Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4623-4634.doi: 10.3864/j.issn.0578-1752.2021.21.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation

GAO YongBo1(),WANG ShiXian1,WEI Min1,LI Jing1,GAO ZhongQiang4,MENG Lun5,YANG FengJuan1,2,3,*()   

  1. 1College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong;
    2Huanghuai Region Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong;
    3Shandong Province Collaborative Innovation Center of Fruit and Vegetable, Tai’an 271018, Shandong;
    4Shandong Agricultural Technology Extending Station, Ji’nan 250100;
    5Shandong Shike Modern Agricultural Investment Co., Ltd., Heze 274051, Shandong
  • Received:2021-01-17 Accepted:2021-04-19 Online:2021-11-01 Published:2021-11-09
  • Contact: FengJuan YANG E-mail:1158840500@qq.com;beautyyfj@163.com

Abstract:

【Objective】The effects of different levels of NPK on eggplant yield and roots growth as well as rhizosphere microbial numbers and enzyme activities were studied, so as to provide the theoretical basis for the scientific management of NPK (nitrogen, phosphorus and potassium) for the eggplant cultivation by using substrate in solar greenhouse. 【Method】 Substrate trough with sand, slag and mushroom residue (6:3:1, V:V:V) obtained from the previous experiment and drip irrigation integrated with water and fertilizer were used. There were six treatments with fertilization dosage and 100% fertilization dosage (F4) was considered as required by the target yield (fertilization dosage of the target yield = (fertilizer required by target yield - available nutrient content in substrate ) / fertilizer utilization rate), based on the 100% fertilization dosage of F4, the fertilization dosage was reduced by 60% (F1), 40% (F2), 20% (F3) and increased by 20% (F5) and 40% (F6), respectively, and no fertilization treatment was control (CK). The effects of NPK dosage on the yield and roots growth of eggplant as well as rhizosphere microbial numbers and enzyme activity were studied. 【Result】 The eggplant yield was increased firstly and then decreased with the increasing of NPK dosage. Compared with CK, the yield per plant under all treatments increased by 101.1%-212.9%. The eggplant under F3 treatment showed the highest yield per plant and was increased by 212.9% compared with CK. Bacteria were the main microbial in the rhizosphere substrate of eggplants, followed by actinomycetes and fungi. After 90 days of transplanting, with the increasing of NPK dosage, the contents of available NPK in the substrate were increased, the numbers of bacteria, actinomycetes and fungi, the activities of sucrase, catalase and alkaline phosphatase in rhizosphere substrate were increased firstly and then decreased, the values of which were higher under F3 treatment and the urease activity was higher under F4, F5 and F6 than that under other treatments. The root activity, total root length and root surface area of eggplant were increased first and then decreased with the increasing of NPK dosage. Notably, the root activity, total root length and root surface area of eggplant under F2 treatment were increased significantly by 109.2%, 49.2% and 46.5% compared with CK, respectively. There was a significant positive correlation between bacteria number and the enzyme activities in rhizosphere substrate. The urease activity showed extremely significant positive correlation with the contents of available NPK. The activities of catalase and alkaline phosphatase showed significant positive correlation with the contents of available phosphorus and potassium. The number of bacteria, catalase activities showed significant positive correlation with root activity and yield per plant, while urease activity, available phosphorus and potassium content showed significant positive correlation with root activity and yield. The root activity showed extremely significant positive correlation with yield. 【Conclusion】 In summary, the optimal fertilizer dosage for the eggplant cultivation using the mixture of sand, slag and mushroom residue in winter-spring crop in solar greenhouse was N 180.6 kg·hm-2, P2O5 212.1 kg·hm-2and K2O 434.9 kg·hm-2, which was important to increase the yield of eggplants, root activity, rhizosphere microbial numbers and enzyme activity, and could provide a good micro ecological environment for eggplant growth.

