Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 1-17.doi: 10.3864/j.issn.0578-1752.2020.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Explore Regulatory Genes Related to Maize Leaf Morphogenesis Using RNA-Seq

ShuLei GUO1,2,XiaoMin LU1,JianShuang QI1,LiangMing WEI1,Xin ZHANG1,XiaoHua HAN1,RunQing YUE1,ZhenHua WANG1(),ShuangGui TIE1(),YanHui CHEN2()   

  1. 1 Cereal Crops Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Lab of Maize Biology, Zhengzhou 450002
    2 College of Agronomy, Henan Agricultural University, Zhengzhou 450046
  • Received:2019-05-20 Accepted:2019-07-11 Online:2020-01-01 Published:2020-01-19
  • Contact: ZhenHua WANG,ShuangGui TIE,YanHui CHEN E-mail:wzh201@126.com;tieshuangg@126.com;chy9890@163.com

Abstract:

【Objective】Leaf shape characteristics are one of important agronomic traits that determine plant morphology and affect planting density. However, the molecular mechanism related to leaf shape remain unknown in maize. Here, transcriptome sequencing technology was used to screen and explore genome-wide analysis of regulatory genes and metabolic pathways involved in leaf morphogenesis. This study will lay the foundation for further understanding the regulator mechanism of leaf development in plant and identifying candidate genes of leaf shapes, such as leaf width and leaf length.【Method】 Extreme narrow-leaf inbred line NL409 and wide-leaf line WB665 were selected as the experimental materials. By RNA-Seq technology, the differentially expressed genes (DEGs) of the seventh leaf base between these two lines were identified during the 7th leaf stage. Furthermore, metabolic pathways closely related to leaf development were also analyzed using a series of bioinformatics analysis. qRT-PCR was used to validate the expression level of DEGs in different hormone pathways, and the further promoter analysis were performed to explore leaf-shape functional genes.【Result】By analyzing the high-throughput sequencing in WB665 and NL409, a total of 5 199 DEGs were obtained at the primary section of leaf width formation. Of which, 2 264 (43.55%) genes were up-regulated, whereas down-regulated genes were significantly more than up-regulated genes with 2 935 (56.45%) decreased genes. GO enrichment analysis showed that these DEGs were mainly enriched in cell membrane-associated function terms of cellular components, including metabolic process and cell stimulus response. KEGG enrichment analysis showed that these DEGs were mainly involved in ribosome, plant hormone signal transduction, sphingolipid metabolism pathways, phenylpropanoid biosynthesis, glyoxylate and dicarboxylate metabolism and other processes. among which ribosome, plant hormone signal transduction, sphingolipid metabolism pathways with more down-regulated genes were closely related to leaf development. One of PRS (PRESSED FLOWER) family genes, which were enriched in the ribosomal pathway in this study, PRS13 (PFL2) was identified to participate in regulating the development of narrow leaves. The expression pattern of genes enriched in sphingolipid metabolism pathway and its related MAP kinase, AP1-like, and LFY-like were consistent with the result of the inhibited development of narrow leaves. Notably, all of BR (Brassinosteroid) response genes and most of GA (Gibberellin) metabolic genes were down-regulated in plant hormone signal transduction pathway, while the expression level of all the CTK (Cytokinine) response genes and Auxin genes are mostly increased. The action of up-regulated expression of DELLA protein gene affecting the GA and CTK pathways was consistent with the phenotypic result of narrow leaves. Eighteen genes were validated by qRT-PCR. The result showed that the expression trend was consistent with the transcriptome data. Moreover, the BR-related ROT3, auxin-related NAL7-like, AGO7-like and TCP-like transcription factors CYC/TB1 were identified to be closely associated with the formation of narrow leaves.【Conclusion】Summarily, this study unveils several metabolic pathways closely related to leaf development in maize, and find the dynamic balance between plant hormones plays an important role in leaf development, especially the interaction between Auxin and BR as well as CTK and GA.

