Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3752-3765.doi: 10.3864/j.issn.0578-1752.2021.17.016

• HORTICULTURE • Previous Articles     Next Articles

Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry

REN HaiYing1(),ZHOU HuiMin1,3,QI XingJiang1,ZHENG XiLiang1,YU ZhePing1,ZHANG ShuWen1,WANG ZhenShuo2()   

  1. 1Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
    2College of Plant Protection, China Agricultural University, Beijing 100193
    3College of Horticulture and Landscape Architecture, Yangtze University, Jingzhou 434023, Hubei
  • Received:2021-02-26 Accepted:2021-05-20 Online:2021-09-01 Published:2021-09-09
  • Contact: ZhenShuo WANG E-mail:renhy@zaas.ac.cn;zhenswang@163.com

Abstract:

【Objective】 Paclobutrazol is commonly used to catalyze flower bud differentiation in bayberry, however, excessive application will weaken the vigor of the trees with curled and shrank leaves. The study focused on the influence of paclobutrazol overuse on the enzyme activities of the bulk and root surface soil as well as plant and soil microbial community structure of bayberry, which would provide the theoretical guidance for the rational use of paclobutrazol. 【Method】 The grafted seedlings of one-year-old bayberry cv. ‘Dongkui’ were planted in the acid red soil and treated with 150, 300 and 600 mg∙kg -1 paclobutrazol, and the control was treated with the same volume of water. The accumulation of paclobutrazol was measured in the bulk and root surface soil, as well as roots, twigs and leaves of bayberry. The influence of paclobutrazol on bayberry associated microbe was determined by examining the soil enzyme activities and the microbial community structure of bulk and root surface soil, roots, twigs and leaves by using Illumina MiSeq high-throughput sequencing. 【Result】 The results showed that the most accumulation of paclobutrazol was in leaves, while the activities of catalase and phosphatase were significantly decreased, but the activities of invertase were significantly increased. The high concentration application of paclobutrazol significantly decreased diversity and richness of bacteria and increased the diversity and richness of fungi in bulk soil, which significantly increased the diversity and richness of bacteria and increased the diversity and richness fungi in surface root soil, while the diversity and richness of both root bacteria and branches fungi were significantly decreased. After the application of paclobutrazol, the relative abundance of Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi and important biocontrol bacteria Bacilli in bayberry root, root bulk and root surface soil were significantly reduced, and those of Burkholderia in root bulk soil and twigs were increased in the bacterial community composition; the relative abundance of Ascomycota in root bulk soils and root surface soils, those of Exobasidiomycetes in twigs and leaves were significantly increased, and those of Basidiomycota and Agaricomycetes in root bulk soil, root surface soil and roots, and Penicillium in twigs and leaves were significantly decreased in the analysis of fungal community composition. 【Conclusion】 The most residue was found in leaves of bayberry plant after soil application of paclobutrazol. The overuse of paclobutrazol caused a significant change in the activities of catalase, phosphatase and sucrase treated soils, as well as the richness and diversity of bacteria and fungi in the bulk and root surface soil, roots, branches and leaves of the bayberry trees. Overall, the results of this study not only gave an understanding on the influence of paclobutrazol on bayberry and orchard soil ecosystem, but also provided a theoretical basis for the rational application of paclobutrazol.

Key words: bayberry, paclobutrazol, soil enzyme activity, microbial community

Table 1

The residues of paclobutrazol with different dosage in soil and bayberry"

样品 Sample 处理 Treatment 残留量 Residues (mg∙kg-1) 样品 Sample 处理 Treatment 残留量 Residues (mg∙kg-1)
土壤
Soil


P0 0c 枝条
Twig


P0 0c
P150 0.39±0.11c P150 0.01±0.00c
P300 0.48±0.14c P300 2.59±1.59b
P600 0.93±0.47c P600 3.97±0.57b

