Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4539-4551.doi: 10.3864/j.issn.0578-1752.2021.21.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg

ZHENG Wei(),SHI Zheng,LONG Mei,LIAO YunCheng()   

  1. College of Agriculture, Northwest A & F University, Yangling 712100, Shaanxi
  • Received:2021-01-25 Accepted:2021-04-09 Online:2021-11-01 Published:2021-11-09
  • Contact: YunCheng LIAO E-mail:zwalhx@126.com;yunchengliao@163.com

Abstract:

【Objective】Leaf color mutants are ideal materials for studying chlorophyll synthesis, chloroplast development and photosynthesis. In order to clarify the regulation mechanism of photosynthesis and lay a foundation for the further utilization of wheat yellow-green leaf mutants, the photosynthetic physiological characteristics of wheat were studied.【Method】The wild type Jimai5265 and the mutant Jimai5265yg were used as test materials. The phenotype of leaf color was observed, the chlorophyll content and enzyme activity were measured by spectrophotometer and kit, respectively. The photosynthetic characteristics and chlorophyll fluorescence parameters were determined by the Li-6400 portable photosynthetic apparatus and PAM100 modulated chlorophyll fluorometer.【Result】The results of phenotypic observation and pigment content showed that the leaves of the mutant were yellow-green at seedling stage, and gradually changed to light green after heading stage. Leaf color of the mutant was partly recovered by shading treatment, but it was slightly lighter than the wild type, which indicated that it belonged to the mutants of light induced to promote greening. The content of chlorophyll a and b in the mutant leaves was significantly reduced, and the ratio of chlorophyll a to chlorophyll b was increased, indicating that Jimai5265yg was a typical chlorophyll deficient mutant. The light response curves and CO2 response curve displayed that surface sight-seeing quantum efficiency (AQY), light saturation point (LSP), maximum net photosynthetic rate (Pn-max), light compensation point (LCP), dark respiration rate (Rd), spindle efficiency (CE) and saturated CO2 concentration (I-sat) of the mutant was significantly higher than the wild type, indicating that the mutant had quite stable the photosynthetic mechanism and higher photosynthetic rate under the strong light; The photosynthetic gas exchange parameters and chlorophyll fluorescence kinetic parameters indicated that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), photochemical quantum efficiency (Fv/Fm), the actual photochemical efficiency (Φ PSII) and light chemical quenching coefficient (qP) of the mutant were significantly higher compared with the wild type, which showed that Jimai5265yg had the ability of strong light energy conversion and CO2 fixation; The content of malondialdehyde (MDA) in mutant was decreased significantly, while the activity of superoxide dismutase (SOD) and catalase (CAT), as well as the content of soluble sugar and soluble protein, were significantly increased. The results indicated that the antioxidant enzyme system could reduce oxidative damage by scavenging oxygen free radicals. The damage degree of cell membrane in the mutant leaf was reduced and its stress resistance was enhanced. The activity of ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco) in mutant was significantly lower, while the activity of the phosphoenolpyruvate carboxylase (PEPC) was significantly higher than that of the wild type. It was speculated that the increased activity of the C4 pathway photozyme PEPC might be the key factor for the higher net photosynthetic rate of the mutant. Post-flowering shading and exogenous spraying of Ascorbic acid and dithiothreitol DTT showed that the mutants were more sensitive to change of light intensity, and the content of AsA in leaves and the efficiency of xanthophyl cycle were higher.【Conclusion】Improvement of stomatal conductance, decrease of heat dissipation and increase of C4 pathway photozyme activity in yellow green leaf mutant Jimai5265yg were the main reasons for the increase of photosynthetic rate. These results laid the foundation for the molecular regulation of high photosynthesis properties of wheat leaf mutants.

