Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 1-17.doi: 10.3864/j.issn.0578-1752.2020.01.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ShuLei GUO1,2,XiaoMin LU1,JianShuang QI1,LiangMing WEI1,Xin ZHANG1,XiaoHua HAN1,RunQing YUE1,ZhenHua WANG1(),ShuangGui TIE1(
),YanHui CHEN2(
)
[1] | 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆 . 2005—2016年中国玉米种植密度变化分析. 中国农业科学, 2017,50(11):1960-1972. |
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K . Changes of maize planting density in China. Scientia Agricultura Sinica, 2017,50(11):1960-1972. (in Chinese) | |
[2] | 郭书磊, 陈娜娜, 齐建双, 岳润清, 韩小花, 燕树锋, 卢彩霞, 傅晓雷, 郭新海, 铁双贵 . 不同密度下玉米倒伏相关性状与产量的研究. 玉米科学, 2018,26(5):71-77. |
GUO S L, CHEN N N, QI J S, YUE R Q, HAN X H, YAN S F, LU C X, FU X L, GUO X H, TIE S G . Study on the relationship between yield and lodging traits of maize under different planting densities. Journal of Maize Sciences, 2018,26(5):71-77. (in Chinese) | |
[3] | YANG C W, XIE F M, JIANG Y P, LI Z, HUANG X, LI L . Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Developmental Cell, 2018,44(1):29-41. |
[4] | 郭书磊, 张君, 齐建双, 岳润清, 韩小花, 燕树锋, 卢彩霞, 傅晓雷, 陈娜娜, 库丽霞, 铁双贵 . 玉米叶形相关性状的Meta-QTL及候选基因分析. 植物学报, 2018,53(4):487-501. |
GUO S L, ZHANG J, QI J S, YUE R Q, HAN X H, YAN S F, LU C X, FU X L, CHEN N N, KU L X, TIE S G . Analysis of meta-quantitative trait loci and their candidate genes related to leaf shape in maize. Chinese Bulletin of Botany, 2018,53(4):487-501. (in Chinese) | |
[5] | 崔晓峰, 黄海 . 叶发育的遗传调控机理研究进展. 植物生理学报, 2011,47(7):631-640. |
CUI X F, HUANG H . Recent progresses from studies of leaf development. Plant Physiology Journal, 2011,47(7):631-640. (in Chinese) | |
[6] | MORENO M A, HARPER L C, KRUEGER R W, DELLAPORTA S L , FREELING M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 1997,11(5):616-628. |
[7] | WALSH J, WATERS C A, FREELING M . The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development, 1998,12(2):208-218. |
[8] | ZHANG X L, MADI S, BORSUK L, NETTLETON D, ELSHIRE R J, BUCKNER B, BUCKNER D J, BECK J, TIMMERMANS M, SCHNABLE P S, SCANLON M J . Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem. PLoS Genetics, 2007,3(6):1040-1052. |
[9] | BOLDUC N, YILMAZ A, MEJIA-GUERRA M K, MOROHASHI K, O'CONNOR D, GROTEWOLD E, HAKE S, . Unraveling the KNOTTED1 regulatory network in maize meristems. Genes & Development, 2012,26(15):1685-1690. |
[10] | TIMMERMANS M C, SCHULTES N P, JANKOVSKY J P, NELSON T . Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development, 1998,125(15):2813-2823. |
[11] | DOUGLAS R N, WILEY D, SARKAR A, SPRINGER N, TIMMERMANS MARJA C P, SCANLON M J, . Ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. The Plant Cell, 2010,22(5):1441-1451. |
[12] | CANDELA H, JOHNSTON R, GERHOLD A, FOSTER T, HAKE S . The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. The Plant Cell, 2008,20(8):2073-2087. |
[13] | NELISSEN H, EECKHOUT D, DEMUYNCK K, PERSIAU G, WALTON A, BEL M V, VERVOORT M, CANDAELE J, BLOCK J D, AESAERT S, LIJSEBETTENS M V, GOORMACHTIG S, VANDEPOELE K, LEENE J V, MUSZYNSKI M, GEVAERT K, INZE D, JAEGER G D . Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. The Plant Cell, 2015,27(6):1605-1619. |