Root


P0 0c
Leaf


P0 0c
P150 0.17±0.07c P150 0.39±0.33c
P300 0.60±0.15c P300 3.17±2.31b
P600 0.93±0.21c P600 7.83±2.65a

Table 2

The soil enzymes activity of bayberry after the application of paclobutrazol"

处理 Treatment 过氧化氢酶 Catalase (mL·g-1) 磷酸酶 Phosphatase (mg·g-1·d-1) 蔗糖酶 Sucrase (mg·g-1·d-1) 纤维素酶 Cellulase (mg·g-1)
P0 0.90±0.08ab 7.53±0.19a 0.87±0.09b 0.41±0.04b
P150 1.11±0.07a 6.16±0.23a 1.57±0.09a 0.26±0.03c
P300 0.82±0.08b 1.74±0.74b 1.41±0.11a 0.52±0.02a
P600 0.77±0.05b 2.78±0.75b 1.39±0.24a 0.21±0.03c

Table 3

Alpha diversity index of bacteria and fungi"

样品
Sample
细菌Bacteria 真菌Fungi
Chao1 Shannon Chao1 Shannon
SF0 901.79 7.44 232.11 3.68
SFP 918.46 8.28* 99.90# 1.02#
BS0 986.33 7.86 23.10 0.21
BSP 784.70# 7.25 200.39* 3.95*
R0 904.40 5.94 80.70 2.22
RP 615.38# 3.66# 63.03# 2.62*
T0 14.40 0.50 205.29 4.00
TP 7.80# 0.68* 93.47# 1.74#
L0 5.00 0.30 151.61 3.03
LP 5.00 0.39* 179.78* 3.00

Fig. 1

PCA analysis of bacterial (A) and fungal (B) community structure BS: Bulk soil; SF: Root surface soil; R: Root; T: Twig; L: Leaves"

Fig. 2

The relative abundance distribution of bacterial at the phylum (A), class (B) and genus (C) level"

Fig. 3

The relative abundance distribution of fungal at the phylum (A), class (B) and genus (C) level"

