Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3592-3608.doi: 10.3864/j.issn.0578-1752.2021.17.004

• CLIMATE CHANGE AND MAIZE PRODUCTION IN CHINA • Previous Articles     Next Articles

Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage

YAN ZhenHua(),LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun()   

  1. College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046
  • Received:2020-09-03 Accepted:2021-01-05 Online:2021-09-01 Published:2021-09-09
  • Contact: Qun WANG E-mail:yanzhenhua1996@163.com;wangqun177@163.com

Abstract:

【Objective】 Global seasonal high temperature and drought have become the main limiting factors affecting crop growth and development as well as yield formation. Based on artificial simulation of the climate characteristics of periodic high temperature and drought stress, the effects of high temperature stress, drought stress and the combined stress of high temperature and drought during the flowering stage on morphological development and physiological characteristics of tassel and yield formation of summer maize were explored in this study. 【Method】 The experiment was conducted by pot-experiment in the greenhouse with intelligent control system for two years. Zhengdan 958 (ZD958) and Huanong 138 (HN138) were used as the experimental materials. The four treatments of control (CK), flowering high-temperature stress treatment (T), flowering drought stress treatment (D) and flowering high-temperature-drought combined stress treatment (TD) were set up to study the tassel morphology, anther and pollen structure, pollen viability, tassel antioxidant index and yield of summer maize in response to high temperature and drought during flowering stage. 【Result】 High temperature, drought and combined stress resulted in significant reduction in the tassel branch number, tassel central branch spikelet number and tassel branch spikelet density in maize, and these three parameters of T treatment were 17.31%, 15.70% and 13.56% lower than that under CK, respectively; D and TD treatments were 33.85%, 24.87%, 27.08% and 45.59%, 32.02%, 26.00% lower than CK, respectively. Drought and combined stress significantly shortened tassel central branch length by 23.64% and 27.51%, respectively, compared with CK. High temperature stress and drought stress at flowering stage led to anther shrinkage and deformation, loose arrangement of tapetum cells, and reticular protrusion on pollen grain surface. Combined stress aggravated anther shrinkage and deformation, broken of tapetum cells. And the septal vascular bundles became thinner, the number decreased, the reticular protrusion of pollen grains was more obvious, and the germination holes were invaginated under combined stress. High temperature, drought and combined stress significantly reduced the dispersed amount of pollen in tassel, and the dispersed amount of pollen under T, D and TD treatments was 22.18%, 54.75% and 67.28% less than CK, respectively. The date of maximum dispersed amount of pollen was earlier than that under CK. T, D and TD treatments significantly reduced the proportion of highly vigorous pollen compared with CK. T treatment increased the activities of SOD and POD enzymes in the tassel by 21.91% and 32.50%, respectively, compared with CK; While those under D and TD treatment increased by 24.95% (SOD), 53.37% (POD) and 17.12% (SOD), 67.24% (POD), respectively, compared with CK. The MDA content in the tassel under T, D and TD treatment increased by 44.18%, 64.24%, and 79.12%, respectively, compared with CK; The $\mathop{{O}}_{2}^{{\mathop{}_{\ •}^{-}}}$ content increased by 22.55%, 51.65%, 72.29%, respectively, compared with CK. High temperature, drought and combined stress reduced maize yield and grain number per row by 18.05%, 34.58%, 46.24% and 24.58%, 41.80%, 52.99%, respectively, compared with CK. Under stress treatment, the tassel branch number, the tassel central branch spikelet number and the tassel branch spikelet density of HN138 were decreased by 27.00% and 17.28%, respectively, compared with ZD958; The distortion degree of anther and pollen structure of HN138 was higher than that of ZD958, and the increase of antioxidant enzyme activity was less than that of ZD958, but MDA and O2 ·-content were 13.07% and 20.29% higher than that of ZD958. HN138 was more sensitive to high temperature, drought and combined stress between two cultivars. 【Conclusion】 The results showed that high temperature, drought and combined stress significantly inhibited the growth and development of tassel, led to the distorted morphological structure of anther and pollen, reduced the dispersed amount of pollen, decreased the activity of antioxidant enzymes, and inhibited the normally pollination and fructification, thus resulting in the decreased kernel number and grain yield. The effect of combined stress of high temperature and drought on tassel was greater than that of single stress, but the response of different varieties to high temperature and drought was different.

