Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (4): 769-784.doi: 10.3864/j.issn.0578-1752.2022.04.012

• HORTICULTURE • Previous Articles     Next Articles

Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics

PENG JiaKun1,2(),DAI WeiDong1(),YAN YongQuan3,ZHANG Yue1,CHEN Dan1,DONG MingHua3,LÜ MeiLing4,LIN Zhi1()   

  1. 1Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008
    2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
    3Yongchun Agricultural and Rural Bureau, Quanzhou 362600, Fujian
    4Agilent Technologies (China) Co., Ltd., Beijing 100102
  • Received:2021-04-07 Accepted:2021-07-01 Online:2022-02-16 Published:2022-02-23
  • Contact: WeiDong DAI,Zhi LIN;;


【Objective】 Oolong teas made with different tea cultivars have a great difference in flavor and chemical components. In this study, non-targeted metabolomics, absolute quantitative analysis, and multivariate statistics analysis were used to investigate the chemical differences among Yongchun Foshou (YCFS), Tieguanyin (TGY) and Shuixian (SX) oolong tea and to screen characteristic chemical components of YCFS oolong tea, as well as to study the influence of tea cultivars on chemical components and sensory quality of oolong tea. 【Method】 Camellia sinensis cv. Foshou was used as the main research sample and Camellia sinensis cv. Tieguanyin and Camellia sinensis cv. Shuixian were used as the controls. Three tea cultivars were manufactured into fresh-scent, strong-scent and aged-scent oolong teas. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used for non-targeted metabolomics analysis to screen differential compounds in the oolong teas made from different cultivars. In addition, ultra-high performance liquid chromatograph, amino acid analyzer and ultra-high performance liquid chromatography-quadrupole-orbitrap-mass spectrometry (UHPLC-Q-Orbitrap-MS) was applied for absolute quantifications of main chemical constituents and differential compounds in oolong teas made from different tea cultivars. 【Result】 Compared with the control oolong teas of same scent type, YCFS oolong tea had relatively higher contents in total amino acid and theanine. The contents of total catechins and caffeine were not significantly different among the 3 cultivars in fresh-scent and strong-scent oolong teas, which were the highest in YCFS in aged-scent oolong teas. The content of gallic acid was SX>YCFS>TGY in 3 scent types oolong teas. Metabolomics analysis combined with multivariate statistics analysis showed that the compound patterns in oolong teas made from different tea cultivars were significantly different. In fresh-scent, strong-scent and aged-scent oolong teas, there were 50, 59 and 47 differential compounds between YCFS and control cultivar, respectively. Among them, 23 differential compounds were common, including 14 flavone (flavonol) glycosides, 5 catechins and their derivatives, 1 lipid, 1 alkaloid, 1 organic acid and 1 amino acid. Further quantitative analysis of 20 main flavone (flavonol) glycosides showed that the contents of 14 flavone (flavonol) glycosides were the highest in YCFS oolong teas, whose contents were 1.4 to 14.6-fold of that in TGY oolong teas and were 1.3 to 18.0-fold of that in SX oolong teas. Among four kinds of flavone (flavonol) glycosides, quercetin glycosides were the main flavone (flavonol) glycosides with higher contents than glycosides of kaempferol, myricetin and apigenin. Sensory evaluation combined with chemical composition results showed that the higher contents of flavone (flavonol) glycosides did not significantly enhance the astringency of YCFS oolong tea infusions. 【Conclusion】 The metabolomics method effectively characterized the component differences in oolong teas made from different tea cultivars in this study. There were obvious differences in compound patterns among YCFS, TGY and SX oolong teas. Flavone (flavonol) glycosides were the most significantly differential compounds. The higher content of flavone (flavonol) glycosides was a major chemical feature of YCFS oolong tea and was expected to be used as a discriminant index for the identification of oolong tea cultivar in the future.

Key words: oolong tea, cultivar-characteristic components, metabolomics, LC-MS, flavone (flavonol) glycoside

Table 1

Amino acid content of three scents oolong tea made from different tea cultivars (mg·g-1)"