[1] REN H Y, YU H Y, ZHANG S W, LIANG S M, ZHENG X L, ZHANG S J, YAO P, ZHENG H K, QI X J. Genome sequencing provides insights into the evolution and antioxidant activity of Chinese bayberry. BMC Genomics, 2019, 20(1): 458.
doi: 10.1186/s12864-019-5818-7
[2] 俞建忠, 陈列忠, 侯佳音, 俞瑞鲜, 胡秀卿, 赵学平. 吡唑醚菌酯在杨梅和土壤中的残留及消解动态. 农药学学报, 2020, 22(5): 857-863.
YU J Z, CHEN L Z, HOU J Y, YU R X, HU X Q, ZHAO X P. Residue and dissipation dynamics of pyraclostrobin in waxberry (Myrica rubra) and soil. Chinese Journal of Pesticide Science, 2020, 22(5): 857-863. (in Chinese)
[3] 陈方永, 倪海枝, 王引, 任正初. 多效唑对东魁杨梅生长与结果的影响. 生态毒理学报, 2011, 6(6): 661-666.
CHEN F Y, NI H Z, WANG Y, REN Z C. Effect of paclobutrazol (PP333) on growth and fruiting of Dongkui bayberry (Myrica rubra). Asian Journal of Ecotoxicology, 2011, 6(6): 661-666. (in Chinese)
[4] 何桂娥, 徐春燕, 何凤杰. 多效唑过度使用对杨梅树体早衰的影响. 浙江柑橘, 2014, 31(2): 33-35.
HE G E, XU C Y, HE F J. Effect of paclobutrazol on premature senescence of bayberry. Zhejiang Citrus, 2014, 31(2): 33-35. (in Chinese)
[5] 董志君, 张建军, 范永明, 陈莉祺, 朱炜, 于晓南. 3种植物生长延缓剂对盆栽芍药的矮化效应. 东北林业大学学报, 2020, 48(9): 62-66.
DONG Z J, ZHANG J J, FAN Y M, CHEN L Q, ZHU W, YU X N. Dwarfing effects of paclobutrazol, unicnazleand chlormequat on potted Paeonia lactiflora. Journal of Northeast Forestry University, 2020, 48(9): 62-66. (in Chinese)
[6] 孔德真, 聂迎彬, 桑伟, 徐红军, 刘鹏鹏, 穆培源, 田笑明. 多效唑、矮壮素对杂交小麦及其亲本矮化效应的研究. 中国农学通报, 2018, 34(35): 1-6.
KONG D Z, NIE Y B, SANG W, XU H J, LIU P P, MU P Y, TIAN X M. Paclobutrazol and chlormequat: The dwarfing effect on hybrid wheat and its parents. Chinese Agricultural Science Bulletin, 2018, 34(35): 1-6. (in Chinese)
[7] KAMRAN M, SU W N, AHMAD I, MENG X P, CUI W W, ZHANG X D, MOU S W, KHAN A, HAN Q F, LIU T N. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports, 2018, 8(1): 4818.
doi: 10.1038/s41598-018-23166-z
[8] KUMAR S, GHATTY S, SATYANARAYANA J, GUHA A, CHAITANYA B, REDDY A R. Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz. BMC Research Notes, 2012, 5: 137.
doi: 10.1186/1756-0500-5-137
[9] PAL S, ZHAO J, KHAN A, YADAV N S, BATUSHANSKY A, BARAK S, REWALD B, FAIT A, LAZAROVITCH N, RACHMILEVITCH S. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Science Reports, 2016, 6: 39321.
[10] CHEN S, WANG X J, TAN G F, ZHOU W Q, WANG G L. Gibberellin and the plant growth retardant Paclobutrazol altered fruit shape and ripening in tomato. Protoplasma, 2020, 257(3): 853-861.
doi: 10.1007/s00709-019-01471-2
[11] 鲍雨林, 尚为民, 沈青山, 吴相祝, 陈宝福. 叶面喷施多效唑对杨梅幼树生长和结果的影响. 中国果树, 1994(2): 20-21.
BAO Y L, SHANG W M, SHEN Q S, WU X Z, CHEN B F. Effect of paclobutrazole on the growth and results of young bayberry trees. China Fruits, 1994(2): 20-21. (in Chinese)
[12] 靳晓拓, 周彦妤, 夏杨荣畅, 陈丽君, 李涛, 赵洪伟. 多效唑对芒果园土壤细菌多样性的影响及PICRUSt基因功能预测分析. 热带作物学报, 2019, 40(4): 807-814.