Key words: maize (Zea mays), leaf width, leaf length, RNA-Seq, morphogenesis, regulatory gene

Fig. 1

Leaves of inbred lines NL409 (left) and WB665 (right) in the stable periods"

Table 1

Leaf width, leaf length and leaf area of inbred lines NL409 and WB665 at the 7th leaf stage and in the stable period"

材料1)
Material
叶宽
Leaf width (cm)
叶长
Leaf length (cm)
叶面积
Leaf area (cm2)
NL409-7 2.49±0.13A 36.44±2.92A 66.12±8.59A
WB665-7 4.26±0.34B 29.67±1.67B 89.44±12.45B
NL409-S 4.67±0.27A 65.47±2.47A 223.31±13.11A
WB665-S 10.88±0.58B 59.89±2.57B 475.60±24.80B

Table 2

Overview of the sequencing reads"

样品1)
Sample
原始序列
Raw reads
过滤后序列
Clean reads
高质量序列
Clean reads (%)
比对到基因组序列
Mapped reads
锚定比例
Mapped (%)
单一位置序列
Unique mapped reads (%)
过滤后Q30比例
Q30 after filter (%)
NL409-71 48570184 47805714 98.43 38240306 79.99 77.12 93.19
NL409-72 45215054 44236906 97.84 34918002 78.93 76.23 92.06
NL409-73 46822340 46156716 98.58 37211749 80.62 77.79 95.02
WB665-71 45625722 44792028 98.17 34166045 77.96 73.34 92.53
WB665-72 43848894 43120278 98.34 33618206 78.80 75.21 94.68
WB665-73 47838874 47202952 98.67 37193868 78.02 76.00 95.38

Fig. 2

Volcano Plot of DEGs The abscissa is the change in the expression fold of DGEs, the ordinate is the statistical significance of the change of expression level"

Fig. 3

Biological process enriched analysis of DEGs Size represents the size of the dot, indicating the number of genes enriched to the GO item, q-value indicates the enrichment degree of the GO item, and the closer the color is to red, the higher the enrichment. The same as below"

Fig. 4

Cellular component enriched analysis of DEGs"

Fig. 5

Molecular function enriched analysis of DEGs"

Table 3

Pathway enriched analysis of DEGs"

代谢通路
Pathway
代谢通路ID
Pathway ID
差异基因数目
Counts of DEGs
P
P-value
油菜素内酯生物合成Brassinosteroid biosynthesis map00905 7 0.00088
乙醛酸和二羧酸代谢Glyoxylate and dicarboxylate metabolism map00630 25 0.00108
核糖体Ribosome map03010 83 0.00464
苯丙烷类代谢Phenylpropanoid biosynthesis map00940 33 0.00854
植物激素信号转导Plant hormone signal transduction map04075 57 0.01099
苯并恶嗪类生物合成Benzoxazinoid biosynthesis map00402 7 0.02726
谷胱甘肽代谢Glutathione metabolism map00480 23 0.02847
鞘脂类代谢Sphingolipid metabolism map00600 13 0.03916
二萜类生物合成Diterpenoid biosynthesis map00904 6 0.04792
类黄酮生物合成Flavonoid biosynthesis map00941 8 0.04716
苯乙烯类、二芳庚酸类和姜酚类生物合成Stilbenoid, diarylheptanoid and gingerol biosynthesis map00945 7 0.04825

Table 4

Sphingolipid metabolism pathway and related genes"