[14] | WU L, ZHANG D, XUE M, QIAN J J, HE Y, WANG S C . Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. Journal of Integrative Plant Biology, 2014,56(11):1053-1063. |
[15] | 吴庆飞, 秦磊, 董雷, 丁泽红, 李平华, 杜柏娟 . 玉米光合突变体hcf136(high chlorophyll fluorescence 136)的转录组分析. 作物学报, 2018,44(4):493-504. |
WU Q F, QIN L, DONG L, DING Z H, LI P H, DU B J . Transcriptome analysis on a maize photosynthetic mutant hcf136 (high chlorophyll fluorescence 136). Acta Agronomica Sinica, 2018,44(4):493-504. (in Chinese) | |
[16] | 邱化荣, 周茜茜, 何晓文, 张宗营, 张世忠, 陈学森, 吴树敬 . 基于转录组分析苹果水杨酸特异响应基因MdWRKY40的启动子鉴定. 中国农业科学, 2017,50(20):3970-3990. |
QIU H R, ZHOU Q Q, HE X W, ZHANG Z Y, ZHANG S Z, CHEN X S, WU S J . Identification of MdWRKY40 promoter specific response to salicylic acid by transcriptome sequencing. Scientia Agricultura Sinica, 2017,50(20):3970-3990. (in Chinese) | |
[17] | TRAPNELL C, WILLAMS B A, PERTEA G, MORTAZAVI A, KWAN G, BAREN M J, SALZBERG S L , WOLD B JHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010,28(5):511-515. |
[18] | WANG L K, FENG Z X, WANG X, WANG X W, ZHANG X G . DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2009,26(1):136-138. |
[19] | LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408. |
[20] | SCHIPPERS J H M, MUELLER-ROEBER B . Ribosomal composition and control of leaf development. Plant Science, 2010,179(4):307-315. |
[21] | YAO Y, LING Q H, WANG H, HUANG H . Ribosomal proteins promote leaf adaxial identity. Development, 2008,135(7):1325-1334. |
[22] | SPIEGEL S, MERRILL Jr A H, . Sphingolipid metabolism and cell growth regulation. The FASEB Journal, 1996,10(12):1388-1397. |
[23] | MERRILL Jr A H, SANDHOFF K . Metabolism and cell signaling//Biochemistry of Lipids, Lipoproteins and Mem-branes. Amsterdam, Elsevier Science Press, 2002, 373-407. |
[24] | MONNIAUX M, MCKIM S M, CARTOLANO M, THEVENON E, PARCY F, MILTANTIS T, HAY A . Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta. New Phytologist, 2017,216(2):549-561. |
[25] | LI P H, PONNALA L, GANDOTRA N, WANG L, SI Y Q, TAUSTA S L, KEBROM T H, PROVART N, PATEL R, MYERS C R, REIDEL E J, TURGEON R, LIU P, SUN Q, NELSON T, BRUTNELL T P . The developmental dynamics of the maize leaf transcriptome. Nature Genetics, 2010,42(12):1060-1067. |
[26] | FACETTE M R, SHEN Z X, BJÖRNSDÓTTIR F R, BRIGGS S P, SMITH L G . Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. The Plant Cell, 2013: 2798-2812. |
[27] | NICOLAS M, CUBAS P. The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture// Plant Transcription Factors: Evolutionary, Structural And Functional Aspects. Cambridge, MA: Academic Press, 2016: 249-267. |
[28] | MANASSERO N G U, VIOLA I L, WELCHEN E, GONZALEZ D H . TCP transcription factors: architectures of plant form. Biomolecular Concepts, 2013,4(2):111-127. |
[29] | KIM G T, TSUKAYA H, UCHIMIYA H . The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes & Development, 1998,12(15):2381-2391. |
[30] | FUJIOKA S, LI J, CHOI Y H, SETO H, TAKATSUTO S, NOGUCHI T, WATANABE T, KURIYAMA H, YOKOT T, CHORY J, SAKURAI A . The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 1997,9(11):1951-1962. |
[31] | GUO Z, FUJIOKA S, BLANCAFLOR E B, MIAO S, GOU X P, LI J . TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. The Plant Cell, 2010,22(4):1161-1173. |