Key words: summer maize, high temperature and drought, tassel-related traits, pollen structure and vitality, antioxidant enzyme activity, yield

Fig. 1

Changes of daily temperature and relative water content under different stress treatments CK: Control, TMAX: Daily maximum temperature under high temperature stress, CKMAX: Daily maximum temperature under control, TAVE: Daily average temperature under high temperature stress, CKAVE: Daily average temperature under control, T: Flowering high-temperature stress treatment, D: Flowering drought stress treatment, TD: Flowering high-temperature-drought combined stress treatment. The same as below"

Table 1

Effects of different stress treatments on tassel-related traits of maize"

年份
Year
品种
Cultivar
处理
Treatment
主轴长
Tassel central
branch length (cm)
主轴小花数
Tassel central branch
spikelet number
分枝数
Tassel branch
number
分枝小花密度
Tassel branch spikelet density (count/cm)
2018 ZD958 CK 38.40±1.06a 268.44±21.46a 14.84±2.04a 3.14±0.59a
T 38.38±2.70a 256.42±20.07ab 12.21±1.60b 3.02±0.45b
D 30.52±1.81b 227.24±12.65bc 10.2±1.60bc 2.73±0.38c
TD 28.78±2.75b 197.47±25.55c 9.43±1.62c 2.62±0.23c
HN138 CK 42.78±3.15a 193.69±10.09a 4.00±1.26a 2.44±0.17a
T 33.92±2.07b 153.88±12.46ab 3.44±0.80ab 2.29±0.32b
D 31.84±1.79c 138.15±9.23bc 2.63±0.80ab 1.77±0.28c
TD 29.82±1.60c 130.45±17.58c 2.00±0.89b 2.26±0.31b
2019 ZD958 CK 38.25±4.64a 309.60±14.89a 17.80±1.33a 4.02±0.14a
T 36.51±2.27a 268.40±10.03b 14.80±1.47b 3.04±0.22b
D 30.35±2.26b 245.60±35.67b 12.00±1.10c 2.45±0.15c
TD 29.79±1.32b 198.80±9.66c 9.60±1.36d 2.35±0.28c
HN138 CK 45.96±1.28a 220.40±8.59a 4.80±1.72a 3.27±0.48a
T 35.79±0.57b 166.60±3.44b 3.80±0.98a 2.62±0.18a
D 33.18±0.39b 143.80±4.35c 3.00±1.10b 2.33±0.15ab
TD 30.99±1.25c 147.20±9.27d 2.40±1.02b 2.01±0.15b
变异来源
Source of variation
年份 Year NS NS NS NS
品种 Cultivar ** ** ** **
处理 treatment ** ** ** **
年份×品种 Year×Cultivars NS NS NS NS
年份×处理 Year×Treatment NS NS NS NS
品种×处理 Cultivars×Treatment ** ** * NS
年份×品种×处理 Year×Cultivars×Treatment NS NS NS NS

Fig. 2

Effects of different stress treatments on pollen activities of tassel HA: High activity; LA: Low activity; NA: No activity. A: CK-ZD958; B: T-ZD958; C: D-ZD958; D: TD-ZD958; E: CK-HN138; F: T-HN138; G: D-HN138; H: TD-HN138(×40). Values within a group followed by different letters are significantly different at 0.05 probability level"

Fig. 3

Effects of different stress treatments on the daily pollen emission of tassel *,**means the peak values of different treatments are significantly different at 0.05 or 0.01 level. The same as below"

Fig. 4

Effects of different stress treatments on anther microstructure and pollen morphology 1: Epiderm cell; 2: Middle layer cell; 3: Anther chamber; 4: Pollen grain; 5: Vascular bundle(×200). A1: CK-ZD958; B1: T-ZD958; C1: D-ZD958; D1: TD-ZD958; E1: CK-HN138; F1: T-HN138; G1: D-HN138; H1: TD-HN138(×200); A2: CK-ZD958; B2: T-ZD958; C2: D-ZD958; D2: TD-ZD958; E2: CK-HN138; F2: T-HN138; G2: D-HN138; H2: TD-HN138(×1000) "

Fig. 5

Effects of different stress treatments on superoxide dismutase activities of tassel"

Fig. 6

Effects of different stress treatments on peroxidase activities of tassel"

Fig. 7

Effect of different stress treatments on MDA content"

Fig. 8

Effects of different stress treatments on superoxide anion radical content"

Table 2

Effects of different stress treatments on yield and yield components"

