Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 4092-4102.doi: 10.3864/j.issn.0578-1752.2020.19.021
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles
GAO Yan(),ZHU YaNan,LI QiuFang,SU SongKun(
),NIE HongYi(
)
[1] |
BEZABIH G, CHENG H, HAN B, FENG M, XUE Y, HU H, LI J K. Phosphoproteome analysis reveals phosphorylation underpinnings in the brains of nurse and forager honeybees ( Apis mellifera). Scientific Reports, 2017, 7: 1973.
doi: 10.1038/s41598-017-02192-3 pmid: 28512345 |
[2] |
HAN B, FANG Y, FENG M, HU H, HAO Y, MA C, HUO X, MENG L, ZHANG X, WU F, LI J K. Brain membrane proteome and phosphoproteome reveal molecular basis associating with nursing and foraging behaviors of honeybee workers. Journal of Proteome Research, 2017, 16(10): 3646-3663.
doi: 10.1021/acs.jproteome.7b00371 pmid: 28879772 |
[3] |
SIALANA F J, MENEGASSO A R S, SMIDAK R, HUSSEIN A M, ZAVADIL M, RATTEI T, LUBEC G, PALMA M S, LUBEC J. Proteome changes paralleling the olfactory conditioning in the forager honey bee and provision of a brain proteomicsdataset. Proteomics, 2019, 19(13): e1900094.
doi: 10.1002/pmic.201900094 pmid: 31115157 |
[4] |
CONTE Y L, MOHAMMEDI A, ROBINSON G E. Primer effects of a brood pheromone on honeybee behavioural development. Proceedings. Biological Sciences, 2001, 268(1463): 163-168.
doi: 10.1098/rspb.2000.1345 pmid: 11209886 |
[5] |
FUJITA T, KOZUKA-HATA H, AO-KONDO H, KUNIEDA T, OYAMA M, KUBO T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research, 2012, 12(1): 404-411.
doi: 10.1021/pr300700e pmid: 23157659 |
[6] |
ALTAYE S Z, MENG L F, LI J K. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee ( Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 2019, 50(4): 436-453.
doi: 10.1007/s13592-019-00656-1 |
[7] |
WHITFIELD C W, CZIKO A M, ROBINSON G E. Gene expression profiles in the brain predict behavior in individual honey bees. Science, 2003, 302(5643): 296-299.
doi: 10.1126/science.1086807 pmid: 14551438 |
[8] |
KUCHARSKI R, MALESZKA R. Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biology, 2002, 3(2): RESEARCH0007.
doi: 10.1186/gb-2002-3-2-research0007 pmid: 11864369 |
[9] |
RODRIGUEZ-ZAS S L, SOUTHEY B R, SHEMESH Y, RUBIN E B, COHEN M, ROBINSON G E, BLOCH G. Microarray analysis of natural socially regulated plasticity in circadian rhythms of honey bees. Journal of Biological Rhythms, 2012, 27(1): 12-24.
doi: 10.1177/0748730411431404 pmid: 22306970 |
[10] |
HERNÁNDEZ L G, LU B, DA CRUZ G C, CALÁBRIA L K, MARTINS N F, TOGAWA R, ESPINDOLA F S, YATES J R, CUNHA R B, DE SOUSA M V. Worker honeybee brain proteome. Journal of Proteome Research, 2012, 11(3): 1485-1493.
doi: 10.1021/pr2007818 pmid: 22181811 |
[11] |
PAERHATI Y, ISHIGURO S, UEDA-MATSUO R, YANG P, YAMASHITA T, ITO K, MAEKAWA H, TANI H, SUZUKI K. Expression of AmGR10 of the gustatory receptor family in honey bee is correlated with nursing behavior. PLoS ONE, 2015, 10(11): e0142917.
doi: 10.1371/journal.pone.0142917 pmid: 26588091 |
[12] |
KNECHT D, KAATZ H H. Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie, 1990, 21(5): 457-468.
doi: 10.1051/apido:19900507 |
[13] |
HAN B, FANG Y, FENG M, HU H, QI Y P, HUO X M, MENG L F, WU B, LI J K. Quantitative neuropeptidome analysis reveals neuropeptides are correlated with social behavior regulation of the honeybee workers. Journal of Proteome Research, 2015, 14(10): 4382-4393.