路径
pathway
基因编号
Gene ID
差异倍数
FC
基因描述/注释
Gene description/annotation
鞘脂类代谢
Sphingolipid metabolism
GRMZM2G165613 0.00 下调Down 丝氨酸软脂酰转移酶,长链碱基生物合成蛋白1b
Serine palmitoyltransferase, Long chain base biosynthesis protein 1b
GRMZM2G444378 0.00 下调Down 丝氨酸软脂酰转移酶,PKC激活蛋白磷酸酶1型抑制剂
Serine palmitoyltransferase, PKC-activated protein phosphatase-1 inhibitor
GRMZM2G449763 0.00 下调Down 丝氨酸软脂酰转移酶,胺核黄素氧化还原酶
Serine palmitoyltransferase, Flavin containing amine oxidoreductase
GRMZM2G076398 0.00 下调Down 丝氨酸软脂酰转移酶,长链碱基生物合成蛋白1b
Serine palmitoyltransferase, Long chain base biosynthesis protein 1b
GRMZM2G134248 0.24 下调Down 丝氨酸软脂酰转移酶,长链碱基生物合成蛋白1b
Serine palmitoyltransferase, Long chain base biosynthesis protein 1b
GRMZM2G144985 0.33 下调Down 丝氨酸软脂酰转移酶,长链碱基生物合成蛋白1b
Serine palmitoyltransferase, Long chain base biosynthesis protein 1b
GRMZM2G152888 0.30 下调Down 丝氨酸软脂酰转移酶,长链碱基生物合成蛋白2a
Serine palmitoyltransferase, Long chain base biosynthesis protein 2a
GRMZM2G357734 0.02 下调Down 丝氨酸软脂酰转移酶,胺核黄素氧化还原酶
Serine palmitoyltransferase, Flavin containing amine oxidoreductase
GRMZM2G402368 0.01 下调Down SUR2,鞘氨醇C4型单加氧酶2
SUR2, sphinganine C4-monooxygenase 2
GRMZM2G030118 0.11 下调Down SUR2,鞘氨醇C4型单加氧酶2
SUR2, sphinganine C4-monooxygenase 2
GRMZM2G346455 0.46 下调Down α-半乳糖苷酶,参与植物细胞壁
Alpha-galactosidase 1, involved in plant-type cell wall
GRMZM2G095126 2.66 上调Up α-半乳糖苷酶,参与植物细胞壁
Alpha-galactosidase 1, involved in plant-type cell wall
GRMZM2G105922 2.27 上调Up GBA2,非溶酶体葡糖神经酰胺酶
GBA2, non-lysosomal glucosylceramidase
MAP激酶
MAP kinase
GRMZM2G135904 13.57 上调Up MAPK12,丝裂原激活蛋白激酶家族蛋白
MAPK12, MAP kinase family protein
GRMZM2G459824 8.117 上调Up MAPKKK2,丝裂原激活蛋白激酶激酶激酶ANP1
MAPKKK2, MAP kinase kinase kinase ANP1-like
GRMZM5G878379 3.00 上调Up MAPKK4,丝裂原激活蛋白激酶家族蛋白
MAPKK4, MAP kinase family protein
GRMZM2G064601 2.49 上调Up MAPKKK,丝裂原激活蛋白激酶激酶激酶YODA
MAPKKK, MAP kinase kinase kinase YODA
GRMZM2G062761 2.04 上调Up MAPK17,丝裂原激活蛋白激酶家族蛋白
MAPK17, MAP kinase family protein
AP1类
AP1-like
GRMZM2G055782 17.58 上调Up MADS-box型转录因子27
MADS-box transcription factor 27-like
GRMZM2G147716 3.78 上调Up AGL8/AP1,K-box和MADS-box型转录因子家族
AGL8/AP1, K-box region and MADS-box transcription factor family
GRMZM2G070034 2.88 上调Up MADS-box型转录因子56
MADS-box transcription factor 56-like
LFY 类LFY-like GRMZM2G162814 0.25 下调Down 多叶,花分生组织蛋白,影响花和叶片的发育
Leafy, floral meristem identity protein, affect flower and leaf development

Table 5

Some genes related to plant hormone signal transduction"