年份
Year
品种
Cultivars
处理
Treatment
穗长
Ear length (cm)
穗粗
Ear diameter (mm)
秃尖
Bald tip
(mm)
穗行数
Ear rows
行粒数
Kernels per row
千粒重
1000 grain weight (g)
产量
Yield
(kg·hm-2)
2018 ZD958 CK 15.91±1.12a 52.12±2.11a 2.39±2.24c 17.60±1.20a 33.40±1.43a 322.09±5.77a 12620.21±279.16a
T 14.95±0.65a 49.66±2.01b 4.59±0.85c 17.20±2.04a 26.70±2.69b 322.08±5.93a 9762.19±230.86b
D 11.57±1.30b 45.34±3.05c 10.01±1.17b 15.80±2.27a 17.50±2.91c 295.49±11.84b 7700.68±151.23c
TD 10.39±0.83c 42.58±1.75d 22.64±6.87a 15.80±1.66a 15.40±2.24c 305.45±13.19b 5809.84±153.80d
HN138 CK 17.48±1.03a 49.18±1.65a 6.58±3.48b 15.40±1.29a 32.40±2.54a 261.39±5.15a 9387.42±170.16a
T 15.22±0.51b 49.39±1.04a 33.99±4.19a 15.00±1.00a 24.90±1.97b 252.25±7.11b 7677.14±186.88b
D 12.92±1.18c 41.68±3.55b 32.76±5.23a 15.20±0.98a 19.50±1.57c 240.06±3.50c 5070.93±139.57c
TD 11.11±0.91d 40.58±2.52b 30.65±9.76a 15.00±1.34a 15.90±1.92d 239.64±7.38c 4145.12±179.17d
2019 ZD958 CK 15.62±0.32a 51.41±2.61a 2.19±1.85a 16.60±1.56a 36.00±1.55a 350.98±12.79a 12984.97±148.62a
T 14.36±0.25a 49.04±1.36b 5.53±0.46a 15.80±1.40a 23.90±1.97b 329.65±16.62ab 9870.79±182.17b
D 11.98±0.97b 46.24±1.42c 9.03±0.68b 14.60±0.92a 19.20±2.40c 334.93±18.91a 9371.21±128.42c
TD 10.66±0.52c 45.69±1.76c 17.49±1.96c 14.00±1.26a 15.00±1.79d 305.14±19.33b 8419.67±189.74d
HN138 CK 19.57±1.45a 49.71±0.89a 7.43±2.46c 16.00±1.26a 29.30±2.72a 265.86±11.30a 10153.57±218.83a
T 18.19±1.72a 49.08±0.72a 53.53±16.96b 15.40±1.28a 23.00±2.45b 259.37±6.71b 9368.37±123.10b
D 14.60±1.27b 46.19±0.75b 53.24±14.18a 15.20±1.33a 19.60±2.46c 250.63±5.53b 7469.07±188.68c
TD 11.47±1.81c 42.53±1.90c 37.92±7.56a 15.00±1.84a 15.00±1.41d 248.98±6.52c 6005.79±188.81d
变异来源
Source of variation
年份 Year NS NS NS NS NS NS NS
品种 Cultivars ** ** ** ** * ** **
处理 Treatment ** ** ** ** ** ** **
年份×品种
Year×Cultivars
NS NS * * * NS NS
年份×处理 Year×Treatment NS NS NS NS * NS NS
品种×处理 Cultivars×Treatment ** ** ** NS * ** NS
年份×品种×处理
Year×Cultivars×Treatment
NS NS NS NS * NS NS

Table 3

Correlation of yield, yield components and tassel traits under different stress treatments"