Key words: eggplant, substrate cultivation, nitrogen, phosphorus and potassium fertilizer, yield, root morphology, microbial number, enzyme activity

Table 1

Treatments of experiment design"

处理Treatment 幼苗期每15 d施肥量
Fertilization dosage of 15 days at the seedling stage
结果期每15 d施肥量
Fertilization dosage of 15 days at
fruiting stage
总施肥量
Total fertilization dosage
N
(kg·hm-2)
P2O5
(kg·hm-2)
K2O
(kg·hm-2)
N
(kg·hm-2)
P2O5
(kg·hm-2)
K2O
(kg·hm-2)
N
(kg·hm-2)
P2O5
(kg·hm-2)
K2O
(kg·hm-2)
CK 0 0 0 0 0 0 0 0 0
F1 6.95 8.16 16.73 12.74 14.96 30.67 90.3 106.1 217.5
F2 10.42 12.24 25.09 19.10 22.44 46.00 135.4 159.1 326.2
F3 13.89 16.31 33.46 25.47 29.91 61.34 180.6 212.1 434.9
F4 17.36 20.39 41.83 31.83 37.39 76.68 225.7 265.1 543.7
F5 20.84 24.47 50.19 38.20 44.87 92.02 270.9 318.2 652.5
F6 24.31 28.55 58.55 44.57 52.35 107.35 316.0 371.2 761.2

Fig. 1

Effects of different nitrogen, phosphorus and potassium dosages on the yield of eggplant Different lowercase letters indicate significant differences among treatments (P<0.05). The same as below"

Table 2

Effects of different nitrogen, phosphorus and potassium dosage on the root morphological indexes and root activity of eggplants"

处理
Treatment
根系活力
Root activity (μg·g-1 FW·h-1)
根系总长度
Root total length (cm)
根系表面积
Root surface area (cm2)
根系体积
Root volume (cm3)
CK 72.30±4.10e 4222.2±191.9d 1614.9±75.0d 73.7±7.0d
F1 92.64±3.24d 5164.2±186.1bc 1880.9±76.9c 87.3±5.4cd
F2 151.28±10.25a 6300.5±269.9a 2366.4±91.6a 105.3±2.8ab
F3 147.53±2.39a 5660.4±309.2ab 2096.5±51.9b 110.4±3.1a
F4 143.04±8.06ab 5469.1±66.1 b 1938.3±135.6bc 112.7±2.0a
F5 131.56±5.56bc 5567.6±203.5b 1883.7±55.9c 98.5±3.8abc
F6 125.54±6.17c 4589.0±262.0cd 1654.4±53.4d 92.3±6.4bc

Table 3

Effects of different nitrogen, phosphorus and potassium dosage on the contents of available nutrients and pH in rhizosphere substrate of eggplant"

处理
Treatment
速效氮含量
Available nitrogen content (mg·kg-1)
速效磷含量
Available phosphorus content (mg·kg-1)
速效钾含量
Available potassium content (mg·kg-1)
pH
CK 37.54±1.20f 38.54±2.54d 93.88±1.41e 7.57±0.014a
F1 45.40±3.66e 49.52±1.37c 132.33±2.84d 7.57±0.009a
F2 54.20±1.38d 63.49±3.45b 157.22±7.73c 7.54±0.024ab
F3 58.74±1.21cd 65.46±1.37b 177.79±8.98b 7.51±0.014bc
F4 61.53±2.53bc 71.95±1.79a 187.46±7.06b 7.48±0.031c
F5 65.79±2.70ab 74.54±1.30a 204.28±3.37a 7.46±0.034c
F6 68.19±1.60a 72.42±1.44a 201.02±6.34a 7.37±0.037d

Fig. 2

Effects of different nitrogen, phosphorus and potassium dosages on the numbers of bacteria, fungi, actinomyces in rhizosphere substrate of eggplant"

Table 4

Effects of different nitrogen, phosphorus and potassium dosages on microbial Shannon index in rhizosphere substrate of eggplant"

处理
Treatment
香农指数 Shannon index (H)
60 d 90 d 120 d
CK 0.613±0.028ab 0.593±0.017b 0.568±0.025ab
F1 0.623±0.022a 0.640±0.004a 0.581±0.021a
F2 0.610±0.011ab 0.605±0.005b 0.556±0.017abc
F3 0.610±0.032ab 0.585±0.008bc 0.529±0.018bcd
F4 0.634±0.006a 0.557±0.019cd 0.467±0.020e
F5 0.611±0.017ab 0.597±0.012b 0.509±0.028cde
F6 0.566±0.029b 0.529±0.019d 0.487±0.014de

Fig. 3

Effects of different nitrogen, phosphorus and potassium dosages on the activities of urease, invertase, catalase and alkaline phosphatase in rhizosphere substrate of eggplant"

