAL Y, LEWINOHN E, IBDAH M. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.). Phytochemistry, 2017,140:125-133.
doi: 10.1016/j.phytochem.2017.04.022 pmid: 28482241
[11] WANG C H, ZHI S, LIU C Y, XU F X, ZHAO A C, WANG X L, TANG X, LI Z G, HUANG P H, YU M D. Isolation and characterization of a novel chalcone synthase gene family from mulberry. Plant Physiology and Biochemistry, 2017,115:107-118.
doi: 10.1016/j.plaphy.2017.03.014 pmid: 28355585
[12] 夏芳, 李厚华, 付春祥, 虞珍珍, 徐彦军, 赵德修. 水母雪莲查尔酮合酶基因的克隆、表达及酶活分析. 生物工程学报, 2011,27(9):363-370.
XIA F, LI H H, FU C X, YU Z Z, XU Y J, ZHAO D X. Cloning, expression and characterization of chalcone synthase from Saussurea medusa. Chinese Journal of Biotechnology, 2011,27(9):363-370. (in Chinese)
[13] YU H N, WANG L, SUN B, GAO S, CHENG A X, LOU H X. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum. Plant Cell Reports, 2015,34(2):233-245.
doi: 10.1007/s00299-014-1702-8 pmid: 25404490
[14] SUN W, MENG X, LIANG L, JIANG W, HUANG Y, HE J, HU H, ALMQVIST J, GAO X, WANG L. Molecular and biochemical analysis of chalcone synthase from freesia hybrid in flavonoid biosynthetic pathway. PLoS One. 2015,10(3):e0119054.
doi: 10.1371/journal.pone.0119054 pmid: 25742495
[15] 韩颖颖, 明凤. 选择与适应: 兰科植物查尔酮合酶基因家族成员的分子进化和功能趋异. 中国农业科技导报, 2012,14(4):73-80.
HAN Y Y, MING F. Selection and adaptation: Molecular evolution and functional divergence of orchid chalcone synthase gene family members. Journal of Agricultural Science and Technology, 2012,14(4):73-80. (in Chinese)
[16] HU L F, HE H H, ZHU C L, PENG X S, FU J R, HE X P, CHEN X R, QUYANG L J, BIAN J M, LIU S Q. Genome‑wide identification and phylogenetic analysis of the chalcone synthase gene family in rice. Journal of Plant Research, 2017,130:95-105.
doi: 10.1007/s10265-016-0871-7 pmid: 27878652
[17] SOMMER H, SAEDLER H. Structure of the chalcone synthase gene of Antirrhinum majus. Molecular and General Genetics, 1986,202(3):429-434.
doi: 10.1007/BF00333273
[18] LI X H, CAO M H, MA W B, JIA C H, LI J H, ZHANG M X, LIU C C. CAO Z Z, FARUQUE M O, HU X B. Annotation of genes involved in high level of dihydromyricetin production in vine tea (Ampelopsis grossedentata) by transcriptome analysis. BMC Plant Biology, 2020,20(1):131.
doi: 10.1186/s12870-020-2324-7 pmid: 32228461
[19] WANG C K, CHEN P Y, WANG H M, TO K Y. Cosuppression of tobacco chalcone synthase using Petunia chalcone synthase construct results in white flowers. Botanical Studies, 2006,47(1):71-82.
[20] CHEN L J, GUO H M, LIN Y, CHENG H M. Chalcone synthase EaCHS1 from Eupatorium adenophorum functions in salt stress tolerance in tobacco. Plant Cell Reports, 2015,34(5):885-894.
doi: 10.1007/s00299-015-1751-7 pmid: 25632925
[21] WANG C C, FU D Q. Virus-induced gene silencing of the eggplant chalcone synthase gene during fruit ripening modifies epidermal cells and gravitropism. Journal of Agricultural and Food Chemistry, 2018,66(11):2623-2629.
doi: 10.1021/acs.jafc.7b05617 pmid: 29494770
[22] 赵学荣, 杨燕, 雒晓鹏, 姚攀锋, 王安虎, 赵海霞, 吴琦. 苦荞查尔酮合酶基因FtCHS1启动子的克隆及分析. 植物科学学报, 2017,35(4):543-550.