年份
Year
雄穗相关指标
Tassel-related trait
ZD958 HN138
产量
Yield
穗粒数
Grains per ear
千粒重
1000 grain weight
产量
Yield
穗粒数
Grains per ear
千粒重
1000 grain weight
2018 主轴长 Tassel central branch length 0.7769** 0.8150** 0.3344 0.7330** 0.6034* 0.3704
主轴小花数 Central branch spikelet number 0.7283** 0.7111** 0.2555 0.5745* 0.5532* 0.3407
分枝数 Tassel branch number 0.5045 0.2377 0.4747 0.5363* 0.5928* 0.3608
分枝小花密度Tassel branch spikelet density 0.4037 0.3208 0.2157 0.0987 0.0746 0.3723
花粉量 Fresh pollen weight 0.9239** 0.8321** 0.5518* 0.8918** 0.8639** 0.6431**
花粉活力 Pollen activity 0.8568** 0.7896 0.5887* 0.6146* 0.7228** 0.3597
2019 主轴长 Central tassel branch length 0.6070* 0.5580* 0.3178 0.7899** 0.6511** 0.4437
主轴小花数 Central tassel flower number 0.7211** 0.7551** 0.4336 0.7341** 0.6079* 0.4898
分枝数 Tassel branch number 0.6441** 0.5593* 0.5658* 0.8242** 0.7488** 0.4379
分枝小花密度Tassel branch spikelet density 0.5432* 0.6943** 0.3372 0.8184** 0.7597** 0.5946*
花粉量 Pollen weight 0.7325** 0.7821** 0.2890 0.9314** 0.7433** 0.4112
花粉活力 Pollen activity 0.8268** 0.8279** 0.4186 0.9002** 0.6874** 0.4067
[1] 张在一, 毛学峰, 杨军. 站在变革十字路口的玉米: 主粮还是饲料粮之论? 中国农村经济, 2019, 6(9): 38-53.
ZHANG Z Y, MAO X F, YANG J. Maize at the crossroads: Staple food grain or feed grain? Chinese Rural Economy, 2019, 6(9): 38-53. (in Chinese)
[2] 许吟隆, 黄晓莹, 张勇, 林万涛, 林而达. 中国21世纪气候变化情景的统计分析. 气候变化研究进展, 2005, 1(2): 80-83.
XU Y L, HUANG X Y, ZHANG Y, LIN W T, LIN E D. Statistical analyses of climate change scenarios over China in the 21st century. Advances in Climate Change Research, 2005, 1(2): 80-83. (in Chinese)
[3] 苏勃, 高学杰, 效存德. IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读. 气候变化研究进展, 2019, 15(4): 395-404.
SU B, GAO X J, XIAO C D. Interpretation of IPCC SR1.5 on cryosphere change and its impacts. Climate Change Research, 2019, 15(4): 395-404. (in Chinese)
[4] 和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41(1): 1-15.
HE H Y, HU Q, PAN X B, MA X Q, HU L T, WANG X C, HE Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China plain under climate change. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese)
[5] CAIRNS J E, CROSSA J, ZAIDI P H. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science, 2013, 53(4): 1335-1346.
doi: 10.2135/cropsci2012.09.0545
[6] 袁宏伟, 蒋尚明, 杨继伟, 刘佳. 基于生理生态指标的玉米受旱胁迫响应规律研究. 节水灌溉, 2019(5): 5-10.
YUAN H W, JIANG S M, YANG J W, LIU J. The response regularity of maize under drought stress based on physiological indexes. Water Saving Irrigation, 2019(5): 5-10. (in Chinese)
[7] 刘云鹏, 梁效贵, 申思, 周丽丽, 高震, 周顺利. 梯度干旱胁迫下玉米光合碳的日变化及品种偏向性. 中国农业科学, 2017, 50(11): 2083-2092.
LIU Y P, LIANG X G, SHEN S, ZHOU L L, GAO Z, ZHOU S L. Diurnal variation and directivity of photosynthetic carbon metabolism in maize hybrids under gradient drought stress. Scientia Agricultura Sinica, 2017, 50(11): 2083-2092. (in Chinese)
[8] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45(23): 4947-4958.
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S, Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea Mays L.). Scientia Agricultura Sinica, 2012, 45(23): 4947-4958. (in Chinese)
[9] 于康珂, 孙宁宁, 詹静, 顾海靖, 刘刚, 潘利文, 刘天学. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响. 玉米科学, 2017, 25(4): 84-91.
YU K K, SU N N, ZHAN J, GU H J, LIU G, PAN L W, LIU T X. Effect of heat stress stress on physiological characteristics of tassel and ear in different maize varieties. Journal of Maize Sciences, 2017, 25(4): 84-91. (in Chinese)
[10] 宋方威, 吴鹏, 邢吉敏, 周小英, 崔筱然, 于秀萍, 王进. 高温胁迫对玉米自交系父本花粉生活力的影响. 玉米科学, 2014, 22(3): 153-158.