pmid: 26310634 |
[14] | 韩宾. 工蜂劳动分工与蜂王浆高产机理的大脑神经肽组、膜蛋白质组和膜磷酸化蛋白质组研究[D]. 北京: 中国农业科学院, 2017. |
HAN B. Investigation of molecular basis associating with division of labor and high royal jelly yields by analyzing brain neuropeptidome, membrane proteome and membrane phosphoproteome[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[15] |
TSUCHIMOTO M, AOKI M, TAKADA M, KANOU Y, SASAGAWA H, KITAGAWA Y, KADOWAKI T. The changes of gene expression in honeybee ( Apis mellifera) brains associated with ages. Zoological Science, 2004, 21(1): 23-28.
pmid: 14745100 |
[16] | 赵元洪, 赵晓蒙, 苏松坤. 蜜蜂全脑解剖新方法的研究. 中国蜂业, 2014, 65(Z1): 4-7. |
ZHAO Y H, ZHAO X M, SU S K. New method on dissection of whole brain of honeybee. Apiculture of China, 2014, 65(Z1): 4-7. (in Chinese) | |
[17] |
ANDERS S, HUBER W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): R106.
doi: 10.1186/gb-2010-11-10-r106 pmid: 20979621 |
[18] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[19] |
SCHULZ D J, BARRON A B, ROBINSON G E. A role for octopamine in honey bee division of labor. Brain, Behavior and Evolution, 2002, 60(6): 350-359.
doi: 10.1159/000067788 pmid: 12563167 |
[20] |
XU G, TENG Z W, GU G X, QI Y X, GUO L, XIAO S, WANG F, FANG Q, WANG F, SONG Q S, STANLEY D, YE G Y. Genome- wide characterization and transcriptomic analyses of neuropeptides and their receptors in an endoparasitoid wasp, Pteromalus puparum. Archives of Insect Biochemistry and Physiology, 2019, 103(2): e21625.
pmid: 31565815 |
[21] |
PRATAVIEIRA M, DA SLIVA MENEGASSO A R, ESTEVES F G, SATO K U, MALASPINA O, PALMA M S. MALDI imaging analysis of neuropeptides in africanized honeybee ( Apis mellifera) brain: Effect of aggressiveness. Journal of Proteome Research, 2018, 17(7): 2358-2369.
doi: 10.1021/acs.jproteome.8b00098 pmid: 29775065 |
[22] |
LIU Z, JI T, YIN L, SHEN J, SHEN F, CHEN G. Transcriptome sequencing analysis reveals the regulation of the hypopharyngeal glands in the honey bee, Apis mellifera carnica Pollmann. PLoS ONE, 2013, 8(12): e81001.
doi: 10.1371/journal.pone.0081001 pmid: 24339892 |
[23] |
WU Y Q, ZHENG H Q, CORONA M, PIRK C, MENG F, ZHENG Y F, HU F L. Comparative transcriptome analysis on the synthesis pathway of honey bee ( Apis mellifera) mandibular gland secretions. Scientific Reports, 2017, 7(1): 4530.
doi: 10.1038/s41598-017-04879-z pmid: 28674395 |
[24] |
STOUT K A, DUNN A R, HOFFMAN C, MILLER G W. The synaptic vesicle glycoprotein 2: Structure, function, and disease relevance. ACS Chemical Neuroscience, 2019, 10(9): 3927-3938.
pmid: 31394034 |
[25] |
MAZZUCCHELLI C, BRAMBILLA R. Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cellular and Molecular Life Sciences, 2000, 57(4): 604-611.
doi: 10.1007/PL00000722 pmid: 11130460 |
[26] |
ASTUDILLO L, THERVILLE N, COLACIOS C, SÉGUI B, ANDRIEU-ABADIE N, LEVADE T . Glucosylceramidases and malignancies in mammals. Biochimie, 2016, 125: 267-280.
doi: 10.1016/j.biochi.2015.11.009 pmid: 26582417 |
[27] | 孙九丽, 林慧珍, 苟萍. 鞘脂代谢及其相关疾病研究进展. 生物技术, 2011, 21(5): 93-97. |
SUN J L, LIN H Z, GOU P. Research progress of sphingolipid metabolism and related diseases. Biotechnology, 2011, 21(5): 93-97. (in Chinese) | |
[28] |
SHI J, ANDERSON D, LYNCH B A, CASTAIGNE J G, FOERCH P, LEBON F. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. Biochemical Society Transactions, 2011, 39(5): 1341-1347.
doi: 10.1042/BST0391341 pmid: 21936812 |
[29] |
BISOGNO T, HOWELL F, WILLIAMS G, MINASSI A, CASCIO M, LIGRESTI A, MATIAS I, SCHIANO-MORIELLO A, PAUL P, WILLIAMS E J, GANGADHARAN U, HOBBS C, DI MARZO V, DOHERTY P. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. The Journal of Cell Biology, 2003, 163(3): 463-468.