清香型乌龙茶 Fresh-scent oolong tea 浓香型乌龙茶 Strong-scent oolong tea 陈香型乌龙茶 Aged-scent oolong tea
7.66±3.68a 4.96±0.31a 5.45±0.38a 2.14±2.60a 1.32±0.21a 1.39±0.34a 2.28±0.19a 0.96±0.04b 0.74±0.35b
Aspartic acid
1.21±0.48a 0.91±0.05a 1.27±0.08a 0.66±0.43a 0.43±0.03b 0.13±0.03c 0.49±0.05a 0.31±0.03b 0.27±0.04b
0.27±0.12a 0.23±0.01a 0.24±0.04a 0.12±0.10a 0.10±0.02a 0.00±0.00b 0.11±0.03a 0.05±0.01b 0.03±0.03b
0.38±0.12a 0.32±0.02a 0.30±0.06a 0.16±0.14a 0.15±0.04a 0.01±0.01b 0.15±0.07a 0.07±0.02a 0.05±0.02a
0.23±0.34b 0.00±0.00c 0.66±0.08a 0.14±0.17a 0.00±0.00b 0.05±0.05a 0.00±0.00a 0.00±0.00a 0.05±0.09a
Glutamic acid
1.23±0.42a 1.28±0.09a 1.01±0.12a 0.33±0.44a 0.41±0.10a 0.00±0.00b 0.49±0.09a 0.19±0.04b 0.12±0.10b
0.29±0.16a 0.11±0.01b 0.24±0.05a 0.05±0.13a 0.06±0.07a 0.00±0.00b 0.00±0.00a 0.02±0.03a 0.00±0.00a
0.02±0.02a 0.02±0.03a 0.01±0.02a 0.01±0.02a 0.01±0.01a 0.00±0.00b 0.02±0.01a 0.02±0.03a 0.02±0.03a
0.03±0.02a 0.02±0.02a 0.04±0.02a 0.01±0.02a 0.00±0.00b 0.00±0.00b 0.02±0.04a 0.00±0.00a 0.00±0.00a
0.15±0.03a 0.18±0.05a 0.14±0.05a 0.11±0.08a 0.10±0.01a 0.01±0.01b 0.14±0.04a 0.09±0.01a 0.08±0.00a
0.15±0.09a 0.13±0.02a 0.06±0.10a 0.07±0.07a 0.02±0.02b 0.00±0.00c 0.04±0.04a 0.01±0.01a 0.01±0.01a
0.11±0.14a 0.11±0.02a 0.06±0.05a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a
0.01±0.02a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a
0.10±0.06b 0.09±0.01b 0.18±0.01a 0.05±0.05a 0.04±0.01a 0.00±0.00b 0.05±0.01a 0.04±0.01a 0.02±0.02a
0.13±0.06ab 0.10±0.01b 0.19±0.00a 0.07±0.06a 0.05±0.02a 0.00±0.00b 0.10±0.03a 0.08±0.03a 0.05±0.05a
0.13±0.04b 0.09±0.00c 0.25±0.03a 0.06±0.06a 0.02±0.02b 0.00±0.00c 0.10±0.02a 0.03±0.03b 0.01±0.01b
0.55±0.13a 0.37±0.05b 0.47±0.08a 0.39±0.28a 0.25±0.04a 0.00±0.00b 0.37±0.05a 0.29±0.06a 0.17±0.15a
γ-aminobutyric acid
0.30±0.10a 0.08±0.01c 0.15±0.01b 0.13±0.10a 0.04±0.04a 0.04±0.02a 0.11±0.10a 0.04±0.03a 0.03±0.00a
0.09±0.03a 0.08±0.02a 0.12±0.02a 0.04±0.05a 0.04±0.01a 0.00±0.00b 0.03±0.03a 0.01±0.01a 0.01±0.01a
0.24±0.10b 0.28±0.11ab 0.40±0.05a 0.09±0.09a 0.11±0.06a 0.00±0.00b 0.12±0.04a 0.08±0.04a 0.04±0.04a
0.30±0.12ab 0.21±0.06b 0.49±0.09a 0.30±0.18a 0.19±0.07a 0.27±0.12a 0.42±0.28a 0.23±0.10a 0.19±0.07a
0.25±0.17b 0.13±0.03b 0.59±0.01a 0.16±0.13a 0.00±0.00b 0.00±0.00b 0.20±0.22a 0.09±0.08a 0.19±0.11a
Total amino acid
13.82±5.04a 9.70±0.72a 12.29±0.05a 5.10±4.48a 3.34±0.69a 1.45±0.33b 5.25±0.26a 2.59±0.33b 2.07±0.64b

Table 2

The content of catechins, caffeine and gallic acid in three scents oolong teas made from different tea cultivars (mg·g-1)"