JIN X T, ZHOU Y Y, XIA Y R C, CHEN L J, LI T, ZHAO H W. Effects of paclobutrazol on soil bacterial diversity in mango orchard and PICRUSt-based predicted metagenomic analysis. Chinese Journal of Tropical Crops, 2019, 40(4): 807-814. (in Chinese)
[13] KUO J, WANG Y W, CHEN M, FUH G, LIN C H. The effect of paclobutrazol on soil bacterial composition across three consecutive flowering stages of mung bean. Folia Microbiologica, 2019, 64(2): 197-205.
doi: 10.1007/s12223-018-0644-x
[14] 任海英, 方丽, 李岗, 王康强, 王汉荣. 多效唑、硼砂和10种农药对地表球囊霉菌根侵染能力的影响. 浙江农业科学, 2011, 52(6): 1345-1347.
REN H Y, FANG L, LI G, WANG K Q, WANG H R. Effects of paclobutrazol, borax and 10 kinds of pesticides on the infection ability of glomus mycorrhiza. Journal of Zhejiang Agricultural Sciences, 2011, 52(6): 1345-1347. (in Chinese)
[15] 熊悯梓, 钞亚鹏, 赵盼, 宋双伟, 石莹莹, 莫乘宝, 仲乃琴. 不同生境马铃薯根际土壤细菌多样性分析. 微生物学报, 2020, 60(11): 2434-2449.
XIONG M Z, CHAO Y P, ZHAO P, SONG S W, SHI Y Y, MO C B, ZHONG N Q. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats. Acta Microbiologica Sinica, 2020, 60(11): 2434-2449. (in Chinese)
[16] 袁仁文, 刘琳, 张蕊, 范淑英. 植物根际分泌物与土壤微生物互作关系的机制研究进展. 中国农学通报, 2020, 36(2): 26-35.
YUAN R W, LIU L, ZHANG R, FAN S Y. The interaction mechanism between plant rhizosphere secretion and soil microbe: A review. Chinese Agricultural Science Bulletin, 2020, 36(2): 26-35. (in Chinese)
[17] GONÇALVES I C R, ARAÚJO A S F, CARVALHO E M S, CARNEIRO R F V. Effect of paclobutrazol on microbial biomass, respiration and cellulose decomposition in soil. European Journal of Soil Biology, 2009, 45(3): 235-238.
doi: 10.1016/j.ejsobi.2009.01.002
[18] 包明, 何红霞, 马小龙, 王朝辉, 邱炜红. 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响. 土壤学报, 2018, 55(3): 734-743.
BAO M, HE H X, MA X L, WANG Z H, QIU W H. Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field. Acta Pedologica Sinica, 2018, 55(3): 734-743. (in Chinese)
[19] 吕宁, 石磊, 刘海燕, 司爱君, 李全胜, 张国丽, 陈云. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响. 应用生态学报, 2019, 30(2): 602-614.
LÜ N, SHI L, LIU H Y, SI A J, LI Q S, ZHANG G L, CHEN Y. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism. Chinese Journal of Applied Ecology, 2019, 30(2): 602-614. (in Chinese)
[20] 高红, 盛剑, 白旭, 康宝铃, 孙欢欢, 孙海峰, 曹秋芬. 浑源黄芪内生细菌的菌群组成及其功能. 微生物学报, 2020, 60(8): 1638-1647.
GAO H, SHENG J, BAI X, KANG B L, SUN H H, SUN H F, CAO Q F. Composition and function of endophytic bacteria residing the root tissue of Astragalus mongholicus in Hunyuan. Acta Microbiologica Sinica, 2020, 60(8): 1638-1647. (in Chinese)
[21] 张爱梅, 郭保民, 韩雪英, 李曦冉. 两种不同生境中国沙棘种子内生细菌的多样性. 生态学报, 2020, 40(15): 5247-5257.
ZHANG A M, GUO B M, HAN X Y, LI X R. Diversity of endophytic bacteria in seeds of Hippophae rhamnoides subsp. sinensis in two different habitats. Acta Ecologica Sinica, 2020, 40(15): 5247-5257. (in Chinese)
[22] 邢颖, 张莘, 郝志鹏, 赵正雄, 于有志, 陈保冬. 烟草内生菌资源及其应用研究进展. 微生物学通报, 2015, 42(2): 411-419.