激素
Hormones
基因编号
Gene ID
差异倍数
FC(T7/C7)
基因描述/注释
Gene description/annotation
生长素信号
Auxin signaling
GRMZM2G030710 3.38 上调Up ARF,类生长素响应因子15,调控转录
ARF, Auxin response factor 15-like, regulation of transcription
GRMZM2G078274 2.54 上调Up ARF,类生长素响应因子3,调控转录
ARF, Auxin response factor 3-like, regulation of transcription
GRMZM5G874163 2.07 上调Up ARF,类生长素响应因子3,激活生长素信号通路
ARF, Auxin response factor 3-like, auxin-activated signaling pathway
GRMZM2G361376 0.00 下调Down ARF,类生长素响应因子15,细胞响应生长素刺激
ARF, Auxin response factor 15-like, cellular response to auxin stimulus
GRMZM5G853479 70.68 上调Up 生长素响应蛋白IAA4,细胞响应生长素刺激
Auxin-responsive protein IAA4, cellular response to auxin stimulus
GRMZM2G104176 7.53 上调Up 生长素响应蛋白IAA2,激活生长素信号通路
Auxin-responsive protein IAA2, auxin-activated signaling pathway
GRMZM2G077356 4.12 上调Up 生长素响应蛋白IAA13,激活生长素信号通路
Auxin-responsive protein IAA13, auxin-activated signaling pathwa
GRMZM2G079957 3.86 上调Up 生长素响应蛋白IAA31,激活生长素信号通路
Auxin-responsive protein IAA31, auxin-activated signaling pathway
GRMZM2G074427 0.12 下调Down 生长素响应蛋白IAA18,细胞响应生长素刺激
Auxin-responsive protein IAA18, cellular response to auxin stimulus
GRMZM2G079200 0.01 下调Down 生长素响应蛋白IAA23,激活生长素信号通路
Auxin-responsive protein IAA23, auxin-activated signaling pathway
GRMZM2G059544 0.02 下调Down 生长素响应蛋白IAA25,细胞响应生长素刺激
Auxin-responsive protein IAA25, cellular response to auxin stimulus
GRMZM2G429254 4.12 上调Up SAUR家族生长素响应蛋白SAUR32,生长素代谢
SAUR family auxin-responsive protein SAUR32, auxin metabolism
GRMZM2G391596 3.46 上调Up SAUR家族生长素响应蛋白SAUR36,生长素代谢
SAUR family auxin-responsive protein SAUR36, auxin metabolism
GRMZM2G361993 0.34 下调Down SAUR家族生长素响应蛋白SAUR32,生长素代谢
SAUR family auxin-responsive protein SAUR32, auxin metabolism
GRMZM2G475683 0.24 下调Down SAUR家族生长素响应蛋白SAUR12,生长素代谢
SAUR family auxin-responsive protein SAUR12, auxin metabolism
GRMZM2G410567 2.35 上调Up 生长素响应GH3基因家族,响应生长素刺激
Auxin-responsive GH3 gene family, response to auxin stimulus
GRMZM2G067022 4.17 上调Up AUX1,类生长素转运蛋白1,跨膜转运体
AUX1, Auxin transporter-like protein 1, transmembrane transporter
GRMZM2G127949 2.00 上调Up AUX1,类生长素转运蛋白1,跨膜转运体
AUX1, Auxin transporter-like protein 1, transmembrane transporter
油菜素内酯信号BR signaling GRMZM2G158775 0.39 下调Down BRI1,油菜素内酯不敏感1,膜受体,激活BZR1
BRI1, brassinosteroid insensitive 1, membrane receptor, activation of BZR1
AC194970.5_FG002 0.27 下调Down BZR1,芸苔素唑拮抗1,油菜素内酯信号转导
BZR1, brassinazole-resistant 1, brassinosteroid signal transduction
GRMZM2G127050 0.49 下调Down BSK,油菜素内酯信号激酶,膜受体,BRI1激酶底物
BSK, BR-signaling kinase, membrane receptor, substrates of BRI1 kinase
GRMZM2G164224 0.31 下调Down BSK,油菜素内酯信号激酶,膜受体,BRI1激酶底物
BSK, BR-signaling kinase, membrane receptor, substrates of BRI1 kinase
GRMZM2G054634 0.17 下调Down BSK,油菜素内酯信号激酶,膜受体,BRI1激酶底物
BSK, BR-signaling kinase, membrane receptor, substrates of BRI1 kinase
AC210669.3_FG001 0.05 下调Down 木葡聚糖转移酶TCH4,细胞伸长和扩展