清香型乌龙茶 Fresh-scent oolong tea 浓香型乌龙茶 Strong-scent oolong tea 陈香型乌龙茶 Aged-scent oolong tea
65.44±10.69c 72.88±0.04b 81.89±0.22a 54.68±10.66a 68.16±0.15a 36.46±0.09b 50.68±0.05a 37.00±0.11b 31.87±0.06c
2.11±0.35a 1.54±0.01b 0.42±0.06c 3.48±1.54a 1.59±0.01a 3.22±0.01a 1.48±0.02b 0.97±0.01c 2.49±0.01a
表儿茶素没食子酸酯 ECG 20.20±4.39a 18.94±0.02a 22.46±0.06a 16.47±4.13a 16.87±0.03a 10.02±0.02b 13.15±0.01a 8.77±0.02c 9.70±0.02b
儿茶素没食子酸酯 CG 7.50±0.98a 5.33±0.01b 3.28±0.04c 6.58±1.10a 4.47±0.01b 2.66±0.03c 4.31±1.23a 1.43±0.09c 2.61±0.00b
酯型儿茶素总量 Total gallated- type catechins 95.24±16.02b 98.70±0.07b 108.06±0.30a 81.20±15.66a 91.09 ± 0.19a 52.36 ± 0.14b 69.60±1.21a 48.17±0.17b 46.66±0.08b
茶素 EGC
48.77±8.36a 39.76±0.33a 40.82±0.36a 31.29±10.95a 31.80±0.82a 12.00±0.22b 22.00±0.27a 15.87±0.16b 10.90±0.44c
2.40±0.41a 1.60±0.09b 2.51±0.01a 6.48±2.34a 5.66±0.01a 8.30±0.03a 0.99±0.04b 0.76±0.02c 2.23±0.46a
13.72±2.12a 10.40±0.00b 9.60±0.02b 9.42±3.65a 8.96±0.01a 2.83±0.02b 6.73±0.50a 3.18±0.01b 2.46±0.01c
儿茶素 C 4.98±2.45b 2.58±0.11b 8.33±0.06a 6.26±3.26a 3.30±0.60a 2.89±0.05a 3.81±0.08a 2.11±0.04c 3.17±0.44b
Total non-gallated- type catechins
69.88±10.51a 54.33±0.17b 61.26±0.32a 53.44±11.78a 49.72±1.41a 26.01±0.22b 33.53±0.44a 21.92±0.13b 18.76±0.65b
Total catechins
165.13±25.23a 153.02±0.11a 169.32±0.62a 134.64±26.84a 140.82±1.54a 78.37±0.36b 103.13±0.83a 70.09±0.30b 65.43±0.73c
25.20±4.67a 26.32±0.09a 30.81±0.08a 25.89±4.68a 26.70±0.07a 22.44±0.05a 27.40±0.02a 20.92±0.03c 27.26±0.06b
Gallic acid
0.53±0.25b 0.19±0.00c 1.26±0.05a 1.73±0.89b 0.93±0.02b 3.22±0.01a 2.32±0.00b 2.23±0.01c 5.32±0.02a

Fig. 1

PCA score plot and differential components analysis of oolong teas made from three tea cultivars A: Principal component analysis (PCA) score plot of three scent types of YCFS, TGY, and SX oolong tea (R2X=0.663, Q2=0.495) (The dots represent YCFS oolong tea, the squares represent TGY oolong tea, and the triangles represent SX oolong tea; red represents fresh-scent oolong tea; blue represents strong-scent oolong tea; green represents aged-scent oolong tea); B: Differential component analysis of three kinds of scents oolong tea made from three cultivars"

Fig. 2

Heat map of the differential components of three scents oolong tea (A: Fresh-scent oolong tea; B: Strong-scent oolong tea; C: Aged-scent oolong tea)"

Table 3

Quantitative analysis of total flavonoid and flavone (flavonol) glycosides in three scents oolong tea (mg·g-1)"