XING Y, ZHANG X, HAO Z P, ZHAO Z X, YU Y Z, CHEN B D. Biodiversity of endophytes in tobacco plants and their potential application-A mini review. Microbiology China, 2015, 42(2): 411-419. (in Chinese)
[23] LOPES R, TSUI S, GONÇALVES P J R O, DE QUEIROZ M V. A look into a multifunctional toolbox: Endophytic Bacillus species provide broad and underexploited benefits for plants. World Journal of Microbiology & Biotechnology, 2018, 34(7): 94.
doi: 10.1007/s11274-018-2479-7
[24] SUN W H, XIONG Z, CHU L, LI W, SOARES M A, WHITE J F, LI H Y. Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp. (strain BXGe71). Journal of Hazardous Materials, 2019, 370: 225-231.
doi: 10.1016/j.jhazmat.2018.02.003
[25] PIETRO-SOUZA W, MELLO I S, VENDRUSCULLO S J, SILVA G F D, CUNHA C N D, WHITE J F, SOARES M A. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS ONE, 2017, 12(7): e0182017.
doi: 10.1371/journal.pone.0182017
[26] TAN Y, CUI Y S, LI H Y, KUANG A X, LI X R, WEI Y L, JI X L. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Journal of Basic Microbiology, 2017, 57(4): 337-344.
doi: 10.1002/jobm.v57.4
[27] 段春梅, 薛泉宏, 呼世斌, 赵娟, 魏样, 王玲娜, 申光辉, 陈秦. 连作黄瓜枯萎病株、健株根域土壤微生物生态研究. 西北农林科技大学学报(自然科学版), 2010, 38(4): 143-150.
DUAN C M, XUE Q H, HU S B, ZHAO J, WEI Y, WANG L N, SHEN G H, CHEN Q. Microbial ecology of Fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(4): 143-150. (in Chinese)
[28] 赵锋, 李光耀, 黄璐璐, 李远富, 顾燕萍, 李雪生, 谭辉华. 多效唑在花生和土壤中的残留分析及消解动态. 南方农业学报, 2017, 48(8): 1421-1426.
ZHAO F, LI G Y, HUANG L L, LI Y F, GU Y P, LI X S, TAN H H. Residues and degradation dynamics of paclobutrazol in peanut and soil. Journal of Southern Agriculture, 2017, 48(8): 1421-1426. (in Chinese)
[29] 徐忠山, 刘景辉, 逯晓萍, 陈晓晶, 张博文, 张兴隆, 周祎, 杨彦明. 施用有机肥提高黑土土壤酶活性、增加细菌数量及种类多样性. 中国土壤与肥料, 2020(4): 50-55.
XU Z S, LIU J H, LU X P, CHEN X J, ZHANG B W, ZHANG X L, ZHOU Y, YANG Y M. The application of organic fertilizer improves the activity of the soil enzyme, increases the number and the species variety of bacteria in black soil. Soils and Fertilizers Sciences in China, 2020(4): 50-55. (in Chinese)
[30] 吴济南, 王丽玲, 王惟帅, 杜慧玲. 尿素与多效唑配施对苯磺隆胁迫下土壤酶活性的影响. 中国水土保持科学, 2011, 9(4): 110-116.
WU J N, WANG L L, WANG W S, DU H L. Effect of combined application of urea and paclobutrazol on soil enzyme activity under tribenuron-methyl stress. Science of Soil and Water Conservation, 2011, 9(4): 110-116. (in Chinese)
[31] 黄冬芬, 郇恒福, 刘国道, 白昌军. 铝和镉及其复合污染对砖红壤酶活性的影响. 热带作物学报, 2013, 34(12): 2413-2418.
HUANG D F, HUAN H F, LIU G D, BAI C J. The influence of aluminum and cadmium pollution on soil enzyme activities in a latosol. Chinese Journal of Tropical Crops, 2013, 34(12): 2413-2418. (in Chinese)
[32] 孙锋, 赵灿灿, 李江涛, 陈思宇, 谷艳芳. 与碳氮循环相关的土壤酶活性对施用氮磷肥的响应. 环境科学学报, 2014, 34(4): 1016-1023.
SUN F, ZHAO C C, LI J T, CHEN S Y, GU Y F. Response of soil enzyme activities in soil carbon and nitrogen cycles to the application of nitrogen and phosphate fertilizer. Acta Scientiae Circumstantiae, 2014, 34(4): 1016-1023. (in Chinese)