[32] | SUZUK M, WANG H H Y, MCCARTY D R . Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiology, 2007,143(2):902-911. |
[33] | HU Y X, WANG Y H, LIU X F, LI J Y . Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research, 2004,14(1):8. |
[34] | YUAN W Y, LUO X, LI Z C, YANG W N, WANG Y Z, LIU R, DU J M, HE Y H . A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nature Genetics, 2016,48(12):1527-1534. |
[35] | JE B I, PIAO H L, PARK S J, PARK S H, KIM C M, XUAN Y H, PARK S H, HUANG J, CHOI Y D, AN G, WONG H L, FUJIOKA S, KIM M C, SHIMAMOTO K, HAN C . RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. The Plant Cell, 2010,22(6):1777-1791. |
[36] | TIAN F, BRADBURY P J, BROWN P J, HUNG H Y, SUN Q, FLINT-GARCIN S, ROCHEFORD T R, MCMULLEN M D, HOLLAND J B, BUCKLER E S . Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011,43(2):159-165. |
[37] | ISHIWATA A, OZAWA M, NAGASAKI H, KATO M, NODA Y, YAMAGUCHI T, NOSAKA M, SHIMIZU-SATO S, NAGASAKI A, MAEKAWA M, HIRANO H Y, SATO Y . Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice. Plant and Cell Physiology, 2013,54(5):779-792. |
[38] | KUBO F C, YASUI Y, KUMAMARU T, SATO Y, HIRANO H Y . Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number. Genes & Genetic Systems, 2016,91(4):235-240. |
[39] | JIANG D, FANG J J, LOU L, ZHAO J F, YUAN S J, YIN L, SUN W, PENG L X, GUO B T, LI X Y . Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS ONE, 2015,10(2):e0118169. |
[40] | FUJINO K, MATSUDA Y, OZAWA K, NISHIMURA T, KOSHIBA T, FRAAIJE M W, SEKIGUCHI H . NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008,279(5):499-507. |
[41] | DOUGLAS R N, WILEY D, SARKAR A, SPRINGER N, TIMMERMANS M C P, SCANLON M J, . Ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. The Plant Cell, 2010: 1441-1451. |
[42] | DOTTO M C, PETSCH K A, AUKERMAN M J, BEATTY M, HAMMELL M, TIMMERMANS M C P . Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genetics, 2014,10(12):e1004826. |
[43] | XIE Y, STRAUB D, EGUEN T, BRANDT R, STAHL M, Jaime F MARTINEZ-GAECIA J F WENKEL S . Meta-analysis of Arabidopsis KANADI1 direct target genes identifies a basic growth-promoting module acting upstream of hormonal signaling pathways. Plant Physiology, 2015,169(2):1240-1253. |
[44] | EMERY J F, FLOYD S K, AIVAREZ J, ESHED Y, HAWKER N P, IZHAKI A, BAUM S F, BOWMAN J L . Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology, 2003,13(20):1768-1774. |
[45] | OKUSHIMA Y, MITINA I, QUACH H L, THEOLOGIS A . AUXIN RESPONSE FACTOR 2 (ARF2): A pleiotropic developmental regulator. The Plant Journal, 2005,43(1):29-46. |
[46] | SCHRUFF M C, SPIELMAN M, TIWARI S, ADAMS S, FENBY N, SCOTT R J . The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006,133(2):251-261. |
[47] | TIAN H Y, LV B S, DING T T, BAI M Y, DING Z J . Auxin-BR interaction regulates plant growth and development. Frontiers in Plant Science, 2018,8:2256. |
[48] | OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y . Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife, 2014,3:e03031. |
[49] | CHUNG Y, MAHARJAN P M, LEE O, FUJIOKA S, JANG S, KIM B, TAKATSUTO S, TSUJIMOTO M, KIM H, CHO S, PARK T, CHO H, HWANG I, CHOE S . Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 2011,66(4):564-578. |