ZHAO X R, YANG Y, LUO X P, YAO P F, WANG A H, ZHAO H X, WU Q. Cloning and analysis of chalcone synthase gene FtCHS1 promoter in Fagopyrum tataricum Gaertn. Plant Science Journal, 2017,35(4):543-550. (in Chinese)
[23] 付明, 魏麟, 余娟, 余小林. 显齿蛇葡萄查耳酮合成酶基因cDNA克隆及蛋白质序列分析. 中草药, 2013,44(1):85-89.
FU M, WEI L, YU J, YU X L. cDNA cloning and protein sequence analysis of chalcone synthase gene in leaves of Ampelopsis grossedentata. Chinese Traditional and Herbal Drugs, 2013,44(1):85-89. (in Chinese)
[24] 许明, 伊恒杰, 郭佳鑫, 唐进兰, 林世强, 杨志坚, 郑金贵. 藤茶黄烷酮3-羟化酶基因AgF3H的克隆及表达分析. 西北植物学报, 2020,40(2):185-192.
XU M, YI H J, GUO J X, TANG J L, LIN S Q, YANG Z J, ZHENG J G. Cloning and expression analysis of a flavanone 3-hydroxylase gene from Ampelopsis grossedentata. Acta Botanica Boreali-Occidentalia Sinica, 2020,40(2):185-192. (in Chinese)
[25] LIN S Q, BI L J, ZHANG X E. A simplified method for reconstituting active E. Coli DNA polymerase Ⅲ. Protein Cell, 2011,2(4):303-307.
doi: 10.1007/s13238-011-1032-3
[26] 许明, 伊恒杰, 赵帅, 张玉文, 杨志坚, 郑金贵. 显齿蛇葡萄实时荧光定量PCR内参基因的筛选与验证. 中草药, 2017,6(3):1192-1198.
XU M, YI H J, ZHAO S, ZHANG Y W, YANG Z J, ZHENG J G. Screening and validation of reference genes for quantitative RT-PCR analysis in Ampelopsis grossedentata. Chinese Traditional and Herbal Drugs, 2017,6(3):1192-1198. (in Chinese)
[27] NING G G, XIAO X, LV H Y, LI X, ZUO Y, BAO M Z. Shortening tobacco life cycle accelerates functional gene identification in genomic research. Plant Biology, 2012,14(6):934-943.
doi: 10.1111/j.1438-8677.2012.00571.x
[28] 秦亚茹, 张友胜, 张凯, 丁振东, 曾萍, 孔繁晟. 藤茶总黄酮检测方法的对比研究. 现代食品科技, 2019,35(12):302-309.
QIN Y R, ZHANG Y S, ZHANG K, DING Z D, ZENG P, KONG F S. Comparative study of determination methods of total flavonoids in vine tea (Ampelopsis grossedentata). Modern Food Science and Technology, 2019,35(12):302-309. (in Chinese)
[29] WANG Y, DOU Y, WANG R, GUAN X L, HU Z H, ZHENG J. Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway. Gene, 2017,635:16-23.
doi: 10.1016/j.gene.2017.09.002 pmid: 28890377
[30] TIRUMALAI V, SWETHA C, NAIR A, PANDIT A, SHIVAPRASAD P V. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany, 2019,70(18):4775-4791.
doi: 10.1093/jxb/erz264 pmid: 31145783
[31] 马兰青, 师光禄, 叶和春, 刘本叶, 王有年. 植物类型Ⅲ聚酮合酶超家族基因结构、功能及代谢产物. 生物工程学报, 2010,26(11):1482-1492.