Fresh-scent oolong tea
Strong-scent oolong tea
Aged-scent oolong tea
总黄酮 Total flavone 36.84±2.91a 27.87±2.05b 29.78±2.24b 38.11±3.51a 28.00±2.56b 23.83±1.37b 26.28±1.09a 16.82±0.86b 15.79±0.50b
槲皮素 3-O-半乳糖酰芸香糖苷
Quercetin 3-O-galactosylrutinoside
0.41±0.04a 0.14±0.01b 0.40±0.01a 0.35±0.06a 0.14±0.01b 0.15±0.00b 0.30±0.00a 0.25±0.00b 0.20±0.01b
槲皮素 3-O-葡萄糖酰芸香糖苷
Quercetin 3-O-glucosylrutinoside
2.04±0.18a 0.85±0.04b 1.00±0.02b 1.72±0.25a 0.80±0.03b 0.73±0.02b 1.72±0.02a 1.21±0.04b 1.14±0.03b
槲皮素 3-O-芸香糖苷*
Quercetin 3-O-rutinoside*
1.43±0.12a 0.58±0.03b 0.95±0.03b 1.18±0.22a 0.52±0.02b 0.66±0.02b 0.95±0.01a 0.68±0.02b 0.74±0.03b
槲皮素 3-O-半乳糖苷*
Quercetin 3-O-galactose*
2.66±0.52a 0.60±0.03b 2.94±0.07a 2.09±0.55a 0.57±0.02b 0.61±0.02b 1.33±0.03a 1.21±0.18a 1.03±0.02b
槲皮素 3-O-葡萄糖苷*
Quercetin 3-O-glucoside*
0.98±0.13a 0.19±0.01b 0.58±0.03b 0.80±0.20a 0.16±0.01b 0.19±0.00b 0.61±0.01a 0.33±0.01b 0.49±0.01b
山柰酚 3-O-半乳糖酰芸香糖苷
Kaempferol 3-O-galactosylrutinoside
0.26±0.08a 0.04±0.00b 0.42±0.01b 0.22±0.06a 0.05±0.00b 0.07±0.00b 0.12±0.00a 0.11±0.00b 0.10±0.00b
山柰酚 3-O-葡萄糖酰芸香糖苷
Kaempferol 3-O-glucosylrutinoside
2.06±0.41a 0.38±0.01b 0.80±0.03b 1.81±0.33a 0.35±0.00b 0.39±0.01b 1.23±0.00a 0.76±0.02b 0.63±0.02b
山柰酚 3-O-芸香糖苷*
Kaempferol 3-O-rutinoside*
0.70±0.18a 0.13±0.01b 0.33±0.01b 0.61±0.16a 0.12±0.00b 0.13±0.00b 0.34±0.00a 0.21±0.00b 0.22±0.00b
山柰酚 3-O-半乳糖苷*
Kaempferol 3-O-galactoside*
0.35±0.18a 0.02±0.00b 0.22±0.01b 0.30±0.16a 0.02±0.00b 0.03±0.00b 0.14±0.00a 0.07±0.00b 0.10±0.00b
山柰酚 3-O-葡萄糖苷
Kaempferol 3-O-glucoside
0.02±0.01a 0.01±0.00b 0.00±0.00b 0.01±0.00a 0.01±0.00b 0.00±0.00b 0.02±0.00a 0.01±0.00b 0.01±0.00b
牡荆素* Vitexin* 0.03±0.00a 0.01±0.00b 0.02±0.00b 0.05±0.01a 0.01±0.00b 0.02±0.00b 0.07±0.00a 0.04±0.00b 0.03±0.00b
异牡荆素* Isovitexin* 0.88±0.08a 0.24±0.01b 0.56±0.00b 1.30±0.20a 0.33±0.01b 0.47±0.00b 1.76±0.02a 0.89±0.02b 0.71±0.01b
芹菜素 6,8-C-二葡萄糖苷
Apigenin 6,8-C-diglucoside
0.71±0.09a 0.24±0.01b 0.34±0.00b 0.73±0.19a 0.25±0.01b 0.23±0.01b 0.96±0.01a 0.53±0.00b 0.35±0.00b
芹菜素 6-C-葡萄糖-8-C-阿拉伯糖苷
Apigenin 6-C-glucoside-8-C-arabinoside
0.11±0.01a 0.05±0.00b 0.05±0.00b 0.08±0.03a 0.04±0.00b 0.02±0.00b 0.15±0.00a 0.07±0.00b 0.05±0.00b
芹菜素 6-C-阿拉伯糖-8-C-葡萄糖苷
Apigenin 6-C-arabinoside-8-C-glucoside
0.12±0.01a 0.05±0.00b 0.06±0.00b 0.11±0.04a 0.05±0.00b 0.02±0.00b 0.17±0.00a 0.09±0.00b 0.06±0.00b
杨梅素 3-O-半乳糖酰芸香糖苷
Myricetin 3-O-galactosylrutinoside
0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a
杨梅素 3-O-葡萄糖酰芸香糖苷
Myricetin 3-O-glucosylrutinoside
0.01±0.00a 0.00±0.00b 0.00±0.00b 0.01±0.00a 0.00±0.00b 0.00±0.00b 0.01±0.00a 0.01±0.00a 0.01±0.00a
杨梅素 3-O-半乳糖苷*
Myricetin 3-O-galactoside*
0.35±0.04a 0.19±0.01b 0.11±0.00c 0.29±0.05a 0.19±0.01b 0.09±0.00c 0.26±0.00a 0.16±0.01b 0.10±0.00c
杨梅素 3-O-芸香糖苷
Myricetin 3-O-rutinoside
0.09±0.01a 0.08±0.00a 0.02±0.00b 0.07±0.01a 0.07±0.00a 0.03±0.00b 0.07±0.00a 0.06±0.00a 0.03±0.00b
杨梅素 3-O-葡萄糖苷
Myricetin 3-O-glucoside
0.40±0.04a 0.27±0.01b 0.13±0.01c 0.33±0.05a 0.24±0.01b 0.13±0.00c 0.33±0.01a 0.21±0.01b 0.15±0.00c
[1] 郭雅玲. 永春佛手茶的品质比较优势研究. 福建茶叶, 2008, 30(1):19-20. doi: 10.3969/j.issn.1005-2291.2008.01.007.
doi: 10.3969/j.issn.1005-2291.2008.01.007
