Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (21): 4237-4251.doi: 10.3864/j.issn.0578-1752.2022.21.011


The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns

ZHU ChangWei(),MENG WeiWei(),SHI Ke,NIU RunZhi,JIANG GuiYing(),SHEN FengMin,LIU Fang,LIU ShiLiang()   

  1. College of Resource and Environment, Henan Agricultural University, Zhengzhou 450002
  • Received:2021-09-02 Accepted:2021-12-29 Online:2022-11-01 Published:2022-11-09
  • Contact: GuiYing JIANG,ShiLiang LIU;;;


【Objective】This study was aimed to select the optimum tillage pattern by investigating the dynamic changes of different tillage patterns on soil nutrients, microbial biomass, and enzyme activities during different wheat growth stages in fluvo-aquic soil in Huang-Huai Plain.【Method】The field experiment was carried out from 2016 to 2019. Five rotation tillage modes were set as: (1) Continuous Rotary Tillage (RT-RT-RT); (2) Deep tillage-Rotary tillage-Rotary tillage (DT-RT-RT); (3) Deep tillage-Rotary tillage-Shallow rotary tillage (DT-RT-SRT); (4) Deep tillage-Shallow rotary tillage-Shallow rotary tillage (DT-SRT-SRT); (5) Deep tillage-Shallow rotary tillage-Rotating tillage (DT-SRT-RT). Three years is a cycle. In the third year of the 3-year cycle, i.e. 2019, 0-40 cm soil layer samples were taken at the wheat greening stage (GS), jointing stage (JS), filling stage (FS), and maturity stage (MS). The contents of alkali hydrolyzed nitrogen (AN), available phosphorus (AP), available potassium (AK), soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and the activities of urease, invertase, and neutral phosphatase in different soil layers were measured and analyzed.【Result】All soil indicators were decreased with the soil depths during the whole wheat growth stage. Compared with RT-RT-RT, the increment of available nutrients contents at 20-40 cm soil layer were significantly higher than those at 0-20 cm soil layer under the treatments with deep tillage combined with rotary tillage or shallow rotary tillage, but which presented few effects on soil microbial biomass and enzyme activities under soil layers compared with the effects on soil available nutrients. The dynamic changes of each soil indicators under different treatments during the wheat main growth stages were consistent with the growth and fertilizer requirements of crops. The AP, AK, SMBC, SMBN, urease, neutral phosphatase activities were showed an “N” type trend and reached to peak at the jointing stage. The sucrase activity was gradually increased with the growth stage. In 0-20 cm soil layer, the contents of AN, AP and AK under DT-SRT-RT treatment at the jointing stage were significantly higher than that under other treatments, and the highest value were 91.74 mg·kg-1, 27.17 mg·kg-1 and 139.81 mg·kg-1, respectively. The AN and AP were significantly affected by rotation tillage patterns and soil depths. While the AK was affected by wheat growth stages, soil layers, and rotation tillage patterns, but the interaction among them was not obvious. During the whole growth period, compared with RT-RT-RT, in 0-40 cm soil layer, the SMBC and SMBN content under DT-RT-RT and DT-SRT-RT treatments were higher. The DT-SRT-RT treatment could significantly increase the activities of soil urease, invertase and neutral phosphatase, and their growth rates were between 3.79%-27.69%, 12.29%-36.10% and 8.61%-35.91%, respectively. In the whole wheat growth period, the soil microbial biomass and enzyme activities were significantly affected by different soil depth and rotation tillage mode, but the interaction between them on SMBN content, invertase, and neutral phosphatase activity was not significant. The wheat yield under the other treatments in 2019 was higher than that under RT-RT-RT, and the highest one was 6 557 kg·hm-2 under DT-SRT-RT.【Conclusion】During this experimental period, in Fluvo-aquic soil in Huang-Huai Plain, the DT-SRT-RT treatment had the best effect on improving available nutrients contents, SMBC, SMBN, and soil enzyme activity, thereby further ensuring the high yield of wheat.