Xyloglucosyl transferase TCH4, cell elongation and expansion
油菜素内酯合成BR biosynthesis GRMZM2G103773 11.89 上调Up 油菜素内酯-6-氧化酶2,细胞膜固有成分
Brassinosteroid-6-oxidase 2, intrinsic component of membrane
GRMZM2G107199 5.83 上调Up D11,细胞色素P450,细胞膜固有成分,氧化还原活性
D11, cytochrome P450, integral component of membrane, oxidoreductase activity
GRMZM2G143235 5.57 上调Up D2,类固醇3-氧化酶,细胞膜部分,氧化还原活性
D2, steroid 3-oxidase, membrane part, oxidoreductase activity
GRMZM2G032896 2.78 上调Up D2,类固醇3-氧化酶,细胞膜固有成分,氧化还原活性
D2, steroid 3-oxidase, intrinsic component of membrane, oxidoreductase activity
GRMZM2G065635 0.35 下调Down DWF4,类固醇22-α-羟化酶,细胞膜固有成分
DWF4, steroid 22-alpha-hydroxylase, intrinsic component of membrane
GRMZM2G162737 0.04 下调Down CPD,细胞色素P450,细胞膜固有成分,氧化还原活性
CPD, cytochrome P450, integral component of membrane, oxidoreductase activity
GRMZM5G872368 0.03 下调Down BR6OX2,油菜素内酯-6-氧化酶2,细胞膜固有成分
BR6OX2, brassinosteroid-6-oxidase 2, intrinsic component of membrane
细胞分裂素信号CTK signaling GRMZM5G884914 73.11 上调Up 双组分响应调节器ARR-B家族,响应刺激
Two-component response regulator ARR-B family, response to stimulus
GRMZM2G409974 2.32 上调Up 双组分响应调节器ARR-B家族,响应刺激
Two-component response regulator ARR-B family, response to stimulus
GRMZM2G013612 2.11 上调Up 类双组分响应调节器ARR-10,调控转录
Two-component response regulator ARR10-like, regulation of transcription
赤霉素信号GAs GRMZM2G013016 6.80 上调Up GAI1型DELLA蛋白,膜上细胞器,信号转导
DELLA protein GAI1-like, membrane-bounded organelle, signal transduction
赤霉素代谢
相关基因
GAmrg
GRMZM2G073779 0.38 下调Down GRAS家族参与赤霉素代谢,调控植株生长与发育
GRAS family, as a player in GA metabolism, regulate plant growth and development
GRMZM2G073805 0.29 下调Down GRAS家族参与赤霉素代谢,调控植株生长与发育
GRAS family, as a player in GA metabolism, regulate plant growth and development
GRMZM2G098517 0.23 下调Down GRAS家族参与赤霉素代谢,调控植株生长与发育
GRAS family, as a player in GA metabolism, regulate plant growth and development
GRMZM2G018254 0.04 下调Down GRAS家族参与赤霉素代谢,调控植株生长与发育
GRAS family, as a player in GA metabolism, regulate plant growth and development
GRMZM2G070371 0.00 下调Down GRAS家族参与赤霉素代谢,调控植株生长与发育
GRAS family, as a player in GA metabolism, regulate plant growth and development
GRMZM2G110579 3.02 上调Up GRAS家族参与赤霉素代谢,调控植株生长与发育
GRAS family, as a player in GA metabolism, regulate plant growth and development
GRMZM2G036340 0.42 下调Down GA 3氧化酶1,赤霉素3-β-双加氧酶活性
GA 3-oxidase 1, gibberellin 3-beta-dioxygenase activity
GRMZM2G006964 0.3 下调Down GA 2氧化酶6,赤霉素2-β-双加氧酶活性
GA 2-oxidase 6, gibberellin 2-beta-dioxygenase activity
GRMZM2G323504 0.37 下调Down GA受体GID1L2,羟基亚甲丁酸吡喃葡糖转化酶
GA receptor GID1L2, tuliposide A-converting enzyme
GRMZM2G049675 0.29 下调Down GA受体GID1L2,羟基亚甲丁酸吡喃葡糖转化酶
GA receptor GID1L2, tuliposide A-converting enzyme
GRMZM2G156310 0.09 下调Down GA受体GID1L2,羟基亚甲丁酸吡喃葡糖转化酶
GA receptor GID1L2, tuliposide A-converting enzyme
AC203966.5_FG005 0.21 下调Down GA 20氧化酶1,调控叶形和矮化
GA 20 oxidase 1, regulate leaves shape and dwarfism