pmid: 14610053 |
[30] |
BRITTIS P A, SILVER J, WALSH F S, DOHERTY P. Fibroblast growth factor receptor function is required for the orderly projection of ganglion cell axons in the developing mammalian retina. Molecular and Cellular Neuroscience, 1996, 8(2/3): 120-128.
doi: 10.1006/mcne.1996.0051 pmid: 8954627 |
[31] |
RIDGE K D, ABDULAEV N G, SOUSA M, PALCZEWSKI K. Phototransduction: Crystal clear. Trends in Biochemical Sciences, 2003, 28(9): 479-487.
doi: 10.1016/S0968-0004(03)00172-5 pmid: 13678959 |
[32] |
STEINBRECHT R A. Odorant-binding proteins: Expression and function. Annals of the New York Academy of Sciences, 1998, 855(1): 323-332.
doi: 10.1111/nyas.1998.855.issue-1 |
[33] | BRIAND L, SWASDIPAN N, NESPOULOUS C, BÉZIRARD V, BLON F, HUET J C, EBERT P, PERNOLLET J C. Characterization of a chemosensory protein (ASP3c) from honeybee ( Apis mellifera L.) as a brood pheromone carrier. The FEBS Journal, 2002, 269(18): 4586-4596. |
[34] |
IOVINELLA I, DANI F, NICCOLINI A, SIMONA S, MICHELUCCI E, GAZZANO A, TURILLAZZI S, FELICIOLI A, PELOSI P. Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. Journal of Proteome Research, 2011, 10(8): 3439-3449.
doi: 10.1021/pr2000754 pmid: 21707107 |
[35] |
WU F, FENG Y L, HAN B, HU H, FENG M, MENG L F, MA C, YU L S, LI J K. Mechanistic insight into binding interaction between chemosensory protein 4 and volatile larval pheromones in honeybees ( Apis mellifera). International Journal of Biological Macromolecules, 2019, 141: 553-563.
doi: 10.1016/j.ijbiomac.2019.09.041 pmid: 31499112 |
[36] |
NIE H Y, XU S P, XIE C Q, GENG H Y, ZHAO Y Z, LI J H, HUANG W F, LIN Y, LI Z G, SU S K. Comparative transcriptome analysis of Apis mellifera antennae of workers performing different tasks. Molecular Genetics and Genomics, 2017, 293(1): 237-248.
doi: 10.1007/s00438-017-1382-5 pmid: 29043489 |
[37] |
LESNEFSKY E J, HOPPEL C L. Oxidative phosphorylation and aging. Ageing Research Reviews, 2006, 5(4): 402-433.
doi: 10.1016/j.arr.2006.04.001 pmid: 16831573 |
[38] | 唐晓伟. 西方蜜蜂细胞色素P450单加氧酶特性初步研究[D]. 北京: 中国农业科学院, 2011. |
TANG X W. Preliminary study on cytochrome P450 monooxygenase of Apis mellifera[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[39] |
HELVIG C, TIJET N, FEYEREISEN R, WALKER F A, RESTIFO L L. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Biochemical and Biophysical Research Communications, 2004, 325(4): 1495-1502.
doi: 10.1016/j.bbrc.2004.10.194 pmid: 15555597 |
[40] |
BOUTIN S, ALBURAK M, MERCIER P L, GIOVENAZZO P, DEROME N. Differential gene expression between hygienic and non-hygienic honeybee ( Apis mellifera L.) hives. BMC Genomics, 2015, 16(1): 500.
doi: 10.1186/s12864-015-1714-y |
[41] |
GARCIA L, GARCIA C H, CALÁBRIA L K, DA CRUZ G C, PUENTES A S, BÁO S N, FONTES W, RICART C A, ESPINDOLA F S, DE SOUSA M V. Proteomic analysis of honey bee brain upon ontogenetic and behavioral development. Journal of Proteome Research, 2009, 8(3): 1464-1473.
pmid: 19203288 |
[1] | QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694. |
[2] | ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288. |
[3] | WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684. |
[4] | XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151. |
[5] | DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820. |
[6] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
[7] | LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501. |
[8] | ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889. |
[9] | ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706. |
[10] | ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845. |
[11] | HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454. |
[12] | GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204. |
[13] | DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526. |
[14] | ShuLei GUO,XiaoMin LU,JianShuang QI,LiangMing WEI,Xin ZHANG,XiaoHua HAN,RunQing YUE,ZhenHua WANG,ShuangGui TIE,YanHui CHEN. Explore Regulatory Genes Related to Maize Leaf Morphogenesis Using RNA-Seq [J]. Scientia Agricultura Sinica, 2020, 53(1): 1-17. |
[15] | Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212. |
|