Key words: rotation tillage pattern, soil nutrient, microbial biomass, enzyme activity, wheat growth period

Fig. 1

The soil alkali-hydrolyzable nitrogen content during different wheat growth periods under different treatments Different small letters showed significant differences among treatments (P≤0.05). TGS: Turning-green stage; JS: Jointing stage; FS: Filling stage; MS: Mature stage. The same as below"

Fig. 2

The soil available phosphorus content during different wheat growth periods under different treatments"

Fig. 3

The soil available potassium content during different wheat growth periods under different treatments"

Table 1

Three-factor variance analysis of changes in soil available nutrients under wheat growth periods, rotation tillage patterns and soil depths"

变异来源 Source of variation df 碱解氮 AN 有效磷 AP 速效钾 AK
土层深度 Soil depth (D) 1 53135.20** 8456.23** 11229.42**
小麦生育时期 Wheat growth period (P) 3 116.53** 503.05** 13.13**
轮耕模式 Rotation tillage patterns (T) 4 1141.98** 69.88** 44.06**
D × P 3 1114.94** 27.94** 163.30**
D × T 4 217.48** 9.95** 8.03**
P × T 12 66.16** 4.78** 6.14**
D × P × T 12 254.99** 2.20* 1.79 NS
Error mean squares 80 0.91 0.50 6.49

Fig. 4

The soil microbial biomass carbon during different wheat growth periods under different treatments"

Fig. 5

The soil microbial biomass nitrogen during different wheat growth periods under different treatments"

Table 2

Three-factor variance analysis of changes in soil microbial biomass under wheat growth periods, rotation tillage patterns and soil depths"

变异来源 Source of variation df 微生物量碳 SMBC 微生物量氮 SMBN
土层深度 Soil depth (D) 1 189847.54** 4882.24**
小麦生育时期 Wheat growth period (P) 3 15469.50** 1169.51**
轮耕模式 Rotation tillage patterns (T) 4 469.73** 36.39**
D × P 3 2449.91** 197.51**
D × T 4 9.54 NS 5.06**
P × T 12 8.99 NS 3.28**
D × P × T 12 28.64** 1.78 NS
Error mean squares 80 7.47 5.41

Fig. 6

The activity of soil urease enzyme during different wheat growth periods under different treatments"

Fig. 7

The activity of soil invertase enzyme during different wheat growth periods under different treatments"

Fig. 8

The activity of soil neutral phosphatase enzyme during different wheat growth periods under different treatments"

Table 3

Three-factor variance analysis of changes in soil enzyme activity under wheat growth periods, rotation tillage patterns and soil depths"

变异来源 Source of variation df 脲酶 Urease 蔗糖酶 Invertase 中性磷酸酶 Neutral phosphatase
土层深度 Soil depth (D) 1 14422.44** 10822.89** 3251.25**
小麦生育时期 Wheat growth period (P) 3 1206.67** 1152.78** 221.67**
轮耕模式 Rotation tillage patterns (T) 4 49.38** 31.50** 10.66**
D × P 3 87.99** 55.49** 32.67**
D × T 4 6.94** 10.14** 1.04 NS
P × T 12 5.42** 1.02 NS 0.67 NS
D × P × T 12 5.96** 0.43 NS 0.70 NS
Error mean squares 80 0 1.29 0.06

Table 4

Wheat yield, yield components and fertilizer partial productivity"