Fig. 6

Plant hormone signal transduction under leaf development for 7 leaf stage between narrow leaf sample and wide blade sample"

Fig. 7

Comparison of results between RNA-Seq and qRT-PCR"

[1] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆 . 2005—2016年中国玉米种植密度变化分析. 中国农业科学, 2017,50(11):1960-1972.
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K . Changes of maize planting density in China. Scientia Agricultura Sinica, 2017,50(11):1960-1972. (in Chinese)
[2] 郭书磊, 陈娜娜, 齐建双, 岳润清, 韩小花, 燕树锋, 卢彩霞, 傅晓雷, 郭新海, 铁双贵 . 不同密度下玉米倒伏相关性状与产量的研究. 玉米科学, 2018,26(5):71-77.
GUO S L, CHEN N N, QI J S, YUE R Q, HAN X H, YAN S F, LU C X, FU X L, GUO X H, TIE S G . Study on the relationship between yield and lodging traits of maize under different planting densities. Journal of Maize Sciences, 2018,26(5):71-77. (in Chinese)
[3] YANG C W, XIE F M, JIANG Y P, LI Z, HUANG X, LI L . Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Developmental Cell, 2018,44(1):29-41.
[4] 郭书磊, 张君, 齐建双, 岳润清, 韩小花, 燕树锋, 卢彩霞, 傅晓雷, 陈娜娜, 库丽霞, 铁双贵 . 玉米叶形相关性状的Meta-QTL及候选基因分析. 植物学报, 2018,53(4):487-501.
GUO S L, ZHANG J, QI J S, YUE R Q, HAN X H, YAN S F, LU C X, FU X L, CHEN N N, KU L X, TIE S G . Analysis of meta-quantitative trait loci and their candidate genes related to leaf shape in maize. Chinese Bulletin of Botany, 2018,53(4):487-501. (in Chinese)
[5] 崔晓峰, 黄海 . 叶发育的遗传调控机理研究进展. 植物生理学报, 2011,47(7):631-640.
CUI X F, HUANG H . Recent progresses from studies of leaf development. Plant Physiology Journal, 2011,47(7):631-640. (in Chinese)
[6] MORENO M A, HARPER L C, KRUEGER R W, DELLAPORTA S L , FREELING M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 1997,11(5):616-628.
[7] WALSH J, WATERS C A, FREELING M . The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development, 1998,12(2):208-218.
[8] ZHANG X L, MADI S, BORSUK L, NETTLETON D, ELSHIRE R J, BUCKNER B, BUCKNER D J, BECK J, TIMMERMANS M, SCHNABLE P S, SCANLON M J . Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem. PLoS Genetics, 2007,3(6):1040-1052.
[9] BOLDUC N, YILMAZ A, MEJIA-GUERRA M K, MOROHASHI K, O'CONNOR D, GROTEWOLD E, HAKE S, . Unraveling the KNOTTED1 regulatory network in maize meristems. Genes & Development, 2012,26(15):1685-1690.
[10] TIMMERMANS M C, SCHULTES N P, JANKOVSKY J P, NELSON T . Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development, 1998,125(15):2813-2823.
[11] DOUGLAS R N, WILEY D, SARKAR A, SPRINGER N, TIMMERMANS MARJA C P, SCANLON M J, . Ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. The Plant Cell, 2010,22(5):1441-1451.
[12] CANDELA H, JOHNSTON R, GERHOLD A, FOSTER T, HAKE S . The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. The Plant Cell, 2008,20(8):2073-2087.
[13] NELISSEN H, EECKHOUT D, DEMUYNCK K, PERSIAU G, WALTON A, BEL M V, VERVOORT M, CANDAELE J, BLOCK J D, AESAERT S, LIJSEBETTENS M V, GOORMACHTIG S, VANDEPOELE K, LEENE J V, MUSZYNSKI M, GEVAERT K, INZE D, JAEGER G D . Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. The Plant Cell, 2015,27(6):1605-1619.
[14] WU L, ZHANG D, XUE M, QIAN J J, HE Y, WANG S C . Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height. Journal of Integrative Plant Biology, 2014,56(11):1053-1063.
[15] 吴庆飞, 秦磊, 董雷, 丁泽红, 李平华, 杜柏娟 . 玉米光合突变体hcf136(high chlorophyll fluorescence 136)的转录组分析. 作物学报, 2018,44(4):493-504.
WU Q F, QIN L, DONG L, DING Z H, LI P H, DU B J . Transcriptome analysis on a maize photosynthetic mutant hcf136 (high chlorophyll fluorescence 136). Acta Agronomica Sinica, 2018,44(4):493-504. (in Chinese)
[16] 邱化荣, 周茜茜, 何晓文, 张宗营, 张世忠, 陈学森, 吴树敬 . 基于转录组分析苹果水杨酸特异响应基因MdWRKY40的启动子鉴定. 中国农业科学, 2017,50(20):3970-3990.
QIU H R, ZHOU Q Q, HE X W, ZHANG Z Y, ZHANG S Z, CHEN X S, WU S J . Identification of MdWRKY40 promoter specific response to salicylic acid by transcriptome sequencing. Scientia Agricultura Sinica, 2017,50(20):3970-3990. (in Chinese)
[17] TRAPNELL C, WILLAMS B A, PERTEA G, MORTAZAVI A, KWAN G, BAREN M J, SALZBERG S L , WOLD B JHTER L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010,28(5):511-515.
[18] WANG L K, FENG Z X, WANG X, WANG X W, ZHANG X G . DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2009,26(1):136-138.
[19] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