Key words: wheat, yellow-green leaf mutant, photosynthetic gas exchange parameters, chlorophyll fluorescence parameter, enzyme activity

Fig. 1

Morphological investigation of wild-type Jimai5265 and mutant Jimai5265yg A: The phenotypes of the mutant and the wild type at the seedling stage. B: The phenotypes of the mutant and the wild type at the grain filling stage. Scale bar = 1.0 cm"

Table 1

Determination of pigment contents in leaves of Jimai5265 and Jimai5265yg (fresh weight) (mg·g-1)"

材料
Material
叶绿素 a
Chl a
叶绿素 b
Chl b
类胡萝卜素
Car
叶绿素a/b
Chl (a/b)
总叶绿素
Total Chl
胡萝卜素/叶绿素
Car/Chl ratio
冀麦5265 Jimai5265 1.06±0.20a 0.31±0.05a 0.23±0.03a 3.44±0.08b 1.36±0.25a 0.17±0.01b
冀麦5265yg Jimai5265yg 0.65±0.07b 0.13±0.01b 0.20±0.02a 5.05±0.36a 0.78±0.09b 0.25±0.06a

Fig. 2

Light-response curve and CO2-response curve of Jimai5265 and Jimai5265yg at flowering stage"

Table 2

Parameters of flag leaves in Jimai5265 and Jimai5265yg at flowering stage"

特征参数值
Parameter
材料 Material
冀麦5265
Jimai5265
冀麦5265yg
Jimai5265yg
表观量子效率 AQY (µmol·µmol-1) 0.0669±0.009b 0.0719±0.006a
光饱和点 LSP (µmol·m-2·s-1) 1619±35.69b 1873±56.32a
光补偿点 LCP (µmol·m-2·s-1) 37.65±4.19b 56.84±5.63a
最大净光合速率 Pn-max (µmol·m-2·s-1) 29.47±1.34b 45.96±2.28a
暗呼吸速率 Rd (µmol·m-2·s-1) 2.44±0.74b 3.82±0.59a
羧化效率 CE (mol·m-2·s-1) 0.17±0.03b 0.25±0.04a
光合能力 An-max (µmol·m-2·s-1) 41.16±3.12b 50.85±6.24a
饱和CO2浓度 I-sat (µmol·mol-1) 610.93±53b 890.14±74a
CO2补偿点 Γ (µmol·mol-1) 56.51±3.18a 51.66±2.12b
光呼吸速率 Rp (mol·m-2·s-1) 8.74±0.09a 11.40±0.24b

Table 3

The main photosynthetic parameters in Jimai5265 and Jimai5265yg at different development stage"

生育时期
Growth stage
材料
Material
净光合速率
Pn (µmol·m-2·s-1)
气孔导度
Gs (mmol·m-2·s-1)
胞间CO2浓度
Ci (µmolmol-1)
蒸腾速率
Tr (mmol·m-2·s-1)
拔节期
Jointing stage
冀麦5265 Jimai5265 10.67±0.99 0.13±0.02 245.07±43.51 3.65±0.68
冀麦5265yg Jimai5265yg 13.82±1.81* 0.14±0.06 249.93±38.02 4.00±1.18
开花期
Flowering stage
冀麦5265 Jimai5265 20.95±1.37 0.38±0.06 286.92±17.33 7.59±0.62
冀麦5265yg Jimai5265yg 25.63±1.02* 0.66±0.13* 306.59±14.86* 8.54±0.43*
灌浆期
Filling stage
冀麦5265 Jimai5265 15.89±0.77 0.27±0.05 98.25±12.67 6.12±0.69
冀麦5265yg Jimai5265yg 16.93±1.05* 0.32±0.05 109.40±6.88 7.34±0.92*

Table 4

The chlorophyll fluorescence parameters in Jimai5265 and Jimai5265yg"

参数
Parameter
拔节期 Jointing stage 开花期Flowering stage 灌浆期Filling stage
冀麦5265
Jimai5265
冀麦5265yg
Jimai5265yg
冀麦5265
Jimai5265
冀麦5265yg
Jimai5265yg
冀麦5265
Jimai5265
冀麦5265yg
Jimai5265yg
F0 0.331±0.009 0.201±0.014** 0.350±0.015 0.315±0.016* 0.394±0.010 0.335±0.013*
F0' 0.233±0.005 0.186±0.005** 0.318±0.012 0.291±0.017 0.380±0.011 0.347±0.016
Fm' 0.477±0.012 0.633±0.039** 1.305±0.056 1.293±0.141 1.514±0.065 1.362±0.132
Fv/Fm 0.729±0.009 0.758±0.014* 0.831±0.007 0.841±0.010* 0.817±0.008 0.817±0.006
ΦqP 0.306±0.030 0.681±0.040** 0.756±0.010 0.775±0.015* 0.748±0.011 0.744±0.014
ΦPSII 0.322±0.030 0.486±0.039** 0.572±0.041 0.611±0.029 0.578±0.027 0.616±0.008*
qP 0.630±0.073 0.690±0.054 0.773±0.054 0.789±0.040 0.772±0.028 0.827±0.019
NPQ 1.566±0.128 0.323±0.206** 0.601±0.089 0.533±0.088 0.151±0.066 0.070±0.033**
qL 0.456±0.083 0.400±0.067 0.459±0.075 0.462±0.064 0.461±0.034 0.550±0.043