[33] NOSSA C W, OBERDORF W E, YANG LY, AAS J A, PASTER B J, DESANTIS T Z, BRODIE E L, MALAMUD D, POLES M A, PEI Z H. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World Journal of Gastroenterology, 2010, 16(33): 4135-4144.
doi: 10.3748/wjg.v16.i33.4135
[34] MUKHERJEE P K, CHANDRA J, RETUERTO M, SIKAROODI M, BROWN R E, JUREVIC R, SALATA R A, LEDERMAN M M, GILLEVET P M, GHANNOUM M A. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathogens, 2014, 10(3): e1003996.
doi: 10.1371/journal.ppat.1003996
[35] 赵峥, 褚长彬, 周德平, 王庆峰, 吴淑杭. 葡萄废果酵素肥对葡萄园土壤细菌多样性的影响. 果树学报, 2020, 37(8): 1207-1217.
ZHAO Z, CHU C B, ZHOU D P, WANG Q F, WU S H. Effects of ferment fertilizer from waste grape berry on soil bacterial diversity in vineyards. Journal of Fruit Science, 2020, 37(8): 1207-1217. (in Chinese)
[36] JIANG X L, WANG Y N, XIE H, LI R Q, WEI J L, LIU Y. Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants. Environmental Science and Pollution Research, 2019, 26(26): 27385-27395.
doi: 10.1007/s11356-019-05947-9
[37] 杜林森, 唐美铃, 祝贞科, 魏亮, 魏晓梦, 周萍, 葛体达, 王久荣, 邹冬生, 吴金水. 长期施肥对不同深度稻田土壤碳氮水解酶活性的影响特征. 环境科学, 2018, 39(8): 3901-3909.
DU L S, TANG M L, ZHU Z K, WEI L, WEI X M, ZHOU P, GE T D, WANG J R, ZOU D S, WU J S. Effects of long-term fertilization on enzyme activities in profile of paddy soil profiles. Environmental Science, 2018, 39(8): 3901-3909. (in Chinese)
[38] 李娟, 王文丽, 赵旭. 生物肥料对当归生长及土壤酶活性、微生物多样性的影响. 广东农业科学, 2020, 47(6): 39-46.
LI J, WANG W L, ZHAO X. Effects of biological fertilizers on Angelica sinensis growth and soil enzyme activity and microbial diversity. Guangdong Agricultural Sciences, 2020, 47(6): 39-46. (in Chinese)
[39] 于会丽, 徐国益, 路绪强, 长俊杰, 邵微, 任言, 邓云, 司鹏. 微生物菌剂对连作西瓜土壤微环境及果实品质的影响. 果树学报, 2020, 37(7): 1025-1035.
YU H L, XU G Y, LU X Q, ZHANG J J, SHAO W, REN Y, DENG Y, SI P. Effects of microbial agents on soil microenvironment and fruit quality of watermelon under continuous cropping. Journal of Fruit Science, 2020, 37(7): 1025-1035. (in Chinese)
[40] 袁志华, 程波, 常玉海, 马兴. 15%多效唑可湿性粉剂对土壤微生物多样性的影响研究. 农业环境科学学报, 2008, 27(5): 1848-1852.
YUAN Z H, CHENG B, CHANG Y H, MA X. Influence of paclobutrazol on microbial diversity in soil. Journal of Agro-Environment Science, 2008, 27(5): 1848-1852. (in Chinese)
[41] 孟会生, 洪坚平, 杨毅, 王向英, 李廷亮, 栗丽. 配施磷细菌肥对复垦土壤细菌多样性及磷有效性的影响. 应用生态学报, 2016, 27(9): 3016-3022.
MENG H S, HONG J P, YANG Y, WANG X Y, LI T L, LI L. Effect of applying phosphorus bacteria fertilizer on bacterial diversity and phosphorus availability in reclaimed soil. Chinese Journal of Applied Ecology, 2016, 27(9): 3016-3022. (in Chinese)
[42] 袁红朝, 吴昊, 葛体达, 李科林, 吴金水, 王久荣. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响. 应用生态学报, 2015, 26(6): 1807-1813.
YUAN H Z, WU H, GE T D, LI K L, WU J S, WANG J R. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils. Chinese Journal of Applied Ecology, 2015, 26(6): 1807-1813. (in Chinese)