GUO Y L. Study on the quality comparative advantages of Yongchun Foshou tea. Tea in Fujian, 2008, 30(1):19-20. doi: 10.3969/j.issn.1005-2291.2008.01.007. (in Chinese)
doi: 10.3969/j.issn.1005-2291.2008.01.007
[2] GB/T30357.7 乌龙茶 第七部分: 佛手[S], 2017.
GB/T30357.7 Oolong Tea Part Seven: Foshou[S], 2017. (in Chinese)
[3] 陈林, 林清霞, 张应根, 陈键, 王丽丽, 余文权, 尤志明. 不同风味类型铁观音乌龙茶香气组成化学模式识别研究. 茶叶科学, 2018, 38(3):253-262. doi: 10.3969/j.issn.1000-369X.2018.03.005.
doi: 10.3969/j.issn.1000-369X.2018.03.005
CHEN L, LIN Q X, ZHANG Y G, CHEN J, WANG L L, YU W Q, YOU Z M. Aroma profiling of tieguanyin oolong tea with different flavor characteristics based on chemical pattern recognition. Journal of Tea Science, 2018, 38(3):253-262. doi: 10.3969/j.issn.1000-369X.2018.03.005. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2018.03.005
[4] 宛晓春. 茶叶生物化学. 3版. 北京: 中国农业出版社, 2003.
WAN X C. Tea Biochemistry.3rd edition. Beijing: Chinese Agriculture Press, 2003. (in Chinese)
[5] 沈丹玉, 尹军峰, 许勇泉, 袁海波, 陈素芹. 不同品种鲜叶生化成分对红茶发酵效果的影响. 安徽农业科学, 2009, 35(19):9120-9125. doi: 10.3969/j.issn.0517-6611.2009.19.128.
doi: 10.3969/j.issn.0517-6611.2009.19.128
SHEN D Y, YIN J F, XU Y Q, YUAN H B, CHEN S Q. Influences of biochemical components in the fresh leaf from different tea cultivars on the ferment effect of black tea. Journal of Anhui Agricultural Sciences, 2009, 35(19):9120-9125. doi: 10.3969/j.issn.0517-6611.2009.19.128. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2009.19.128
[6] 李敏, 王洁, 杨志伟, 林鹏, 林益明. 不同品种茶叶单宁的含量与结构测定. 食品科学, 2009, 30(2):149-153. doi: 10.3321/j.issn:1002-6630.2009.02.031.
doi: 10.3321/j.issn:1002-6630.2009.02.031
LI M, WANG J, YANG Z W, LIN P, LIN Y M. Contents and structure analysis of tannins in leaves of three cultivars of Camellia sinensis. Food Science, 2009, 30(2):149-153. doi: 10.3321/j.issn:1002-6630.2009.02.031. (in Chinese)
doi: 10.3321/j.issn:1002-6630.2009.02.031
[7] 郭丽, 吕海鹏, 陈明杰, 张悦, 把熠晨, 郭雅玲, 林智. 福建乌龙茶脂肪酸含量及差异性分析. 茶叶科学, 2019, 39(5):611-618. doi: 10.3969/j.issn.1000-369X.2019.05.015.
doi: 10.3969/j.issn.1000-369X.2019.05.015
GUO L, LÜ H P, CHEN M J, ZHANG Y, BA Y C, GUO Y L, LIN Z. Analysis of fatty acid compositions and contents in oolong tea from Fujian Province. Journal of Tea Science, 2019, 39(5):611-618. doi: 10.3969/j.issn.1000-369X.2019.05.015. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2019.05.015
[8] CHEN S, LI M H, ZHENG G Y, WANG T T, LIN J, WANG S S, WANG X X, CHAO Q L, CAO S X, YANG Z B, YU X M. Metabolite profiling of 14 Wuyi Rock Tea cultivars using UPLC-QTOF MS and UPLC-QqQ MS combined with chemometrics. Molecules, 2018, 23(2):104.
doi: 10.3390/molecules23020104
[9] 宋楚君, 范方媛, 龚淑英, 郭昊蔚, 李春霖, 纵榜正. 不同产地红茶的滋味特征及主要贡献物质. 中国农业科学, 2020, 53(2):383-394. doi: 10.3864/j.issn.0578-1752.2020.02.012.
doi: 10.3864/j.issn.0578-1752.2020.02.012
SONG C J, FAN F Y, GONG S Y, GUO H W, LI C L, ZONG B Z. Taste characteristic and main contributing compounds of different origin black tea. Scientia Agricultura Sinica, 2020, 53(2):383-394. doi: 10.3864/j.issn.0578-1752.2020.02.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.012
[10] SUN L L, XU H R, YE J H, GAIKWAD N W. Comparative effect of black, green, oolong, and white tea intake on weight gain and bile acid metabolism. Nutrition (Burbank, Los Angeles County, Calif), 2019, 65:208-215. doi: 10.1016/j.nut.2019.02.006.
