Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2667-2684.doi: 10.3864/j.issn.0578-1752.2022.13.015
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles
WANG RongHua(),MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe(
)
[1] |
FUJITA T, KOZUKA-HATA H, AO-KONDO H, KUNIEDA T, OYAMA M, KUBO T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research, 2013, 12(1): 404-411.
doi: 10.1021/pr300700e |
[2] |
BUTTSTEDT A, MORITZ R F, ERLER S. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biological Reviews, 2014, 89(2): 255-269.
doi: 10.1111/brv.12052 |
[3] |
HUO X, WU B, FENG M, HAN B, FANG Y, HAO Y, MENG L, WUBIE A J, FAN P, HU H, QI Y, LI J K. Proteomic analysis reveals the molecular underpinnings of mandibular gland development and lipid metabolism in two lines of honeybees (Apis mellifera ligustica). Journal of Proteome Research, 2016, 15(9): 3342-3357.
doi: 10.1021/acs.jproteome.6b00526 |
[4] |
KAMAKURA M. Royalactin induces queen differentiation in honeybees. Nature, 2011, 473(7348): 478-483.
doi: 10.1038/nature10093 |
[5] |
FAN P, HAN B, HU H, WEI Q, ZHANG X, MENG L, NIE J, TANG X, TIAN X, ZHANG L, WANG L, LI J K. Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice. Expert Opinion on Therapeutic Targets, 2020, 24(3): 267-279.
doi: 10.1080/14728222.2020.1733529 |
[6] |
TOKUNAGA K H, YOSHIDA C, SUZUKI K M, MARUYAMA H, FUTAMURA Y, ARAKI Y, MISHIMA S. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biological and Pharmaceutical Bulletin, 2004, 27(2): 189-192.
doi: 10.1248/bpb.27.189 |
[7] |
FUJIWARA S, IMAI J, FUJIWARA M, YAESHIMA T, KAWASHIMA T, KOBAYASHI K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. The Journal of Biological Chemistry, 1990, 265(19): 11333-11337.
doi: 10.1016/S0021-9258(19)38596-5 |
[8] |
MORGAN J F, TOLNAI S, TOWNSEND G F. Studies on the in vitro antitumor activity of fatty acids. II. Saturated dicarboxylic acids. Canadian Journal of Biochemistry and Physiology, 1960, 38(6): 597-603.
doi: 10.1139/o60-073 |
[9] | LI J K, WANG A P. Comprehensive technology for maximizing royal jelly production. American Bee Journal, 2005, 145(8): 661-664. |
[10] |
LI J K, WANG T, ZHANG Z, PAN Y. Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera). Journal of Agricultural and Food Chemistry, 2007, 55(21): 8411-8422.
doi: 10.1021/jf0717440 |
[11] |
FANG Y, FENG M, LI J K. Royal jelly proteome comparison between A. mellifera ligustica and A. cerana cerana. Journal of Proteome Research, 2010, 9(5): 2207-2215.
doi: 10.1021/pr900979h |
[12] |
WYTRYCHOWSKI M, CHENAVAS S, DANIELE G, CASABIANCA H, BATTEAU M, GUIBERT S, BRION B. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. Journal of Food Composition and Analysis, 2013, 29(2): 126-133.
doi: 10.1016/j.jfca.2012.12.002 |
[13] |
KATZAV-GOZANSKY T, SOROKER V, IONESCU A, ROBINSON G E, HEFETZ A. Task-related chemical analysis of labial gland volatile secretion in worker honeybees (Apis mellifera ligustica). Journal of Chemical Ecology, 2001, 27(5): 919-926.
doi: 10.1023/A:1010330902388 |
[14] | 黄少康. 蜜蜂生理学. 北京: 中国农业出版社, 2011: 180-182. |
HUANG S K. Honeybee Physiology. Beijing: China Agriculture Press, 2011: 180-182. (in Chinese) | |
[15] | MARTIN S J, CORREIA-OLIVEIRA M E, SHEMILT S, DRIJFHOUT F P. Is the salivary gland associated with honey bee recognition compounds in worker honey bees (Apis mellifera)? Journal of Chemical Ecology, 2018, 44(7/8): 650-657. |
[16] |
POIANI S B, CRUZ-LANDIM C D. Comparison and correlation between chemical profiles of cephalic salivary glands and cuticle surface of workers of Apis mellifera (Hymenoptera, Apidae). Canadian Journal of Zoology, 2017, 95(7): 453-461.