Table 5

Correlation between microbial quantity, enzyme activity, available N/P/K content, pH, root activity and yield per plant of eggplant rhizosphere substrate"

相关系数
Correlation coefficient
细菌
Bacteria
真菌
Fungi
放线菌
Actinomyces
脲酶
Urease
蔗糖酶
Sucrase
过氧化氢酶
Catalase
碱性磷酸酶
Alkaline phosphatase
速效氮Available nitrogen 速效磷Available phosphorus 速效钾Available potassium pH 根系活力
Root activity
单株产量
Yield/plant
细菌
Bacteria
1
真菌
Fungi
0.278 1
放线菌
Actinomyces
0.627 0.783* 1
脲酶
Urease
0.761* -0.122 0.300 1
蔗糖酶
Sucrase
0.786* 0.739 0.766* 0.279 1
过氧化氢酶
Catalase
0.928** 0.261 0.624 0.859* 0.636 1
碱性磷酸酶
Alkaline phosphatase
0.866* 0.257 0.710 0.816* 0.552 0.961** 1
速效氮
Available nitrogen
0.619 -0.341 0.075 0.964** 0.071 0.744 0.688 1
速效磷
Available phosphorus
0.723 -0.162 0.226 0.993** 0.242 0.829* 0.763* 0.980** 1
速效钾
Available potassium
0.656 -0.256 0.170 0.982** 0.121 0.797* 0.758* 0.992** 0.987** 1
pH -0.274 0.733 0.387 -0.738 0.319 -0.369 -0.304 -0.879** -0.780* -0.824* 1
根系活力
Root activity
0.927** 0.219 0.570 0.848* 0.685 0.913** 0.830* 0.753 0.840* 0.772* -0.420 1
单株产量
Yield/plant
0.952** 0.230 0.681 0.849* 0.664 0.954** 0.942** 0.726 0.811* 0.769* -0.356 0.956** 1
[1] 郭世荣. 无土栽培学. 北京: 中国农业出版社, 2003.
GUO S R. Soilless Culture. Beijing: Chinese Agriculture Press, 2003. (in Chinese)
[2] ZHU S S, VIVANCO J M, MANTER D K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use- efficiency of maize. Applied Soil Ecology, 2016, 107:324-333.
doi: 10.1016/j.apsoil.2016.07.009
[3] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2):259-273.
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2):259-273. (in Chinese)
[4] 王渭玲, 杜俊波, 徐福利, 张晓虎. 不同施肥水平对桔梗土壤微生物和土壤酶活性的影响. 中国中药杂志, 2013, 38(22):3851-3856.
WANG W L, DU J B, XU F L, ZHANG X H. Effect of fertilization levels on soil microorganism amount and soil enzyme activities. China Journal of Chinese Materia Medica, 2013, 38(22):3851-3856. (in Chinese)
[5] 武盼盼, 刘书武, 朱毅, 李大肥, 卢鑫, 许龙, 赵正雄. 不同施肥措施对酸性植烟土壤酶活性及微生物的影响. 中国农学通报, 2017, 33(30):103-110.
WU P P, LIU S W, ZHU Y, LI D F, LU X, XU L, ZHAO Z X. Effects of different fertilization on soil enzyme activities and microbial community in acid tobacco-planting soil. Chinese Agricultural Science Bulletin, 2017, 33(30):103-110. (in Chinese)
[6] 张守才, 赵征宇, 孙永红, 蔡葵, 王文娇, 赵明. 设施栽培番茄的氮磷钾肥料效应研究. 中国土壤与肥料, 2016(2):65-71.
ZHANG S C, ZHAO Z Y, SUN Y H, CAI K, WANG W J, ZHAO M. Effect of nitrogen, phosphorus and potassium fertilizers on tomato cultivation in greenhouse. Soils and Fertilizers Sciences in China, 2016(2):65-71. (in Chinese)
[7] 华国伟. 不同地膜覆盖与施肥水平对辣椒生长及产量的影响[D]. 杭州: 浙江农林大学, 2020.
HUA G W. Effects of different plastic film mulching and fertilization levels on pepper growth and yield[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2020. (in Chinese)
[8] SHARMA S, THIND H S, SINGH Y, SINGH V, SINGH B. Soil enzyme activities with biomass ashes and phosphorus fertilization to rice-wheat cropping system in the Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems, 2015, 101(3):391-400.
doi: 10.1007/s10705-015-9684-7