Fig. 3

The light-response curves of Chl fluorescence of the flag leaves at flowering stage between Jimai5265 and Jimai5265yg"

Fig. 4

Antioxidant enzymes activity and MDA content in flag leaves of Jimai5265 and Jimai5265yg"

Fig. 5

Dynamic changes on the content of soluble sugar and protein in flag leaves of Jimai5265 and Jimai5265yg"

Table 5

Species and concentrations of soluble sugars of leaves in Jimai5265 and Jimai5265yg (μg·mL-1)"

材料 Material 果糖 Fructose 葡萄糖 Glucose 蔗糖 Sucrose 松三糖 Melezitose
冀麦5265 Jimai5265 12.942±3.564a 24.073±4.644a 15.737±9.366b 0.032±0.022b
冀麦5265yg Jimai5265yg 17.442±5.497a 28.749±7.785a 60.67±15.500a 0.091±0.045a

Fig. 6

Activity changes of carbon assimilation key enzyme for photosynthesis in flag leaves of Jimai5265 and Jimai5265yg"

Table 6

Comparison of photosynthetic indexes in leaves of Jimai 5265 and Jimai 5265yg under different treatments"

处理
Treatment
材料
Material
净光合速率
Pn (µmol·m-2·s-1)
气孔导度
Gs (mmol·m-2·s-1)
胞间CO2浓度
Ci (µmol·mol-1)
蒸腾速率
Tr (mmol·m-2·s-1)
正常光照
Normal conditions
冀麦5265 Jimai5265 20.95±1.37 0.38±0.06 286.92±17.33 7.59±0.62
冀麦5265yg Jimai5265yg 25.63±1.02* 0.66±0.13* 306.59±14.86 8.54±0.43*
遮阴10天
Shade 10 days
冀麦5265 Jimai5265 16.61±1.28 0.28±0.04 281.26±13.82 5.59±0.78
冀麦5265yg Jimai5265yg 15.51±1.38 0.22±0.07 260.59±31.60 5.16±1.36
恢复3天
Recover 3 days
冀麦5265 Jimai5265 24.27±1.98 0.56±0.14 260.04±20.35 4.37±1.21
冀麦5265yg Jimai5265yg 29.42±5.03* 0.51±0.27 217.34±70.67 3.07±0.95*
抗坏血酸处理
AsA treatment
冀麦5265 Jimai5265 25.90±1.01 0.57±0.09 295.04±15.31 9.31±0.25
冀麦5265yg Jimai5265yg 14.47±1.53* 0.33±0.11* 284.91±24.85 8.15±1.12*
二硫苏糖醇处理
DTT treatment
冀麦5265 Jimai5265 11.46±2.65 0.32±0.11 306.34±24.85 6.94±1.20
冀麦5265yg Jimai5265yg 17.51±2.52* 0.48±0.15* 294.25±20.28 10.10±1.09*
[36] 黄小辉, 冯大兰, 刘芸, 朱恒星, 陈道静, 耿养会. 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性. 北京林业大学学报, 2016, 38(10):50-58.
HUANG X H, FENG D L, LIU Y, ZHU H X, CHEN D J, GENG Y H. Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area. Journal of Beijing Forestry University, 2016, 38(10):50-58. (in Chinese)
[37] AGARIE S, MIURA A, SUMIKURA R, TSUKAMOTO S, NOSE A, ARIMA S, MATAUOKA M, MIYAO-TOKUTOMI M. Overexpression of C4PEPC caused O-2-insensitive photosynthesis in transgenic rice plants. Plant Science, 2002, 162(2):257-265.
doi: 10.1016/S0168-9452(01)00572-6
[38] 欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37(10):1860-1867.
doi: 10.3724/SP.J.1006.2011.01860
OU L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agronomica Sinica, 2011, 37(10):1860-1867. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01860
[39] RUBAN A V. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 2007, 450(7169):575-578.
doi: 10.1038/nature06262
[1] CHEN H, CHENG Z J, MA X D, WU H, LIU Y L, ZHOU K N, CHEN Y L, MA W W, BI J C, ZHANG X, GUO X P, WANG J L, LEI C L, WU F Q, LIN Q B, LIU Y Q, LIU L L, JIANG L. A knockdown mutation of yellow-green leaf2 blocks chlorophyll biosynthesis in rice. Plant Cell Reports, 2013, 32(12):1855-1867.