doi: 10.1139/cjz-2016-0102 |
[17] |
FENG M, FANG Y, HAN B, ZHANG L, LU X, LI J K. Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Journal of Proteomics, 2013, 87: 1-15.
doi: 10.1016/j.jprot.2013.05.021 |
[18] |
FUJITA T, KOZUKA-HATA H, UNO Y, NISHIKORI K, MORIOKA M, OYAMA M, KUBO T. Functional analysis of the honeybee (Apis mellifera L.) salivary system using proteomics. Biochemical and Biophysical Research Communications, 2010, 397(4): 740-744.
doi: 10.1016/j.bbrc.2010.06.023 |
[19] |
SIMPSON J. The functions of the salivary glands of Apis mellifera. Journal of Insect Physiology, 1960, 4(2): 107-121.
doi: 10.1016/0022-1910(60)90073-1 |
[20] |
SVECNJAK L, PRDUN S, ROGINA J, BUBALO D, JERKOVIC I. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar- to-honey transformation pathway using FTIR-ATR spectroscopy. Food Chemistry, 2017, 232: 286-294.
doi: 10.1016/j.foodchem.2017.03.159 |
[21] |
KUBOTA M, TSUJI M, NISHIMOTO M, WONGCHAWALIT J, OKUYAMA M, MORI H, MATSUI H, SURARIT R, SVASTI J, KIMURA A, CHIBA S. Localization of alpha-glucosidases I, II, and III in organs of European honeybees, Apis mellifera L., and the origin of alpha-glucosidase in honey. Bioscience, Biotechnology, and Biochemistry, 2004, 68(11): 2346-2352.
doi: 10.1271/bbb.68.2346 |
[22] |
PONTOH J, LOW N. Purification and characterization of β- glucosidase from honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2002, 32(6): 679-690.
doi: 10.1016/S0965-1748(01)00147-3 |
[23] |
AL-SHERIF A A, MAZEED A M, EWIS M A, NAFEA E A, HAGAG E E, KAMEL A A. Activity of salivary glands in secreting honey-elaborating enzymes in two subspecies of honeybee (Apis mellifera L). Physiological Entomology, 2017, 42(4): 397-403.
doi: 10.1111/phen.12213 |
[24] | 李建科, 陈盛禄, 钟伯雄, 苏松坤. 西方蜜蜂产浆量的动态遗传研究. 遗传学报, 2003, 30(6): 547-554. |
LI J K, CHEN S L, ZHONG B X, SU S K. Genetic analysis for developmental behavior of honeybee colony’s royal jelly production traits in western honeybees. Acta Genetica Sinica, 2003, 30(6): 547-554. (in Chinese) | |
[25] |
ALTAYE S Z, MENG L, LI J K. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee (Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 2019, 50(4): 436-453.
doi: 10.1007/s13592-019-00656-1 |
[26] | 李建科, 陈盛禄, 钟伯雄, 苏松坤. 西方蜜蜂咽下腺与繁殖力的发育遗传研究. 中国畜牧杂志, 2003, 39(6): 9-11. |
LI J K, CHEN S L, ZHONG B X, SU S K. Genetic analysis for developmental behavior of reproductive ability and hypopheryngeal gland in western honeybees (Apis mellifera lingistica). Chinese Journal of Animal Science, 2003, 39(6): 9-11. (in Chinese) | |
[27] |
LI J K, FENG M, BEGNA D, FANG Y, ZHENG A. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.). Journal of Proteome Research, 2010, 9(12): 6578-6594.
doi: 10.1021/pr100768t |
[28] |
HU H, BEZABIH G, FENG M, WEI Q, ZHANG X, WU F, MENG L, FANG Y, HAN B, MA C, LI J K. In-depth proteome of the hypopharyngeal glands of honeybee workers reveals highly activated protein and energy metabolism in priming the secretion of royal jelly. Molecular and Cellular Proteomics, 2019, 18(4): 606-621.