doi: 10.1016/j.nut.2019.02.006
[11] LI J, WANG J Q, YAO Y F, HUA J J, ZHOU Q H, JIANG Y W, DENG Y L, YANG Y Q, WANG J J, YUAN H B, DONG C W. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. LWT-Food Science and Technology, 2020, 117:108595.
doi: 10.1016/j.lwt.2019.108595
[12] 陈宇宏, 黄飞毅, 雷雨, 段继华, 丁玎, 康彦凯, 罗意, 刘盼盼, 李赛君, 龚自明. 黄金茶群体等5个品种(系)制茶品质研究. 茶叶科学, 2019, 39(3):309-317. doi: 10.3969/j.issn.1000-369X.2019.03.009.
doi: 10.3969/j.issn.1000-369X.2019.03.009
CHEN Y H, HUANG F Y, LEI Y, DUAN J H, DING D, KANG Y K, LUO Y, LIU P P, LI S J, GONG Z M. Study on the quality of five Huangjincha related cultivars. Journal of Tea Science, 2019, 39(3):309-317. doi: 10.3969/j.issn.1000-369X.2019.03.009. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2019.03.009
[13] 殷雨心, 陈玉琼, 焦远方, 郝娟, 余志, 倪德江. 不同茶树品种原料对青砖茶品质的影响. 茶叶科学, 2021, 41(1):48-57. doi: 10.3969/j.issn.1000-369X.2021.01.007.
doi: 10.3969/j.issn.1000-369X.2021.01.007
YIN Y X, CHEN Y Q, JIAO Y F, HAO J, YU Z, NI D J. Effects of raw materials from different tea cultivars on green brick tea quality. Journal of Tea Science, 2021, 41(1):48-57. doi: 10.3969/j.issn.1000-369X.2021.01.007. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2021.01.007
[14] 王飞权, 冯花, 葛捷琳, 陈荣冰, 刘国英, 张见明. 不同茶树品种新工艺秋季白茶品质比较分析. 茶叶通讯, 2019, 46(4):441-447. doi: 10.3969/j.issn.1009-525X.2019.04.011.
doi: 10.3969/j.issn.1009-525X.2019.04.011
WANG F Q, FENG H, GE J L, CHEN R B, LIU G Y, ZHANG J M. Comparative analysis on the quality of autumn white tea with different tea varieties processed by new technique. Tea Communication, 2019, 46(4):441-447. doi: 10.3969/j.issn.1009-525X.2019.04.011. (in Chinese)
doi: 10.3969/j.issn.1009-525X.2019.04.011
[15] 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6):1066-1077. doi: 10.3864/j.issn.0578-1752.2019.06.010.
doi: 10.3864/j.issn.0578-1752.2019.06.010
CHEN Q C, DAI W D, LIN Z Y, XIE D C, LÜ M L, LIN Z. Effects of shading on main quality components in tea (Camellia sinensis (L.) O.Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6):1066-1077. doi: 10.3864/j.issn.0578-1752.2019.06.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.06.010
[16] DAI W D, QI D D, YANG T, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, XIE D C, TAN J F, LIN Z. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 2015, 63(44):9869-9878.
doi: 10.1021/acs.jafc.5b03967
[17] ZHOU P, HU O, FU H Y, OUYANG L Q, GONG X D, MENG P, WANG Z, DAI M, GUO X M, WANG Y. UPLC-Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chemistry, 2019, 283:73-82. doi: 10.1016/j.foodchem.2019.01.050.
doi: 10.1016/j.foodchem.2019.01.050
[18] TAN J F, DAI W D, LU M L, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, LIN Z. Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Research International, 2016, 79:106-113.
doi: 10.1016/j.foodres.2015.11.018
[19] CHEN Q C, SHI J, MU B, CHEN Z, DAI W D, LIN Z. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry, 2020, 332:127412. doi: 10.1016/j.foodchem.2020.127412.
doi: 10.1016/j.foodchem.2020.127412