SONG F W, WU P, XING J M, ZHOU X Y, CUI X R, YU X P, WANG J. Influences of heat stress on viability of pollen grain inbred lines of male parent. Journal of Maize Sciences, 2014, 22(3): 153-158. (in Chinese)
[11] TSUTOMU M, KENJI O. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: Anther characteristics. Annals of Botany, 2002(6): 683-687.
[12] PORCH T G, JAHN M. Effects of high temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of phaseolus vulgaris. Plant Cell & Environment, 2001, 24(7): 723-731.
[13] 张桂莲, 张顺堂, 肖浪涛, 唐文帮, 肖应辉, 陈立云. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响. 中国水稻科学, 2014, 28(2): 155-166.
ZHANG G L, ZHANG S T, XIAO L T, TANG W B, XIAO Y H, CHEN L Y. Effect of heat stress on physiological characteristics of anther, pollen and stigma of rice during heading-flowering stage. Chinese Journal of Rice Science, 2014, 28(2): 155-166. (in Chinese)
[14] 邓运, 田小海, 吴晨阳, 松井勤, 肖波. 热害胁迫条件下水稻花药发育异常的早期特征. 中国生态农业学报. 2010, 18(2): 377-383.
doi: 10.3724/SP.J.1011.2010.00377
DENG Y, TIAN X H, WU C Y, SONG J Q, XIAO B. Early signs of heat stress-induced abnormal development of anther in rice. Chinese Journal of Eco-Agriculture, 2010, 18(2): 377-383. (in Chinese)
doi: 10.3724/SP.J.1011.2010.00377
[15] 宋凤斌, 戴俊英. 玉米对干旱胁迫的反应和适应性. 吉林农业大学学报, 2005, 27(1): 1-5, 10.
SONG F B, DAI J Y. Response and adaptability of maize to drought stress. Journal of Jilin Agricultural University, 2005, 27(1): 1-5, 10. (in Chinese)
[16] 刘永辉. 夏玉米不同生育时期对水分胁迫的生理反应与适应. 干旱区资源与环境. 2013, 27(2): 171-175.
LIU Y H. Physiological responses and adaptation of summer maize (Zea mays L.) to water stress during different growth periods. Journal of Arid Land Resources and Environment, 2013, 27(2): 171-175. (in Chinese)
[17] BARNANAS B, JAJER K, FEHER A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell & Environment, 2008(31): 11-38.
[18] 刘聪, 董腊嫒, 林建中. 逆境胁迫下植物体内活性氧代谢及调控机理研究进展. 生命科学研究, 2019(3): 253-258.
LIU C, DONG L Y, LIN J Z. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses. Life Science Research, 2019(3): 253-258. (in Chinese)
[19] BAI L P, SUI F G, GE T D, SUN Z H, LU Y Y, ZHOU G S. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16(3): 326-332.
doi: 10.1016/S1002-0160(06)60059-3
[20] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊, 潘旭. 玉米花期高温响应的基因型差异及其生理机制. 作物学报, 2012, 38(5): 857-864.
doi: 10.3724/SP.J.1006.2012.00857
ZHAO L F, LI C H, LIU T X, WANG X P, SENG S S, PAN X, Genotypic responses and physiological mechanisms of maize (Zea Mays L.) to high temperature stress during flowering. Acta Agronomica Sinica, 2012, 38(5): 857-864. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00857
[21] 张仁和, 郭东伟, 张兴华, 路海东, 刘建超, 李凤艳, 郝引川, 薛吉全. 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012, 38(10): 1884-1890.
doi: 10.3724/SP.J.1006.2012.01884
ZHANG R H, GUO D W, ZHANG X H, LU H D, LIU J C, LI F Y, HAO Y C, XUE J Q. Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agronomica Sinica, 2012, 38(10): 1884-1890. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01884
[22] SAIDI Y, FINKA A, MURISET M, BROMBERG Z, WEISS Y G, MAATHUIS F J M, GOLOUBINOFF P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell, 2009, 21: 2829-2843.
doi: 10.1105/tpc.108.065318
[23] FRAGKOSTEFANAKIS S, MESIHOVIC A, HU Y, SCHLEIFF E. Unfolded protein response in pollen development and heat stress tolerance. Plant Report, 2016, 29: 81-91.
[24] HU L, LIANG W, YIN C, CUI X, ZONG J, WANG X, HU J, ZHANG D . Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 2011 23: 515-533.
doi: 10.1105/tpc.110.074369