[9] 隽英华, 孙文涛, 韩晓日, 邢月华, 王立春, 谢佳贵. 春玉米土壤矿质氮累积及酶活性对施氮的响应. 植物营养与肥料学报, 2014, 20(6):1368-1377.
JUAN Y H, SUN W T, HAN X R, XING Y H, WANG L C, XIE J G. Response of soil mineral nitrogen accumulation and enzyme activities to nitrogen application in spring maize. Plant Nutrition and Fertilizer Science, 2014, 20(6):1368-1377. (in Chinese)
[10] 王理德, 王方琳, 郭春秀, 韩福贵, 魏林源, 李发明. 土壤酶学硏究进展. 土壤, 2016, 48(1):12-21.
WANG L D, WANG F L, GUO C X, HAN F G, WEI L Y, LI F M. Review: Progress of soil enzymology. Soils, 2016, 48(1):12-21. (in Chinese)
[11] 关颂娜, 吴凤芝, 姜爽. 不同氮素水平对不同氮效率黄瓜生长及其根际土壤酶活性的影响. 作物杂志, 2013(1):68-72.
GUAN S N, WU F Z, JIANG S. Effects of nitrogen fertilizer rate on the growth and enzyme activities in the rhizosphere of cucumber cultivars with different nitrogen use efficiency. Crops, 2013(1):68-72. (in Chinese)
[12] 张恩平, 谭福雷, 王月, 张淑红, 段瑜, 周芳. 氮磷钾与有机肥配施对番茄产量品质及土壤酶活性的影响. 园艺学报, 2015, 42(10):2059-2067.
ZHANG E P, TAN F L, WANG Y, ZHANG S H, DUAN Y, ZHOU F. Effects of NPK fertilizers and organic manure on nutritional quality, yield of tomato and soil enzyme activities. Acta Horticulturae Sinica, 2015, 42(10):2059-2067. (in Chinese)
[13] SADILOVA E, STINTZING F C, CARLE R. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Zeitschrift fur Naturforschung, 2006, 61(7/8):527-535.
[14] 张燕燕, 唐懋华, 缪其松, 刘叶琼. 不同施肥处理对秋植茄子生长及产量的影响. 中国土壤与肥料, 2015(1):33-37.
ZHANG Y Y, TANG M H, MIAO Q S, LIU Y Q. Effect of fertilization treatment on growth and yield of autumn planting eggplant. Soils and Fertilizers Sciences in China, 2015(1):33-37. (in Chinese)
[15] 黄巧义, 卢钰升, 唐拴虎, 黄旭, 付弘婷, 蒋瑞萍, 李苹, 陈建生. 茄子氮磷钾养分效应研究. 中国农学通报, 2011, 27(28):279-285.
HUANG Q Y, LU Y S, TANG S H, HUANG X, FU H T, JIANG R P, LI P, CHEN J S. The nutrient effect of nitrogen, phosphorus and potassium on eggplant. Chinese Agricultural Science Bulletin, 2011, 27(28):279-285. (in Chinese)
[16] 郜永博, 马晟, 杨凤娟, 王秀峰, 魏珉, 史庆华, 李岩. 沙子、炉渣、菇渣不同配比对茄子产量和品质的影响. 中国蔬菜, 2018(10):50-54.
GAO Y B, MA S, YANG F J, WANG X F, WEI M, SHI Q H, LI Y. Effect of different ratios of sand, slag and mushroom residue on yield and quality of eggplants. China Vegetables, 2018(10):50-54. (in Chinese)
[17] 陈震. 茄子优化施肥方案及对氮磷钾吸收分配规律的研究[D]. 泰安: 山东农业大学, 2016.
CHEN Z. Study on the optimum fertilization scheme and absorption and distribution of nitrogen, phosphorus and potassium of eggplant[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese)
[18] 熊静, 陈清, 王敬国, 刘伟. 供液方式对番茄基质栽培盐分累积与养分利用率的影响. 农业机械学报, 2017, 48(2):224-231.
XIONG J, CHEN Q, WANG J G, LIU W. Effect of culture systems on salt accumulation in substrate and nutrient use efficiency of tomato. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):224-231. (in Chinese)
[19] 潘铜华. 温室番茄长季节基质袋培水肥耦合效应研究[D]. 杨凌: 西北农林科技大学, 2015.
PAN T H. Study on the effect of water and fertilizer coupling on tomato long-season cultivated in bag with substrate in greenhouse[D]. Yangling: Northwest A & F University, 2015. (in Chinese)
[20] 李建勇, 高俊杰, 徐守国, 史修柱, 于贤昌. 化肥施用量对有机基质栽培番茄养分吸收利用的影响. 中国生态农业学报, 2011, 19(3):602-606.
doi: 10.3724/SP.J.1011.2011.00602