MA L Q, SHI G L, YE H C, LIU B Y, WANG Y N. Plant-specific type III polyketide synthase superfamily:gene structure, function and metabolistes. Chinese Journal of Biotechnology, 2010,26(11):1482-1492. (in Chinese)
[32] 张丽群, 韦康, 王丽鸳, 成浩, 刘本英, 龚武云. 茶树CHS基因结构及编码区单核苷酸多态性分析. 中国农业科学, 2014,47(1):133-144.
doi: 10.3864/j.issn.0578-1752.2014.01.014
ZHANG L Q, WEI K, WANG L Y, CHENG H, LIU B Y, GONG W Y. The structure and single nucleotide polymorphism analysis of chalcone synthase genes in tea plant (Camellia sinenesis). Scientia Agricultura Sinica, 2014,47(1):133-144. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.01.014
[33] KODURI P H, GORDON G S, BARKER E I, COLPITTS C C, ASHTON N W, SUH D Y. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Molecular Biology, 2010,72(3):247-263.
doi: 10.1007/s11103-009-9565-z
[34] KREUZALER F, HAHLBROCK K. Enzymatic synthesis of aromatic compounds in higher plants:formation of naringenin (5,7,4’- trihydroxyflavanone) from p-coumaroyl coenzyme A and malonyl coenzyme A. FEBS Letters, 1972,28(1):69-72.
doi: 10.1016/0014-5793(72)80679-3 pmid: 4646877
[35] JIANG C G, SCHOMMER C K, KIM S Y, SUH D Y. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry, 2006,67(23):2531-2540.
doi: 10.1016/j.phytochem.2006.09.030 pmid: 17083952
[36] YU H N, LIU X Y, GAO S, SUN B, ZHENG H B, JI M, CHENG A X, LOU H X. Structural and biochemical characterization of the plant type III polyketide synthases of the liverwort Marchantia paleacea. Plant Physiology and Biochemistry, 2018,125:95-105.
doi: 10.1016/j.plaphy.2018.01.030 pmid: 29428820
[37] WAKI T, MAMEDA R, NAKANO T, YAMADA S, TERASHITA M, ITO K, TENMA N, LI Y B, FUJINO N, UNO K, YAMASHITA S, AOKI Y, DENESSIOUK K, KAWAI Y, SUGAWARA S, SAITO K, YONEKURA-SAKAKIBARA K, MORITA Y, HOSHINO A, TAKAHASHI S, NAKAYAMA T. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nature Communications, 2020,11(1):870.
doi: 10.1038/s41467-020-14558-9 pmid: 32054839
[38] MORITA H, TAKAHASHI Y, NOGUCHI H, ABE I. Enzymatic formation of unnatural aromatic polyketides by chalcone synthase. Biochemical and Biophysical Research Communications, 2000,279(1):190-195.
doi: 10.1006/bbrc.2000.3920 pmid: 11112437
[39] 李辛雷, 殷恒福, 范正琪, 李纪元. 山茶芽变花色与花青苷的关系. 中国农业科学, 2019,52(11):1961-1969.
doi: 10.3864/j.issn.0578-1752.2019.11.010
LI X L, YIN H F, FAN Z Q, LI J Y. The relationship between anthocyanins and flower colors of bud mutation in Camellia japonica. Scientia Agricultura Sinica, 2019,52(11):1961-1969. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.11.010
[40] OHNO S, HOSOKAWA M, KOJIMA M, KITAMURA Y, HOSHINO A, TATSUZAWA F, DOI M, YAZAWA S. Simultaneous post- transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta, 2011, 234: 945-958.
doi: 10.1007/s00425-011-1473-1 pmid: 21735195
[41] OHNO S, HORI W, HOSOKAWA M, TATSUZAWA F, DOI M. Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) ‘Yuino’. Planta, 2018, 247: 413-428.
doi: 10.1007/s00425-018-2862-5 pmid: 29455261
[42] KAMIISHI Y, OTANI M, TAKAGI H, HAN D, MORI S, TATSUZAWA F, OKUHARA H, KOBAYASHI H, NAKANO M. Flower color alteration in the liliaceous ornamental Tricyrtis, sp. by RNA interference-mediated suppression of the chalcone synthase gene. Molecular Breeding, 2012,30(2):671-680.
doi: 10.1007/s11032-011-9653-z
[43] YUAN Y W, REBOCHO A B, SAGAWA J M, STANLEY L E, BRADSHAW, H D. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species. Proceedings of the National Academy of Sciences of the United States of America, 2016,113:2448-2453.
doi: 10.1073/pnas.1515294113
[1] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[2] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[3] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[4] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[5] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[6] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[7] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[8] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[9] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[10] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[11] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[12] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[13] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[14] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[15] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!