[43] 宋宇, 王鹏, 韦月平. 不同稻田共作模式对土壤细菌群落结构的影响. 西北农业学报, 2020, 29(2): 216-223.
SONG Y, WANG P, WEI Y P. Effects of different co-cultivation patterns of rice field on soil bacterial communities structure. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(2): 216-223. (in Chinese)
[44] 朱英波, 史凤玉, 张瑞敬, 武云鹏. 黑龙江大豆轮作和连作土壤细菌群落多样性比较. 植物保护学报, 2014, 41(4): 403-409.
ZHU Y B, SHI F Y, ZHANG R J, WU Y P. Comparison of bacterial diversity in rotational and continuous soybean cropping soils in Heilongjiang. Journal of Plant Protection, 2014, 41(4): 403-409. (in Chinese)
[45] 朱琳, 曾椿淋, 李雨青, 俞冰倩, 高凤, 魏巍, 许艳丽. 基于高通量测序的大豆连作土壤细菌群落多样性分析. 大豆科学, 2017, 36(3): 419-424.
ZHU L, ZENG C L, LI Y Q, YU B Q, GAO F, WEI W, XU Y L. The characteristic of bacterial community diversity in soybean field with continuous cropping based on the high-throughput sequencing. Soybean Science, 2017, 36(3): 419-424. (in Chinese)
[46] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征. 生态环境学报, 2020, 29(1): 141-148.
GE Y L, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil. Ecology and Environmental Sciences, 2020, 29(1): 141-148. (in Chinese)
[47] 谢玉清, 茆军, 王玮, 张志东, 朱静, 顾美英, 唐琦勇, 宋素琴, 黄伟, 王博, 张丽娟. 大蒜根腐病根际土壤真菌群落结构及多样性分析. 中国农学通报, 2020, 36(13): 145-153.
XIE Y Q, MAO J, WANG W, ZHANG Z D, ZHU J, GU M Y, TANG Q Y, SONG S Q, HUANG W, WANG B, ZHANG L J. Structures and biodiversity of fungal communities in rhizosphere soil of root rot diseased garlic. Chinese Agricultural Science Bulletin, 2020, 36(13): 145-153. (in Chinese)
[48] 苏小惠, 白玉超, 佘玮, 杨瑞芳, 崔丹丹, 李林林, 王继龙, 崔国贤. 不同苎麻品种根际微生物多样性群落结构分析. 中国麻业科学, 2019, 41(3): 114-121.
SU X H, BAI Y C, SHE W, YANG R F, CUI D D, LI L L, WANG J L, CUI G X. Microbial community structures and diversities in different ramie varieties rhizosphere soils. Plant Fiber Sciences in China, 2019, 41(3): 114-121. (in Chinese)
[49] 燕红梅, 张欣钰, 檀文君, 陈卫民. 5种植物根际真菌群落结构与多样性. 应用与环境生物学报, 2020, 26(2): 364-369.
YAN H M, ZHANG X Y, TAN W J, CHEN W M. Biodiversity and composition of rhizosphere fungal communities associated with five plant species. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 364-369. (in Chinese)
[50] 肖礼, 黄懿梅, 赵俊峰, 周俊英, 郭泽慧, 刘洋. 土壤真菌组成对黄土高原梯田种植类型的响应. 中国环境科学, 2017, 37(8): 3151-3158.
XIAO L, HUANG Y M, ZHAO J F, ZHOU J Y, GUO Z H, LIU Y. High-throughput sequencing sevealed soil fungal communities under three terrace agrotypes on the loess plateau. China Environmental Science, 2017, 37(8): 3151-3158. (in Chinese)
[51] 李晶晶, 续勇波. 连作年限对设施百合土壤微生物多样性的影响. 土壤通报, 2020, 51(2): 343-351.
LI J J, XU Y B. Effects of continuous cropping years of lily on soil microbial diversities under greenhouse cultivation. Chinese Journal of Soil Science, 2020, 51(2): 343-351. (in Chinese)