[20] SCHIPPERS J H M, MUELLER-ROEBER B . Ribosomal composition and control of leaf development. Plant Science, 2010,179(4):307-315.
[21] YAO Y, LING Q H, WANG H, HUANG H . Ribosomal proteins promote leaf adaxial identity. Development, 2008,135(7):1325-1334.
[22] SPIEGEL S, MERRILL Jr A H, . Sphingolipid metabolism and cell growth regulation. The FASEB Journal, 1996,10(12):1388-1397.
[23] MERRILL Jr A H, SANDHOFF K . Metabolism and cell signaling//Biochemistry of Lipids, Lipoproteins and Mem-branes. Amsterdam, Elsevier Science Press, 2002, 373-407.
[24] MONNIAUX M, MCKIM S M, CARTOLANO M, THEVENON E, PARCY F, MILTANTIS T, HAY A . Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta. New Phytologist, 2017,216(2):549-561.
[25] LI P H, PONNALA L, GANDOTRA N, WANG L, SI Y Q, TAUSTA S L, KEBROM T H, PROVART N, PATEL R, MYERS C R, REIDEL E J, TURGEON R, LIU P, SUN Q, NELSON T, BRUTNELL T P . The developmental dynamics of the maize leaf transcriptome. Nature Genetics, 2010,42(12):1060-1067.
[26] FACETTE M R, SHEN Z X, BJÖRNSDÓTTIR F R, BRIGGS S P, SMITH L G . Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. The Plant Cell, 2013: 2798-2812.
[27] NICOLAS M, CUBAS P. The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture// Plant Transcription Factors: Evolutionary, Structural And Functional Aspects. Cambridge, MA: Academic Press, 2016: 249-267.
[28] MANASSERO N G U, VIOLA I L, WELCHEN E, GONZALEZ D H . TCP transcription factors: architectures of plant form. Biomolecular Concepts, 2013,4(2):111-127.
[29] KIM G T, TSUKAYA H, UCHIMIYA H . The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes & Development, 1998,12(15):2381-2391.
[30] FUJIOKA S, LI J, CHOI Y H, SETO H, TAKATSUTO S, NOGUCHI T, WATANABE T, KURIYAMA H, YOKOT T, CHORY J, SAKURAI A . The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 1997,9(11):1951-1962.
[31] GUO Z, FUJIOKA S, BLANCAFLOR E B, MIAO S, GOU X P, LI J . TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. The Plant Cell, 2010,22(4):1161-1173.
[32] SUZUK M, WANG H H Y, MCCARTY D R . Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiology, 2007,143(2):902-911.
[33] HU Y X, WANG Y H, LIU X F, LI J Y . Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research, 2004,14(1):8.
[34] YUAN W Y, LUO X, LI Z C, YANG W N, WANG Y Z, LIU R, DU J M, HE Y H . A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis. Nature Genetics, 2016,48(12):1527-1534.
[35] JE B I, PIAO H L, PARK S J, PARK S H, KIM C M, XUAN Y H, PARK S H, HUANG J, CHOI Y D, AN G, WONG H L, FUJIOKA S, KIM M C, SHIMAMOTO K, HAN C . RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. The Plant Cell, 2010,22(6):1777-1791.
[36] TIAN F, BRADBURY P J, BROWN P J, HUNG H Y, SUN Q, FLINT-GARCIN S, ROCHEFORD T R, MCMULLEN M D, HOLLAND J B, BUCKLER E S . Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011,43(2):159-165.
[37] ISHIWATA A, OZAWA M, NAGASAKI H, KATO M, NODA Y, YAMAGUCHI T, NOSAKA M, SHIMIZU-SATO S, NAGASAKI A, MAEKAWA M, HIRANO H Y, SATO Y . Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice. Plant and Cell Physiology, 2013,54(5):779-792.
[38] KUBO F C, YASUI Y, KUMAMARU T, SATO Y, HIRANO H Y . Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number. Genes & Genetic Systems, 2016,91(4):235-240.
[39] JIANG D, FANG J J, LOU L, ZHAO J F, YUAN S J, YIN L, SUN W, PENG L X, GUO B T, LI X Y . Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division. PLoS ONE, 2015,10(2):e0118169.
[40] FUJINO K, MATSUDA Y, OZAWA K, NISHIMURA T, KOSHIBA T, FRAAIJE M W, SEKIGUCHI H . NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008,279(5):499-507.
[41] DOUGLAS R N, WILEY D, SARKAR A, SPRINGER N, TIMMERMANS M C P, SCANLON M J, . Ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. The Plant Cell, 2010: 1441-1451.
[42] DOTTO M C, PETSCH K A, AUKERMAN M J, BEATTY M, HAMMELL M, TIMMERMANS M C P . Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genetics, 2014,10(12):e1004826.
[43] XIE Y, STRAUB D, EGUEN T, BRANDT R, STAHL M, Jaime F MARTINEZ-GAECIA J F WENKEL S . Meta-analysis of Arabidopsis KANADI1 direct target genes identifies a basic growth-promoting module acting upstream of hormonal signaling pathways. Plant Physiology, 2015,169(2):1240-1253.