[50] | SAKAMOTO T, MORINAKA Y, INUKAI Y, KITANO H, FUJIOKA S . Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. The Plant Journal, 2013,73(4):676-688. |
[51] | JASINSKI S, PIAZZA P, CRAFT J, HAY A, WOOLLEY L, RIEU I, PHILLIPS A, HEDDEN P, TSIANTIS M . KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 2005,15(17):1560-1565. |
[52] | NELISSEN H, RYMEN B, JIKUMARU Y, DEMUYNCK K, LIJSEBETTENS M V, KAMIYA Y, INZE D, BEEMSTER G T S . A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Current Biology, 2012,22(13):1183-1187. |
[53] | FONOUNI-FARDE C, KISIALA A, BRAULT M, EMERY R J N, ANOUCK D, FLORIAN F . DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant Physiology, 2017,175(4):1795-1806. |
[54] | GREENBOIM-WAINBERG Y, MAYMON I, BOROCHOV R, ALVAREZ J, OLSZEWSKI N, ORI N, ESHED Y, WEISS D . Cross talk between gibberellin and cytokinin: The Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. The Plant Cell, 2005,17(1):92-102. |
[55] | WALSH J, WATERS C A, FREELING M . The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development, 1998,12(2):208-218. |
[56] | WANG Q L, XUE X J, LI Y L, DONG Y B, ZHANG L, ZHOU Q, DENG F, MA Z Y, QIAO D H, HU C H, REN Y L . A maize ADP-ribosylation factor ZmArf2 increases organ and seed size by promoting cell expansion in Arabidopsis. Physiologia Plantarum, 2016,156(1):97-107. |
[1] | QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694. |
[2] | ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288. |
[3] | XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151. |
[4] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
[5] | LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501. |
[6] | ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889. |
[7] | ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706. |
[8] | GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102. |
[9] | HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454. |
[10] | LIANG GuoPing,LI WenFang,CHEN BaiHong,ZUO CunWu,MA LiJuan,HE HongHong,WAN Peng,AN ZeShan,MAO Juan. Effects of Different Sugar Sources on Protein Kinase Gene Expression in Grape Plantlets [J]. Scientia Agricultura Sinica, 2019, 52(7): 1119-1135. |
[11] | JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754. |
[12] | LIANG YingBo,LI Ze,QIU DeWen,ZENG HongMei,LI GuangYue,YANG XiuFen. Identification and Analysis of Differentially Expressed Genes Induced by Protein Elicitor PevD1 in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2019, 52(21): 3794-3805. |
[13] | ZI XiangDong, LUO Bin, XIA Wei, ZHENG YuCai, XIONG XianRong, LI Jian, ZHONG JinCheng, ZHU JiangJiang, ZHANG ZhengFan. Transcriptomic Analysis of IVF Embryonic Development in the Yak (Bos grunniens) Via RNA-Seq [J]. Scientia Agricultura Sinica, 2018, 51(8): 1577-1589. |
[14] | WANG DanDan, TANG YuTing, MA YueHui, WANG LiGang, PAN DengKe, JIANG Lin. Studying the Molecular Mechanism of Heart Development by Using ZBED6 Gene Knockout Pig [J]. Scientia Agricultura Sinica, 2018, 51(7): 1390-1400. |
[15] | LIU HongXiang,XU WenJuan,ZHU ChunHong,TAO ZhiYun,SONG WeiTao,ZHANG ShuangJie,LI HuiFang. RNA-seq Analysis on Development Arrest of Duck Pectoralis Muscle During Semi-Late Embryonic Period [J]. Scientia Agricultura Sinica, 2018, 51(22): 4373-4386. |
|