LI J Y, GAO J J, XU S G, SHI X Z, YU X C. Effect of chemical fertilizer dose on nutrient absorption and utilization of tomato cultured in organic substrate. Chinese Journal of Eco-Agriculture, 2011, 19(3):602-606. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00602
[21] 程斐, 孙朝晖, 赵玉国, 李式军. 芦苇末有机栽培基质的基本理化性能分析. 南京农业大学学报, 2001, 24(3):19-22.
CHENG F, SUN Z H, ZHAO Y G, LI S J. Analysis of physical and chemical properties of reed residue substrate. Journal of Nanjing Agricultural University, 2001, 24(3):19-22. (in Chinese)
[22] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[23] 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006.
YAO H Y, HUANG C Y. Soil Microbial Ecology and Its Experimental Techniques. Beijing: Science Press, 2006. (in Chinese)
[24] 关松荫. 土壤酶及其研究方法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzymes and the Research Methods. Beijing: Agriculture Press, 1986. (in Chinese)
[25] 赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.
ZHAO S J. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[26] 李国龙. 甘肃戈壁滩日光温室基质栽培番茄和黄瓜氮磷钾均衡管理研究[D]. 北京: 中国农业科学院, 2014.
LI G L. Study on balanced fertilization of nitrogen, phosphorus, potassium in cucumber and tomato cultivated in greenhouse organic substrates in gobi desert regions of Gansu province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[27] 卢家柱, 赵贵宾, 颉建明, 何志学, 赵常旭, 杨煜. 不同施氮量对茄子产量、品质及肥料利用率的影响. 华北农学报, 2016, 31(3):205-211.
LU J Z, ZHAO G B, JIA J M, HE Z X, ZHAO C X, YANG Y. Effects of different nitrogen fertilizer application rates on yield, quality and fertilizer utilization rate of eggplant. Journal of North China Agriculture, 2016, 31(3):205-211. (in Chinese)
[28] 陈汝, 王海宁, 姜远茂, 魏绍冲, 陈倩, 葛顺峰. 不同苹果砧木的根际土壤微生物数量及酶活性. 中国农业科学, 2012, 45(10):2099-2106.
CHEN R, WANG H N, JIANG Y M, WEI S C, CHEN Q, GE S F. Rhizosphere soil microbial quantity and enzyme activity of different apple rootstocks. Scientia Agricultura Sinica, 2012, 45(10):2099-2106. (in Chinese)
[29] LOW A P, STARK J M, DUDLEY L M. Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Science, 1997, 162(1):16-27.
doi: 10.1097/00010694-199701000-00004
[30] 强浩然, 张国斌, 郁继华, 马国礼, 张柏杨, 季磊, 王翠丽, 叶洁, 杜淼鑫. 不同水分和氮素供应对日光温室辣椒栽培基质氮转化细菌和酶活性的影响. 园艺学报, 2018, 45(5):943-958.
QIANG H R, ZHANG G B, YU J H, MA G L, ZHANG B Y, JI L, WANG C L, YE J E, DU M X. Effects of different water and nitrogen supply on nitrogen transformational bacteria and enzyme activities in substrate cultivated greenhouse pepper. Acta Horticulturae Sinica, 2018, 45(5):943-958. (in Chinese)
[31] 郭萍, 文庭池, 董玲玲, 魏成熙, 石俊雄, 李波. 施肥对土壤养分含量、微生物数量和酶活性的影响. 农业现代化研究, 2011, 32(3):362-366.
GUO P, WEN T C, DONG L L, WEI C X, SHI J X, LI B. Effect of fertilizer to content of soil nutrient, amount of soil microorganism and soil enzyme activities. Research of Agricultural Modernization, 2011, 32(3):362-366. (in Chinese)
[32] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3):298-310.
doi: 10.3724/SP.J.1258.2014.00027
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3):298-310. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00027