Spike number
Kernels per
spike (No.)
Thousand kernel weight (g)
N partial productivity
P/K partial productivity
RT-RT-RT 38.27±0.85d 28.43±0.98b 41.89±1.03c 5719±153d 26.12±0.7d 47.66±1.28d
DT-RT-RT 42.4±0.59b 28.93±1.00ab 43.36±1.9bc 6300±53b 28.77±0.24b 52.5±0.44b
DT-RT-SRT 40.29±0.41c 26.20±1.80c 48.57±1.54a 6003±95c 27.41±0.44c 50.02±0.79c
DT-SRT-SRT 43.22±0.82ab 30.80±1.00a 44.13±1.2bc 6477±36ab 29.58±0.16ab 53.98±0.3ab
DT-SRT-RT 44.47±0.54a 31.00±0.59a 46.22±0.95ab 6557±67a 29.94±0.31a 54.64±0.56a

Fig. 9

The heat map of correlation analysis between the various indices and wheat yield under 0-40 cm soil layer"

[1] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015, 41(3): 468-478. doi:10.3724/SP.J.1006.2015.00468.
NIE L P, GUO L W, NIU H Y, WEI J, LI Z J, NING T Y. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agronomica Sinica, 2015, 41(3): 468-478. doi:10.3724/SP.J.1006.2015.00468. (in Chinese)
[2] 赵红香, 迟淑筠, 宁堂原, 田慎重, 王丙文, 李增嘉. 科学耕作与留茬改良小麦-玉米两熟农田土壤物理性状及增产效果. 农业工程学报, 2013, 29(9): 113-122.
ZHAO H X, CHI S Y, NING T Y, TIAN S Z, WANG B W, LI Z J. Covering farming pattern to improve soil physical properties and crop yield in wheat-maize cropping system. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9): 113-122. (in Chinese)
[3] 罗玉琼, 严博, 吴可, 谢慧敏, 梁和, 江立庚. 免耕和稻草还田对稻田土壤肥力和水稻产量的影响. 作物杂志, 2020(5): 133-139. doi:10.16035/j.issn.1001-7283.2020.05.020.
LUO Y Q, YAN B, WU K, XIE H M, LIANG H, JIANG L G. Effects of no-tillage and straw returning on soil fertility and rice yield in farmland. Crops, 2020(5): 133-139. doi:10.16035/j.issn.1001-7283.2020.05.020. (in Chinese)
[4] 侯贤清, 李荣, 韩清芳, 贾志宽, 王维, 杨宝平, 王俊鹏, 聂俊峰, 李永平. 轮耕对宁南旱区土壤理化性状和旱地小麦产量的影响. 土壤学报, 2012, 49(3): 592-600.
HOU X Q, LI R, HAN Q F, JIA Z K, WANG W, YANG B P, WANG J P, NIE J F, LI Y P. Effects of alternate tillage on soil physicochemical properties and yield of dryland wheat in arid areas of south Ningxia. Acta Pedologica Sinica, 2012, 49(3): 592-600. (in Chinese)
[5] 徐海, 王益权, 刘军, 王芳, 秦宝军. 关中旱地小麦生育期土壤速效养分时空变异特征研究. 干旱地区农业研究, 2009, 27(1): 62-67.
XU H, WANG Y Q, LIU J, WANG F, QIN B J. The spatio-temporal variability of soil available nutrients in the Guanzhong plain. Agricultural Research in the Arid Areas, 2009, 27(1): 62-67. (in Chinese)
[6] 邹传俊. 小麦生长期土壤养分动态变化与产量的关系. 安徽农学通报(上半月刊), 2011, 17(5): 75-78. doi:10.16377/j.cnki.issn1007-7731.2011.05.063.
ZOU C J. Relationship between soil nutrient dynamic change and yield in wheat growth period. Anhui Agricultural Science Bulletin, 2011, 17(5): 75-78. doi:10.16377/j.cnki.issn1007-7731.2011.05.063. (in Chinese)
[7] 张英英, 蔡立群, 张仁陟, 罗珠珠, 武均. 不同耕作措施对春小麦生育期内土壤酶活性的影响. 干旱区资源与环境, 2016, 30(10): 88-92. doi:10.13448/j.cnki.jalre.2016.322.