doi: 10.1007/s00299-013-1498-y
[2] 曹莉. 一个新的小麦黄化突变体研究[D]. 杨凌: 西北农林科技大学, 2007.
CAO L. Characterization and genetics of a novel aurea mutant in wheat[D]. Yangling: Northwest A&F University, 2007. (in Chinese)
[3] 李宁. 小麦黄绿突变体特性研究与遗传分析[D]. 北京: 中国农业科学院, 2012.
LI N. Characterization and genetic analysis of yellow green mutants in wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[4] 李倩倩. 小麦白斑突变体I30的特征特性及遗传分析[D]. 杨凌: 西北农林科技大学, 2017.
[40] MASAHIRO I, NOZOMU U, FUMIHIKO S, TSUYOSHI E. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions. Plant and Cell Physiology, 2014, 55(7):1286-1295.
doi: 10.1093/pcp/pcu069
[4] LI Q Q. Characteristic and genetic analysis of common wheat mutant I30 with white stripe pattern[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[5] CAMPBELL B W, MANI D, CURTIN S J, SLATTERY R A, MICHNO J M, ORT D R, SCHAUS P J, PALMER R G, ORF J H, STUPAR R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3 Genes Genomes Genetics, 2015, 5(1):123-131.
[6] 孔可可, 许孟歌, 刘美凤, 孔杰杰, 盖钧镒, 赵团结. 大豆芽黄新突变体 vl-1的光合特性与基因定位. 核农学报, 2018, 32(5):840-847.
KONG K K, XU M G, LIU M F, KONG J J, GAI J Y, ZHAO T J. Identification and fine mapping of a new virescent mutant vl-1 in soybean. Journal of Nuclear Agricultural Sciences, 2018, 32(5):840-847. (in Chinese)
[7] 钟世宜, 魏海忠, 王红红, 赵燕, 徐长利, 韩帅, 刘保申. 玉米白化突变体As-81647的鉴定及基因定位. 山东农业科学, 2013, 45(10):12-15.
ZHONG S Y, WEI H Z, WANG H H, ZHAO Y, XU C L, HAN S, LIU B S. Identification and molecular mapping of an albino mutant gene As-81647 in maize (Zea mays L.). Shandong Agricultural Sciences, 2013, 45(10):12-15. (in Chinese)
[8] 江媛, 何筠, 范术丽, 俞嘉宁, 宋美珍. 棉花芽黄突变体10个叶绿体蛋白编码基因RNA编辑位点的测定及分析. 棉花学报, 2011, 23(1):3-9.
JIANG Y, HE Y, FAN S L, YU J N, SONG M Z. The identification and analysis of RNA editing sites of 10 chloroplast protein-coding genes from virescent mutant of Gossypium hirsutum. Cotton Science, 2011, 23(1):3-9. (in Chinese)
[9] 宋明梅, 范术丽, 庞朝友, 魏恒玲, 喻树迅, 宋美珍. 棉花芽黄材料主要光合特性和农艺性状的研究. 棉花学报, 2015, 26(6):531-538.
SONG M M, FAN S L, PANG C Y, WEI H L, YU S X, SONG M Z. Research on the main photosynthetic characteristics and agronomic traits in virescent cotton materials. Cotton Science, 2015, 26(6):531-538. (in Chinese)
[10] 孙捷音, 张年辉, 杜林方. 油菜叶绿素b减少突变体 Cr3529叶绿素生物合成的研究. 西北植物学报, 2007, 27(10):1962-1966.
SUN J Y, ZHANG N H, DU L F. Chlorophyll biosynthesis in a chlorophyll b deficient oilseed rape mutant cr3529. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(10):1962-1966. (in Chinese)
[11] 殷家明, 杨惠娟, 彭柳, 黄梦珠, 唐章林, 李加纳, 李超. 甘蓝型油菜叶色黄化突变体Bn.el1研究. 西南大学学报(自然科学版), 2016, 38(5):1-6.
YIN J M, YANG H J, PENG L, HUANG M Z, TANG Z L, LI J N, LI C. Preliminary research on the etiolation leaf-color mutant Bn. el1 in Brassica Napus. Journal of Southwest University (Natural Science Edition), 2016, 38(5):1-6. (in Chinese)
[12] BRAUMANN I, STEIN N, HANSSO M. Reduced chlorophyll biosynthesis in heterozygous barley magnesium chelatase mutants. Plant Physiology and Biochemistry, 2014, 78:10-14.