[25] KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 2010, 140: 136-147.
doi: 10.1016/j.cell.2009.11.006
[26] CAIRNS J, CROSSA J, ZAIDI P H, GRUDLOYMA P, SANCHEZ C, ARAUS J L, THAITAD S, MAKUMBI D, MAGOROKOSHO C, BANZIGER M, MENKIR A, HEARNE S, ATHIN G N. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science, 2013, 53(4): 13-35.
[27] GIRAUD E, HO L H M, CLIFTON R, CARROLL A, ESTAVILLO G, TAN Y F, HOWELL K A, IVANOVA A, POGSON B J, MILLAR A H, WHELAN J. The absence of alternative oxidase in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiology, 2008, 147: 595-610.
doi: 10.1104/pp.107.115121
[28] VILE D, PERVENT M, BELLUAU M, VASSEUR F, BRESSON J, MULLER B, GRANIER C, SIMONNEAU T. Arabidopsis growth under prolonged heat stress and water deficit: independent or interactive effects? Plant Cell & Environment, 2012, 35: 702-718
[29] SUZUKI N, RIVERO R M, SHULAEV V, BLUMWALD E, MITTLER R. Abiotic and biotic stress combinations. New Phytologist, 2014, 203: 32-43
doi: 10.1111/nph.2014.203.issue-1
[30] 赵俊, 木万福, 张志星. 植物石蜡切片技术改进. 安徽农学通报, 2009, 15(5): 75-78.
ZHAO J, MU W F, ZHANG Z X. Improvement of plant paraffin section technical. Anhui Agricultural Science Bulletin, 2009, 15(5): 75-78. (in Chinese)
[31] 赵世杰. 植物生理学实验指导. 北京: 中国农业出版社, 2016.
ZHAO S J. Experimental Guidance of Plant Physiology. Beijing: China Agriculture Press, 2016. (in Chinese)
[32] 岳玉兰, 朱敏, 于雷. 玉米雄穗对产量影响研究进展. 玉米科学, 2010, 18(4): 150-152.
YUE Y L, ZHU M, YU L. Research progress on the impact of maize tassel on yield. Journal of Maize Sciences, 2010, 18(4): 150-152. (in Chinese)
[33] 于康珂. 玉米穗发育对高温胁迫的响应[D]. 郑州:河南农业大学, 2016.
YU K K. Responses of reproductive organs development in maize (Zea mays L.) to high temperature stress[D]. Zhengzhou: Henan Agriculture University, 2016. (in Chinese)
[34] OBATA T, WITT S, LISEC J, PALACIOS-ROJAS N, FLOREZ- SARASA I, YOUSFI S, ARAUS J L, CAIRNS J E, FERNIE A R. Metabolite profiles of maize leaves in drought, heat and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiology, 2015(169): 2665-2683
[35] 郭晶心, 曾文智, 周宝津. 开花期高温胁迫对不同水稻品种花粉萌发和结实的影响. 华南农业大学学报. 2010, 1(2): 50-53.
GUO J X, ZENG W Z, ZHOU B J. Effects of high temperature stress on pollen germination and seed setting of different rice varieties at flowering stage. Journal of South China Agricultural University, 2010, 1(2): 50-53. (in Chinese)
[36] GUILIONI L, WERY J, LECOEUR J. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Functional Plant Biology, 2003(30): 1151-1164.
[37] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
YU K K, LIU Y, LI Y M, SUN N N, ZHAN J, YOU D L, NIU L, LI C H, LIU T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. Journal of Maize Sciences, 2016, 24(2): 62-71. (in Chinese)
[38] 张桂莲, 陈立云, 张顺堂, 刘国华, 唐文邦, 李梅华, 雷东阳, 陈信波. 高温胁迫对水稻花粉粒性状及花药显微结构的影响. 生态学报, 2008, 28(3): 1089-1097.
ZHANG G L, CEHN L Y, ZHANG S T, LIU G H, TANG W B, LI M H, LEI D Y, CHEN X B. Effects of high temperature stress on pollen characters and anther microstructure of rice. Acta Ecologica Sinica, 2008, 28(3): 1089-1097. (in Chinese)
[39] 安盼盼, 明博, 董朋飞, 张秒, 黄大召, 赵亚丽, 李潮海. 黄淮南部玉米产量对气候生态条件的响应. 作物学报, 2018, 44(3): 442-453.
doi: 10.3724/SP.J.1006.2018.00442
AN P P, MING B, DONG P F, ZHANG M, HUANG D Z, ZHAO Y L, LI C H. Response of Maize (Zea mays L.) yield to climatic ecological condition on the South Yellow-Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2018, 44(3): 442-453. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00442
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!