ZHANG Y Y, CAI L Q, ZHANG R Z, LUO Z Z, WU J. Effects of different tillage methods on soil enzyme activities during growth period of spring wheat in the Loess Plateau of central Gansu Province. Journal of Arid Land Resources and Environment, 2016, 30(10): 88-92. doi:10.13448/j.cnki.jalre.2016.322. (in Chinese)
[8] 张莉, 李友军, 付国占, 焦念元, 张洋洋. 轮耕对冬小麦田土壤酶活性时空变化的影响. 麦类作物学报, 2014, 34(8): 1104-1110.
ZHANG L, LI Y J, FU G Z, JIAO N Y, ZHANG Y Y. Effects of rotational tillage on spatial and temporal variation of soil enzyme activities in winter wheat field. Journal of Triticeae Crops, 2014, 34(8): 1104-1110. (in Chinese)
[9] 陈娟, 马忠明, 刘莉莉, 吕晓东. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016, 22(3): 667-675. doi:10.11674/zwyf.15246.
CHEN J, MA Z M, LIU L L, LÜ X D. Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities. Plant Nutrition and Fertilizer Science, 2016, 22(3): 667-675. doi:10.11674/zwyf.15246. (in Chinese)
[10] ZUBER S M, VILLAMIL M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology and Biochemistry, 2016, 97: 176-187. doi:10.1016/j.soilbio.2016.03.011.
[11] 于淑婷, 赵亚丽, 王育红, 刘卫玲, 孟战赢, 穆心愿, 程思贤, 李潮海. 轮耕模式对黄淮海冬小麦-夏玉米两熟区农田土壤改良效应. 中国农业科学, 2017, 50(11): 2150-2165. doi:10.3864/j.issn.0578-1752.2017.11.020.
YU S T, ZHAO Y L, WANG Y H, LIU W L, MENG Z Y, MU X Y, CHENG S X, LI C H. Improvement effects of rotational tillage patterns on soil in the winter wheat-summer maize double cropping area of Huang-Huai-Hai region. Scientia Agricultura Sinica, 2017, 50(11): 2150-2165. doi:10.3864/j.issn.0578-1752.2017.11.020. (in Chinese)
[12] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008.
LI Z G, LUO Y M, TENG Y. Soil and Environmental Microbiological Research. Beijing: Science Press, 2008. (in Chinese)
[13] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 1999.
BAO S D. Analysis of Soil Agronomy. Beijing: China Agricultural Press, 1999. (in Chinese)
[14] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 260-346.
GUAN S Y. Soil Enzymes and Research Methods. Beijing: Agricultural Press, 1986: 260-346. (in Chinese)
[15] 祁剑英, 王兴, 濮超, 马守田, 赵鑫, 薛建福, 张海林. 保护性耕作对土壤氮组分影响研究进展. 农业工程学报, 2018, 34(S1): 222-229. doi:10.11975/j.issn.1002-6819.2018.z.033.
QI J Y, WANG X, PU C, MA S T, ZHAO X, XUE J F, ZHANG H L. Research advances on effects of conservation tillage practice on soil nitrogen component. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 222-229. doi:10.11975/j.issn.1002-6819.2018.z.033. (in Chinese)
[16] 李娟, 李军, 尚金霞, 贾志宽. 轮耕对渭北旱塬春玉米田土壤理化性状和产量的影响. 中国生态农业学报, 2012, 20(7): 867-873.
LI J, LI J, SHANG J X, JIA Z K. Effects of rotational tillage on soil physiochemical properties and spring maize yield in Weibei Highlands. Chinese Journal of Eco-Agriculture, 2012, 20(7): 867-873. (in Chinese)
[17] 朱长伟, 龙潜, 董士刚, 石柯, 姜桂英, 李小磊, 张崇洋, 刘芳, 申凤敏, 刘世亮. 小麦-玉米轮作体系不同旋耕和深耕管理对潮土微生物量碳氮与酶活性的影响. 植物营养与肥料学报, 2020, 26(1): 51-63. doi:10.11674/zwyf.19358.