doi: 10.1016/j.plaphy.2014.02.004
[13] QIN D D, DONG J, XU F C, GUO G G, GE S T, XU Q, XU Y X, LI M F. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics, 2015, 16(1):838.
doi: 10.1186/s12864-015-2015-1
[14] AWAN M A, KONZAK C, RUTGER J. Mutagenic effects of sodium azide in rice. Crop Science, 1980, 20:663-668.
doi: 10.2135/cropsci1980.0011183X002000050030x
[15] SHI J Q, WANG Y Q, GUO S, MA L, WANG Z W, ZHU X Y, SANG X C, LING Y H, WANG N, ZHAO F M, HE G H. Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6) mutant in rice. Crop Science, 2015, 45(4):S41.
[16] MA X Z, SUN X Q, LI C M, HUAN R, SUN C H, WANG Y, XIAO F L, WANG Q, CHEN P R, MA F R, ZHANG K, WANG P R, DENG X J. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiology and Biochemistry, 2017, 111:1-9.
doi: 10.1016/j.plaphy.2016.11.007
[17] MEI J S, LI F F, LIU X R, HU G C, FU Y P, LIU W Z. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. Plant Science, 2017, 256:39-45.
doi: 10.1016/j.plantsci.2016.12.005
[18] GUAN H Y, XU X B, HE C M, LIU C X, LIU Q, DONG R, LIU T S, WANG L M. Fine mapping and candidate gene analysis of the leaf-color gene ygl-1 in maize. PLoS ONE, 2016, 11(4):e0153962.
doi: 10.1371/journal.pone.0153962
[19] SHI D Y, ZHENG X, LI L, LIN W H, XIE W J, YANG J P, CHEN S J, JIN W W. Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS ONE, 2013, 8(11):e80107.
doi: 10.1371/journal.pone.0080107
[20] XING A Q, WILLIAMS M E, BOURETT T M, HU W N, HOU Z L, MEELEY R B, JAQUETH J, DAM T, LI B L. A pair of homoeolog ClpP5 genes underlies a virescent yellow-like mutant and its modifier in maize. Plant Journal, 2014, 79(2):192-205.
doi: 10.1111/tpj.12568
[21] LI W, TANG S, ZHANG S, SHAN J G, TANG C J, CHEN Q N, JIA G Q, HAN Y H, ZHI H, DIAO X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet (Setaria italica (L.) P. Beauv). Physiologia Plantarum, 2015, 157(1):24-37.
doi: 10.1111/ppl.2016.157.issue-1
[22] WANG Y K, HE Y J, YANG M, HE J B, XU P, SHAO M Q, CHU P, GUAN R Z. Fine mapping of a dominant gene conferring chlorophyll- deficiency in Brassica napus. Scientific Reports, 2016, 6:31419.
doi: 10.1038/srep31419
[23] WANG R, YANG F, ZHANG X Q, WU D X, TAN C, WESTCOTT S, BROUGHTON S, LI C D, ZHANG W Y, XU Y H. Characterization of a thermo-inducible chlorophyll-deficient mutant in barley. Plant Science, 2017, 14(8):1936.
[24] 秦丹丹, 李梅芳, 许甫超, 徐晴, 葛双桃, 董静. 大麦黄绿叶色突变体ygl的农艺性状及其调控基因初步定位. 麦类作物学报, 2019, 39(6):653-658.
QIN D D, LI M F, XU B C, XU Q, GE S T, DONG J. Analysis of agronomic characters and preliminary mapping of regulatory genes of a barley yellow-green leaf mutant ygl. Journal of Triticeae Crops, 2019, 39(6):653-658. (in Chinese)
[25] ZHANG L L, LIU C, AN X Y, WU H Y, FENG Y, WANG H, SUN D J. Identification and genetic mapping of a novel incompletely dominant yellow leaf color gene, Y1718, on chromosome 2BS in wheat. Euphytica, 2017, 213(7):141.
doi: 10.1007/s10681-017-1894-4