[33] 袁秀梅, 耿赛男, 郑梦圆, 习向银, 宋大利, 黄伏森. 蚕豆根分泌物对紫色土有效养分及微生物数量的影响. 中国生态农业学报, 2016, 24(7):910-917.
YUAN X M, GENG S N, ZHENG M Y, XI X Y, SONG D L, HUANG F S. Effects of faba bean(Vicia faba L.) root exudate on soil available nutrients and microbial population in different purple soils. Chinese Journal of Eco-Agriculture, 2016, 24(7):910-917. (in Chinese)
[34] 邱莉萍, 刘军, 王益权, 张兴昌. 长期施肥土壤中酶活性的剖面分布及其动力学特征研究. 植物营养与肥料学报, 2005, 11(6):737-741, 749.
QIU L P, LIU J, WANG Y Q, ZHANG X C. Profile distribution of enzyme activity of long-term fertilization soil and its dynamic characteristics. Plant Nutrition and Fertilizer Science, 2005, 11(6):737-741, 749. (in Chinese)
[35] WANG J, LI G, XIU W M, SONG X L, ZHAO J N, YANG D L. Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in stipa baicalensis steppe, Inner Mongolia of North China. Journal of Agricultural Resources & Environment, 2014, 31(3):237-245.
[36] 刘丽平, 孟亚利, 杨佳蒴, 胡伟, 周治国. 不同施钾处理对棉田土壤钾素形态与土壤肥力的影响. 水土保持学报, 2014, 28(2):138-142.
LIU L P, MENG Y L, YANG J S, HU W, ZHOU Z G. Effects of different K fertilizer treatments on soil K forms and soil fertility in cotton. Journal of Soil and Water Conservation, 2014, 28(2):138-142. (in Chinese)
[37] 覃潇敏, 郑毅, 汤利, 龙光强. 施氮对玉米//马铃薯间作根际土壤酶活性和硝化势的影响. 云南农业大学学报(自然科学版), 2015(6):886-894.
QIN X M, ZHENG Y, TANG L, LONG G Q. Effects of nitrogen application rates on rhizosphere soil enzyme activity and potential nitrification in maize and potato intercropping. Journal of Yunnan Agricultural University (Natural Science Edition), 2015(6):886-894. (in Chinese)
[38] 仇振杰, 李久生, 赵伟霞. 再生水地下滴灌对玉米生育期土壤脲酶活性和硝态氮的影响. 节水灌溉, 2016(8):1-6.
QIU Z J, LI J S, ZHAO W X. Effects of subsurface drip irrigation on soil urease activity and nitrate during maize growing season while applying treated sewage effluent. Water Saving Irrigation, 2016(8):1-6. (in Chinese)
[39] HASSETT J E, ZAK D R, BLACKWOOD C B, PREGITZER K S. Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3 - deposition in a northern hardwood forest? Microbial Ecology, 2009, 57(4):728-739.
doi: 10.1007/s00248-008-9440-5
[40] 万忠梅, 吴景贵. 土壤酶活性影响因子研究进展. 西北农林科技大学学报(自然科学版), 2005, 33(6):87-92.
WAN Z M, WU J G. Study progress on factors affecting soil enzyme activity. Journal of Northwest Sci- Tech University of Agriculture and Forestry (Natural Science Edition), 2005, 33(6):87-92. (in Chinese)
[41] 周东兴, 李磊, 李晶, 宁玉翠, 曹旭, 邬欣慧, 荣国华. 玉米/大豆轮作下不同施肥处理对土壤微生物生物量及酶活性的影响. 生态学杂志, 2018, 37(6):1856-1864.
ZHOU D X, LI L, LI J, NING Y C, CAO X, WU X H, RONG G H. Effects of different fertilization treatments on soil microbial biomass and enzyme activities in maize-soybean rotation system. Chinese Journal of Ecology, 2018, 37(6):1856-1864. (in Chinese)
[42] 李春越, 王益, PHILIP Brookes, 党廷辉, 王万忠. pH对土壤微生物C/P比的影响. 中国农业科学, 2013, 46(13):2709-2716.
LI C Y, WANG Y, PHILIP B, DANG T H, WANG W Z. Effect of soil pH on soil microbial carbon phosphorus ratio. Scientia Agricultura Sinica, 2013, 46(13):2709-2716. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[14] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[15] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!