ZHU C W, LONG Q, DONG S G, SHI K, JIANG G Y, LI X L, ZHANG C Y, LIU F, SHEN F M, LIU S L. Effects of rotary and deep tillage modes on soil microbial biomass carbon and nitrogen and enzyme activities in fluvo-aquic soil under wheat-maize rotation system. Plant Nutrition and Fertilizer Science, 2020, 26(1): 51-63. doi:10.11674/zwyf.19358. (in Chinese)
[18] STALEY T E, EDWARDS W M, OWENS L B, SCOTT C L. Soil microbial biomass and organic component alterations in a no-tillage chronosequence. Soil Science Society of America Journal, 1988, 52(4): 998-1005. doi:10.2136/sssaj1988.03615995005200040018x.
[19] 龙潜, 董士刚, 朱长伟, 刘芳, 姜桂英, 申凤敏, 刘世亮. 不同耕作模式对小麦—玉米轮作下潮土养分和作物产量的影响. 水土保持学报, 2019, 33(4): 167-174, 298. doi:10.13870/j.cnki.stbcxb.2019.04.024.
LONG Q, DONG S G, ZHU C W, LIU F, JIANG G Y, SHEN F M, LIU S L. Effects of different tillage modes on soil nutrient and crop yield under wheat-maize rotation system in the fluvo-aquic soil. Journal of Soil and Water Conservation, 2019, 33(4): 167-174, 298. doi:10.13870/j.cnki.stbcxb.2019.04.024. (in Chinese)
[20] 王玉玲, 李军. 利于小麦-玉米轮作田土壤理化性状和作物产量的耕作方式研究. 植物营养与肥料学报, 2014, 20(5): 1139-1150. doi:10.11674/zwyf.2014.0510.
WANG Y L, LI J. Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat/maize fields. Plant Nutrition and Fertilizer Science, 2014, 20(5): 1139-1150. doi:10.11674/zwyf.2014.0510. (in Chinese)
[21] 王旭东, 张霞, 王彦丽, 李军. 不同耕作方式对黄土高原黑垆土有机碳库组成的影响. 农业机械学报, 2017, 48(11): 229-237. doi:10.6041/j.issn.1000-1298.2017.11.028.
WANG X D, ZHANG X, WANG Y L, LI J. Effects of different tillage methods on soil organic carbon pool composition in dark loessial soil on loess plateau. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 229-237. doi:10.6041/j.issn.1000-1298.2017.11.028. (in Chinese)
[22] 李秀, 韩佳乐, 吴文雪, 张建国, 赵英, 冯浩. 秸秆还田方式对关中盆地土壤微生物量碳氮和冬小麦产量的影响. 水土保持学报, 2018, 32(4): 170-176. doi:10.13870/j.cnki.stbcxb.2018.04.027.
LI X, HAN J L, WU W X, ZHANG J G, ZHAO Y, FNEG H. Effects of different straw returning methods on soil microbial biomass carbon, nitrogen and winter wheat yield in Guanzhong plain. Journal of Soil and Water Conservation, 2018, 32(4): 170-176. doi:10.13870/j.cnki.stbcxb.2018.04.027. (in Chinese)
[23] 王芸, 韩宾, 史忠强, 邵国庆, 江晓东, 宁堂原, 焦念元, 李增嘉. 保护性耕作对土壤微生物特性及酶活性的影响. 水土保持学报, 2006, 20(4): 120-122, 142. doi:10.13870/j.cnki.stbcxb.2006.04.029.
WANG Y, HAN B, SHI Z Q, SHAO G Q, JIANG X D, NING T Y, JIAO N Y, LI Z J. Effects of conservati on tillageon soil microbial characters and soil enzyme activities. Journal of Soil and Water Conservation, 2006, 20(4): 120-122, 142. doi:10.13870/j.cnki.stbcxb.2006.04.029. (in Chinese)
[24] 刘淑梅, 孙武, 张瑜, 刘树堂, 姜雯. 小麦季不同耕作方式对砂姜黑土玉米农田土壤微生物特性及酶活性的影响. 玉米科学, 2018, 26(1): 103-107. doi:10.13597/
LIU S M, SUN W, ZHANG Y, LIU S T, JIANG W. Effects of wheat tillage managements on soil microbial characters and soil enzyme activities in summer maize season in Shajiang black soil. Journal of Maize Sciences, 2018, 26(1): 103-107. doi:10.13597/ (in Chinese)