[26] WU H Y, SHI N R, AN X Y, LIU C, FU H F, CAO L, FENG Y, SUN D J, ZHANG L L. Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. International Journal of Molecular Sciences, 2018, 19(6):1594.
doi: 10.3390/ijms19061594
[27] 茹广欣, 刘小囡, 朱秀红, 张龙冲, 王鋆瑞, 周霜晴. 泡桐黄化突变体生理特性分析. 南京林业大学学报(自然科学版), 2017, 41(4):181-185.
RU G X, LIU X N, ZHU X H, ZHANG L C, WANG J R, ZHOU S Q. Physiological characteristic analysis of etiolation mutant in Paulownia fortnnei. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4):181-185. (in Chinese)
[28] 杨小苗, 吴新亮, 刘玉凤, 李天来, 齐明芳. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用. 应用生态学报, 2018, 29(6):1983-1989.
YANG X M, WU X L, LIU Y F, LI T L, QI M F. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS. Chinese Journal of Applied Ecology, 2018, 29(6):1983-1989. (in Chinese)
[29] 胡亮亮, 赵子瑶, 张海强, 陈菲帆, 张朝文, 戎福喜, 陈鹏, 李玉红. 一个新的黄瓜叶色突变体的光合特性分析. 西北农业学报, 2018, 27(11):1622-1628.
HU L L, ZHAO Z Y, ZHANG H Q, CHEN F F, ZHANG C W, WU F X, CHEN P, LI Y H. Photosyntheic characteristic analysis of new leaf color mutant in cucumber. Acta Agriculturae Boreali-Occidentalia Sinica, 2018, 27(11):1622-1628. (in Chinese)
[30] 曹莉, 王辉, 孙道杰, 冯毅, 李学军, 闵东红. 小麦黄化突变体类囊体蛋白组分及叶绿素的合成特性. 麦类作物学报, 2010, 30(4):638-643.
CAO L, WANG H, SUN D J, FENG Y, LI X J, MIN D H. Chloroplast thylakoid protein composition and characteristics of chlorophyll biosynthesis in a novel aurea mutant of wheat. Journal of Triticeae Crops, 2010, 30(4):638-643. (in Chinese)
[31] DAI X B, XU X M, LU W. Photoinhibition characterristics of a low chlorophyll b mutant of high yield rice. Photosynthetica, 2003, 41:57-60.
doi: 10.1023/A:1025804327776
[32] ZHOU X S, SHEN S Q, WU D X, SUN J W, SHU Q Y. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Research, 2006, 96(1):71-79.
doi: 10.1016/j.fcr.2005.05.008
[33] DENG X J, ZHANG H Q, WANG Y, HE F, LIU J L, XIAO X, SHU Z F, LI W, WANG G H, WANG G L. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS ONE, 2014, 9(6):e99564.
doi: 10.1371/journal.pone.0099564
[34] LICHTENTHALER H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148:350-382.
[35] 叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6):727-740
doi: 10.3773/j.issn.1005-264x.2010.06.012
YE Z P. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010, 34(6):727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[5] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[6] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[7] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[8] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[9] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[10] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[11] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[12] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[13] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[14] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[15] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!