[20] DAI W D, LOU N, XIE D C, HU Z Y, SONG H Y, LU M L, SHANG D, WU W L, PENG J K, YIN P Y, LIN Z. N-ethyl-2- pyrrolidinone-substituted flavan-3-ols with anti-inflammatory activity in lipopolysaccharide-stimulated macrophages are storage-related marker compounds for green tea. Journal of Agricultural and Food Chemistry, 2020, 68(43):12164-12172. doi: 10.1021/acs.jafc.0c03952.
doi: 10.1021/acs.jafc.0c03952
[21] CHEN Y J, KUO P C, YANG M L, LI F Y, TZEN J T C. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old GY oolong teas. Food Research International, 2013, 53(2):732-743.
doi: 10.1016/j.foodres.2012.07.007
[22] YANG C, HU Z Y, LU M L, LI P L, TAN J F, CHEN M, LV H P, ZHU Y, ZHANG Y, GUO L, PENG Q H, DAI W D, LIN Z. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International (Ottawa, Ont), 2018, 106:909-919. doi: 10.1016/j.foodres.2018.01.069.
doi: 10.1016/j.foodres.2018.01.069
[23] LI P L, DAI W D, LU M L, XIE D C, TAN J F, YANG C, ZHU Y, LV H P, PENG Q H, ZHANG Y, GUO L, NI D J, LIN Z. Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities. Journal of the Science of Food and Agriculture, 2018, 98(3):1153-1161. doi: 10.1002/jsfa.8566.
doi: 10.1002/jsfa.8566
[24] DAI W D, XIE D C, LIN Z Y, YANG C, PENG Q H, TAN J F, LIN Z. A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of gamma-aminobutyric acid (GABA) tea. LWT-Food Science and Technology, 2020, 126:109313.
doi: 10.1016/j.lwt.2020.109313
[25] DAI W D, HU Z Y, XIE D C, TAN J F, LIN Z. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis). Food Chemistry, 2020, 311:126007. doi: 10.1016/j.foodchem.2019.126007.
doi: 10.1016/j.foodchem.2019.126007
[26] 解东超, 戴伟东, 林智. 年份白茶中EPSF类成分研究进展. 中国茶叶, 2019(3):7-10.
XIE D C, DAI W D, LIN Z. Research progress of EPSF components in aged white tea. China Tea, 2019, 41(3):7-10. (in Chinese)
[27] GAUR R, KE J P, ZHANG P, YANG Z, BAO G H. Novel cinnamoylated flavoalkaloids identified in tea with acetylcholinesterase inhibition effect. Journal of Agricultural and Food Chemistry, 2020, 68(10):3140-3148. doi: 10.1021/acs.jafc.9b08285.
doi: 10.1021/acs.jafc.9b08285
[28] ZHANG P, WANG W, LIU X H, YANG Z, GAUR R, WANG J J, KE J P, BAO G H. Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF- MS/MS. Food Chemistry, 2021, 339:127864. doi: 10.1016/j.foodchem.2020.127864.
doi: 10.1016/j.foodchem.2020.127864
[29] XIE D C, DAI W D, LU M L, TAN J F, ZHANG Y, CHEN M, LIN Z. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Food Research International (Ottawa, Ont), 2019, 125:108635. doi: 10.1016/j.foodres.2019.108635.
doi: 10.1016/j.foodres.2019.108635
[30] 张英娜. 绿茶茶汤主要儿茶素呈味特性研究[D]. 北京: 中国农业科学院, 2016.
ZHANG Y N. Study on the taste characteristics of the main catechins in green tea infusion[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[31] 刘忠英, 杨婷, 戴宇樵, 方仕茂, 刘亚兵, 冉乾松, 李琴, 沈强, 潘科. 基于分子感官科学的茶叶滋味研究进展. 食品工业科技, 2021, 42(4):337-343, 355. doi: 10.13386/j.issn1002-0306.2020040319.
doi: 10.13386/j.issn1002-0306.2020040319
LIU Z Y, YANG T, DAI Y Q, FANG S M, LIU Y B, RAN Q S, LI Q, SHEN Q, PAN K. Research progress of tea taste based on molecular sensory science. Science and Technology of Food Industry, 2021, 42(4):337-343, 355. doi: 10.13386/j.issn1002-0306.2020040319. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020040319