[44] EMERY J F, FLOYD S K, AIVAREZ J, ESHED Y, HAWKER N P, IZHAKI A, BAUM S F, BOWMAN J L . Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology, 2003,13(20):1768-1774.
[45] OKUSHIMA Y, MITINA I, QUACH H L, THEOLOGIS A . AUXIN RESPONSE FACTOR 2 (ARF2): A pleiotropic developmental regulator. The Plant Journal, 2005,43(1):29-46.
[46] SCHRUFF M C, SPIELMAN M, TIWARI S, ADAMS S, FENBY N, SCOTT R J . The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006,133(2):251-261.
[47] TIAN H Y, LV B S, DING T T, BAI M Y, DING Z J . Auxin-BR interaction regulates plant growth and development. Frontiers in Plant Science, 2018,8:2256.
[48] OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y . Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife, 2014,3:e03031.
[49] CHUNG Y, MAHARJAN P M, LEE O, FUJIOKA S, JANG S, KIM B, TAKATSUTO S, TSUJIMOTO M, KIM H, CHO S, PARK T, CHO H, HWANG I, CHOE S . Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 2011,66(4):564-578.
[50] SAKAMOTO T, MORINAKA Y, INUKAI Y, KITANO H, FUJIOKA S . Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. The Plant Journal, 2013,73(4):676-688.
[51] JASINSKI S, PIAZZA P, CRAFT J, HAY A, WOOLLEY L, RIEU I, PHILLIPS A, HEDDEN P, TSIANTIS M . KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 2005,15(17):1560-1565.
[52] NELISSEN H, RYMEN B, JIKUMARU Y, DEMUYNCK K, LIJSEBETTENS M V, KAMIYA Y, INZE D, BEEMSTER G T S . A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Current Biology, 2012,22(13):1183-1187.
[53] FONOUNI-FARDE C, KISIALA A, BRAULT M, EMERY R J N, ANOUCK D, FLORIAN F . DELLA1-mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant Physiology, 2017,175(4):1795-1806.
[54] GREENBOIM-WAINBERG Y, MAYMON I, BOROCHOV R, ALVAREZ J, OLSZEWSKI N, ORI N, ESHED Y, WEISS D . Cross talk between gibberellin and cytokinin: The Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. The Plant Cell, 2005,17(1):92-102.
[55] WALSH J, WATERS C A, FREELING M . The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes & Development, 1998,12(2):208-218.
[56] WANG Q L, XUE X J, LI Y L, DONG Y B, ZHANG L, ZHOU Q, DENG F, MA Z Y, QIAO D H, HU C H, REN Y L . A maize ADP-ribosylation factor ZmArf2 increases organ and seed size by promoting cell expansion in Arabidopsis. Physiologia Plantarum, 2016,156(1):97-107.
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[3] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[4] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[5] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[6] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[7] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[8] GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102.
[9] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[10] LIANG GuoPing,LI WenFang,CHEN BaiHong,ZUO CunWu,MA LiJuan,HE HongHong,WAN Peng,AN ZeShan,MAO Juan. Effects of Different Sugar Sources on Protein Kinase Gene Expression in Grape Plantlets [J]. Scientia Agricultura Sinica, 2019, 52(7): 1119-1135.
[11] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[12] LIANG YingBo,LI Ze,QIU DeWen,ZENG HongMei,LI GuangYue,YANG XiuFen. Identification and Analysis of Differentially Expressed Genes Induced by Protein Elicitor PevD1 in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2019, 52(21): 3794-3805.
[13] ZI XiangDong, LUO Bin, XIA Wei, ZHENG YuCai, XIONG XianRong, LI Jian, ZHONG JinCheng, ZHU JiangJiang, ZHANG ZhengFan. Transcriptomic Analysis of IVF Embryonic Development in the Yak (Bos grunniens) Via RNA-Seq [J]. Scientia Agricultura Sinica, 2018, 51(8): 1577-1589.
[14] WANG DanDan, TANG YuTing, MA YueHui, WANG LiGang, PAN DengKe, JIANG Lin. Studying the Molecular Mechanism of Heart Development by Using ZBED6 Gene Knockout Pig [J]. Scientia Agricultura Sinica, 2018, 51(7): 1390-1400.
[15] LIU HongXiang,XU WenJuan,ZHU ChunHong,TAO ZhiYun,SONG WeiTao,ZHANG ShuangJie,LI HuiFang. RNA-seq Analysis on Development Arrest of Duck Pectoralis Muscle During Semi-Late Embryonic Period [J]. Scientia Agricultura Sinica, 2018, 51(22): 4373-4386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!