[25] 张勉. 夏闲期轮耕对旱地麦田土壤理化性状及有机碳组分的影响[D]. 太谷: 山西农业大学, 2017.
ZHANG M. Effects of rotation tillage on soil physical and chemical properties and organic carbon fractions of dryland wheat field during summer fallow[D]. Taigu: Shanxi Agricultural University, 2017. (in Chinese)
[26] 王永慧, 轩清霞, 王丽丽, 杨殿林, 赵建宁, 李刚, 修伟明, 红雨. 不同耕作方式对土壤有机碳矿化及酶活性影响研究. 土壤通报, 2020, 51(4): 876-884. doi:10.19336/j.cnki.trtb.2020.04.16.
WANG Y H, XUAN Q X, WANG L L, YANG D L, ZHAO J N, LI G, XIU W M, HONG Y. Soil organic carbon mineralization and soil enzyme activities under different tillage methods. Chinese Journal of Soil Science, 2020, 51(4): 876-884. doi:10.19336/j.cnki.trtb.2020.04.16. (in Chinese)
[27] 杨敏芳, 朱利群, 韩新忠, 顾克军, 胡乃娟, 张振文, 卞新民. 耕作措施与秸秆还田对稻麦两熟制农田土壤养分、微生物生物量及酶活性的影响. 水土保持学报, 2013, 27(2): 272-275, 281. doi:10.13870/j.cnki.stbcxb.2013.02.044.
YANG M F, ZHU L Q, HAN X Z, GU K J, HU N J, ZHANG Z W, BIAN X M. Effects of tillage and crop residues incorporation on soil nutrient, microbial biomass and enzyme activity under rice-wheat rotation. Journal of Soil and Water Conservation, 2013, 27(2): 272-275, 281. doi:10.13870/j.cnki.stbcxb.2013.02.044. (in Chinese)
[28] 蔺超, 郭蕴珂, 吴俊仪, 王雷, 曹伟, 于兴旺, 许昊. 春季返青期草坪土壤养分含量和酶活性变化规律研究. 草地学报, 2020, 28(1): 104-111. doi:10.11733/j.issn.1007-0435.2020.01.012.
LIN C, GUO Y K, WU J Y, WANG L, CAO W, YU X W, XU H. Study on the soil nutrient changes rules during turfgrass greenup in spring. Acta Agrestia Sinica, 2020, 28(1): 104-111. doi:10.11733/j.issn.1007-0435.2020.01.012. (in Chinese)
[29] BURKE D J, WEINTRAUB M N, HEWINS C R, KALISZ S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry, 2011, 43(4): 795-803. doi:10.1016/j.soilbio.2010.12.014.
[30] JIN K, SLEUTEL S, BUCHAN D, NEVE S D, CAI D X, GABRIELS D, JIN J Y. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil and Tillage Research, 2009, 104(1): 115-120. doi:10.1016/j.still.2009.02.004
[31] 刘捷豹, 陈光水, 郭剑芬, 杨智杰, 李一清, 林成芳, 杨玉盛. 森林土壤酶对环境变化的响应研究进展. 生态学报, 2017, 37(1): 110-117. doi:10.5846/stxb201608011581.
LIU J B, CHEN G S, GUO J F, YANG Z J, LI Y Q, LIN C F, YANG Y S. Advances in research on the responses of forest soil enzymes to environmental change. Acta Ecologica Sinica, 2017, 37(1): 110-117. doi:10.5846/stxb201608011581. (in Chinese)
[32] 罗珠珠, 黄高宝, 蔡立群, 张仁陟, 李玲玲, 谢军红. 不同耕作方式下春小麦生育期土壤酶时空变化研究. 草业学报, 2012, 21(6): 94-101.
LUO Z Z, HUANG G B, CAI L Q, ZHANG R Z, LI L L, XIE J H. Temporal and spatial disparities of soil enzyme activities during the spring wheat growing season under different tillage systems. Acta Prataculturae Sinica, 2012, 21(6): 94-101. (in Chinese)
[33] 姜桂英, 黄绍敏, 郭斗斗. 不同耕作和轮作方式下作物生育期内土壤酶活性的动态变化特征. 河南农业大学学报, 2009, 43(3): 335-342. doi:10.16445/j.cnki.1000-2340.2009.03.006.