[32] KANEKO S, KUMAZAWA K, MASUDA H, HENZE A, HOFMANN T. Molecular and sensory studies on the umami taste of Japanese green tea. Journal of Agricultural and Food Chemistry, 2006, 54(7):2688-2694.
doi: 10.1021/jf0525232
[33] 高晨曦, 黄艳, 孙威江. 茶叶中原花青素研究进展. 茶叶科学, 2020, 40(4):441-453. doi: 10.3969/j.issn.1000-369X.2020.04.002.
doi: 10.3969/j.issn.1000-369X.2020.04.002
GAO C X, HUANG Y, SUN W J. Research progress of proanthocyanidins in tea. Journal of Tea Science, 2020, 40(4):441-453. doi: 10.3969/j.issn.1000-369X.2020.04.002. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2020.04.002
[34] ZHENG X Q, NIE Y, GAO Y, HUANG B, YE J H, LU J L, LIANG Y R. Screening the cultivar and processing factors based on the flavonoid profiles of dry teas using principal component analysis. Journal of Food Composition and Analysis, 2018, 67:29-37.
doi: 10.1016/j.jfca.2017.12.016
[35] 吴春燕. 不同茶树品种中黄酮苷含量的测定[D]. 杭州: 浙江大学, 2012.
WU C Y. Determination of the flavone glycosides in various tea varieties[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[36] SCHARBERT S, HOLZMANN N, HOFMANN T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry, 2004, 52(11):3498-3508. doi: 10.1021/jf049802u.
doi: 10.1021/jf049802u
[37] ZHANG Y, LIU D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 2011, 670(1):325-332. doi: 10.1016/j.ejphar.2011.08.011.
doi: 10.1016/j.ejphar.2011.08.011
[38] KANG J W, KIM J H, SONG K, KIM S H, YOON J H, KIM K S. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytotherapy Research, 2010, 24(Suppl. 1):S77-S82. doi: 10.1002/ptr.2913.
doi: 10.1002/ptr.2913
[39] CRESPO I, GARCÍA-MEDIAVILLA M V, GUTIÉRREZ B, SÁNCHEZ-CAMPOS S, TUÑÓN M J, GONZÁLEZ-GALLEGO J. A comparison of the effects of kaempferol and quercetin on cytokine- induced pro-inflammatory status of cultured human endothelial cells. The British Journal of Nutrition, 2008, 100(5):968-976. doi: 10.1017/s0007114508966083.
doi: 10.1017/s0007114508966083
[40] DA-SILVA W S, HARNEY J W, KIM B W, LI J, BIANCO S D, CRESCENZI A, CHRISTOFFOLETE M A, HUANG S A, BIANCO A C. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes, 2007, 56(3):767-776. doi: 10.2337/db06-1488.
doi: 10.2337/db06-1488
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[7] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[8] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[9] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
[10] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[11] XU Ying,YAN ChangYan,YANG WeiCong,ZHANG YunXiao,YU Yang,HUANG XianHui. Pharmacokinetics of Chlortetracycline Microspheres in Pigs [J]. Scientia Agricultura Sinica, 2020, 53(19): 4083-4091.
[12] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[13] CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis [J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
[14] DeCheng SUO,ShuLin WEI,ZhiMing XIAO,PeiLong WANG,RuiGuo WANG,Yang LI. Simultaneous Determination of 18 β-agonists in Blood Products for Feeds by Liquid Chromatography Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2019, 52(24): 4613-4623.
[15] XU YanYang,YAO GuiXiao,LIU PingXiang,ZHAO Jie,WANG XinLu,SUN JunMao,QIAN YongZhong. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176.
Full text



No Suggested Reading articles found!