[1] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[2] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[3] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[4] XU Meng,XU LiJun,CHENG ShuLan,FANG HuaJun,LU MingZhu,YU GuangXia,YANG Yan,GENG Jing,CAO ZiCheng,LI YuNa. Responses of Soil Organic Carbon Fractionation and Microbial Community to Nitrogen and Water Addition in Artificial Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2678-2690.
[5] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[6] QIU CunPu, CHEN XiaoFen, LIU Ming, LI WeiTao, WU Meng, JIANG ChunYu, FENG YouZhi, LI ZhongPei. Microbial Transformation Process of Straw-Derived C in Two Typical Paddy Soils [J]. Scientia Agricultura Sinica, 2019, 52(13): 2268-2279.
[7] WANG QingFeng, JIANG Xin, MA MingChao, GUAN DaWei, ZHAO BaiSuo, WEI Dan, CAO FengMing, LI Li, LI Jun. Influence of Long-Term Nitrogen and Phosphorus Fertilization on Arbuscular Mycorrhizal Fungi Community in Mollisols of Northeast China [J]. Scientia Agricultura Sinica, 2018, 51(17): 3315-3324.
[8] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[9] GUO Yun, SUN BenHua, WANG Ying, WEI Jing, GAO MingXia, ZHANG ShuLan, YANG XueYun. PLFA Fingerprint Characteristics of An Anthropogenic Loess Soil Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2017, 50(1): 94-103.
[10] YANG Lin-sheng, ZHANG Yu-ting, HUANG Xing-cheng, ZHANG Yue-qiang, ZHAO Ya-nan, SHI Xiao-jun. Effects of Long-Term Application of Chloride Containing Fertilizers on the Biological Fertility of Purple Soil Under a Rice-Wheat Rotation System [J]. Scientia Agricultura Sinica, 2016, 49(4): 686-694.
[11] Qingge-er, GAO Ju-lin, YU Xiao-fang, HU Shu-ping, WANG Zhi-gang, WANG Zhen, Naoganchaolu BORJIGIN . Function and Composition Stability of a Composite Microbial System GF-20 with Efficient Corn Stalk Decomposition Under Low Temperature [J]. Scientia Agricultura Sinica, 2016, 49(3): 443-454.
[12] DING Jian-li, JIANG Xin, GUAN Da-wei, MA Ming-chao, ZHAO Bai-suo, ZHOU Bao-ku, CAO Feng-ming, LI Li, LI Jun. Responses of Micropopulation in Black Soil of Northeast China to Long-Term Fertilization and Crops [J]. Scientia Agricultura Sinica, 2016, 49(22): 4408-4418.
[13] YU Hui-yong, SONG Xiao-li, WANG Shu-sheng, CAO Li-jun, GUO Li, WANG Xiao-li, PENG Gong-yin. Effects of Low Molecular Weight Organic Acids on Soil Enzymes Activities and Bacterial Community Structure [J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947.
[14] SONG Meng-ya, LI Zhong-pei, WU Meng, LIU Ming, JIANG Chun-yu. Changes in Soil Microbial Biomass and Community Structure with Cultivation Chronosequence of Greenhouse Vegetables [J]. Scientia Agricultura Sinica, 2015, 48(18): 3635-3644.
[15] ZHANG Lin-Sen-1, LIU Fu-Ting-1, ZHANG Yong-Wang-1, LI Xue-Wei-1, LI Bing-Zhi-1, XU Sheng-Rong-1, GU Jie-2, HAN Ming-Yu-1. Effects of Different Mulching on Soil Organic Carbon Fractions and Soil Microbial Community of Apple Orchard in Loess Plateau [J]. Scientia Agricultura Sinica, 2013, 46(15): 3180-3190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!