JIANG G Y, HUANG S M, GUO D D. Dynamic changes of soil enzyme activities during growth of corps under different tillage types and rotations. Journal of Henan Agricultural University, 2009, 43(3): 335-342. doi:10.16445/j.cnki.1000-2340.2009.03.006. (in Chinese)
[34] 黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对旱作区冬小麦生产和产量的影响. 农业工程学报, 2009, 25(1): 50-54.
HUANG M, WU J Z, LI Y J, YAO Y Q, ZHANG C J, CAI D X, JIN K. Effects of different tillage managements on production and yield of winter wheat in dryland. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 50-54. (in Chinese)
[35] 吴金芝, 黄明, 李友军, 姚宇卿, 张灿军. 耕作方式对旱区冬小麦籽粒品质性状的影响. 麦类作物学报, 2012, 32(3): 454-459.
WU J Z, HUANG M, LI Y J, YAO Y Q, ZHANG C J. Effects of different tillage managements on quality characteristics of winter wheat in dry farmland area. Journal of Triticeae Crops, 2012, 32(3): 454-459. (in Chinese)
[36] 曹碧芸, 赵剑敏, 余少波, 冯玉, 王强, 林文, 任爱霞, 孙敏, 高志强. 休闲期轮耕对旱地小麦群体质量与产量的影响. 山西农业科学, 2020, 48(4): 560-565. doi:10.3969/j.issn.1002-2481.2020.04.19.
CAO B Y, ZHAO J M, YU S B, FENG Y, WANG Q, LIN W, REN A X, SUN M, GAO Z Q. Effects of rotation tillage on wheat population quality and yield in dryland. Journal of Shanxi Agricultural Sciences, 2020, 48(4): 560-565. doi:10.3969/j.issn.1002-2481.2020.04.19. (in Chinese)
[37] 汤文光, 肖小平, 唐海明, 张海林, 陈阜, 陈中督, 薛建福, 杨光立. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响. 应用生态学报, 2015, 26(1): 168-176. doi:10.13287/j.1001-9332.20141029.011.
TANG W G, XIAO X P, TANG H M, ZHANG H L, CHEN F, CHEN Z D, XUE J F, YANG G L. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. Chinese Journal of Applied Ecology, 2015, 26(1): 168-176. doi:10.13287/j.1001-9332.20141029.011. (in Chinese)
[1] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[2] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[3] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[4] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[5] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[6] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[7] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[8] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[9] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[10] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[11] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[12] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[13] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[14] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[15] REN Tao,GUO LiXuan,ZHANG LiMei,YANG XuKun,LIAO ShiPeng,ZHANG YangYang,LI XiaoKun,CONG RiHuan,LU JianWei. Soil Nutrient Status of Oilseed Rape Cultivated Soil in Typical Winter Oilseed Rape Production Regions in China [J]. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616.
Full text



No Suggested Reading articles found!