doi: 10.1074/mcp.RA118.001257 |
[29] | 李爽, 李建科. 蜂王浆高产蜜蜂与意大利蜜蜂工蜂上颚腺磷酸化蛋白质组分析. 中国农业科学, 2017, 50(23): 4656-4670. |
LI S, LI J K. Comparative analysis of phosphoproteome between mandibular glands of high royal jelly producing bees and Italian bees. Scientia Agricultura Sinica, 2017, 50(23): 4656-4670. (in Chinese) | |
[30] |
ARARSO Z, MA C, QI Y, FENG M, HAN B, HU H, MENG L, LI J K. Proteome comparisons between hemolymph of two honeybee strains (Apis mellifera ligustica) reveal divergent molecular basis in driving hemolymph function and high royal jelly secretion. Journal of Proteome Research, 2018, 17(1): 402-419.
doi: 10.1021/acs.jproteome.7b00621 |
[31] |
HAN B, FANG Y, FENG M, HU H, HAO Y, MA C, HUO X, MENG L, ZHANG X, WU F, LI J K. Brain membrane proteome and phosphoproteome reveal molecular basis associating with nursing and foraging behaviors of honeybee workers. Journal of Proteome Research, 2017, 16(10): 3646-3663.
doi: 10.1021/acs.jproteome.7b00371 |
[32] |
ZHANG X, HU H, HAN B, WEI Q, MENG L, WU F, FANG Y, FENG M, MA C, RUEPPELL O, LI J K. The neuroproteomic basis of enhanced perception and processing of brood signals that trigger increased reproductive investment in honeybee (Apis mellifera) workers. Molecular and Cellular Proteomics, 2020, 19(10): 1632-1648.
doi: 10.1074/mcp.RA120.002123 |
[33] |
FENG M, RAMADAN H, HAN B, FANG Y, LI J K. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana). BMC Genomics, 2014, 15(1): 563.
doi: 10.1186/1471-2164-15-563 |
[34] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Analytical Biochemistry, 1976, 72(1/2): 248-254.
doi: 10.1016/0003-2697(76)90527-3 |
[35] |
BINDEA G, MLECNIK B, HACKL H, CHAROENTONG P, TOSOLINI M, KIRILOVSKY A, FRIDMAN W H, PAGÈS F, TRAJANOSKI Z, GALON J. ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8): 1091-1093.
doi: 10.1093/bioinformatics/btp101 |
[36] |
ARMENTEROS J J A, TSIRIGOS K D, SØNDERBY C K, PETERSEN T N, WINTHER O, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 2019, 37(4): 420-423.
doi: 10.1038/s41587-019-0036-z |
[37] |
SCHMITZOVÁ J, KLAUDINY J, ALBERT Š, SCHRÖDER W, SCHRECKENGOST W, HANES J, JÚDOVA J, ŠIMÚTH J. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cellular and Molecular Life Sciences, 1998, 54(9): 1020-1030.
doi: 10.1007/s000180050229 |
[38] |
SCHÖNLEBEN S, SICKMANN A, MUELLER M J, REINDERS J. Proteome analysis of Apis mellifera royal jelly. Analytical and Bioanalytical Chemistry, 2007, 389(4): 1087-1093.
doi: 10.1007/s00216-007-1498-2 |
[39] |
FURUSAWA T, RAKWAL R, NAM H W, SHIBATO J, AGRAWAL G K, KIM Y S, OGAWA Y, YOSHIDA Y, KOUZUMA Y, MASUO Y, YONEKURA M. Comprehensive royal jelly (RJ) proteomics using one- and two-dimensional proteomics platforms reveals novel RJ proteins and potential phospho/glycoproteins. Journal of Proteome Research, 2008, 7(8): 3194-3229.
doi: 10.1021/pr800061j |
[40] |
HAN B, LI C, ZHANG L, FANG Y, FENG M, LI J K. Novel royal jelly proteins identified by gel-based and gel-free proteomics. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10346-10355.
doi: 10.1021/jf202355n |
[41] | 张兰. 蜂王浆蛋白翻译后修饰及未知蛋白探索[D]. 北京: 中国农业科学院, 2013. |
ZHANG L. Novel aspects of understanding post-translational modifications and proteins in royal jelly[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
[42] |
LE CONTE Y, BECARD J M, COSTAGLIOLA G, DE VAUBLANC G, EL MAATAOUI M, CRAUSER D, PLETTNER E, SLESSOR K N. Larval salivary glands are a source of primer and releaser pheromone in honey bee (Apis mellifera L.). Naturwissenschaften, 2006, 93(5): 237-241.
doi: 10.1007/s00114-006-0089-y |
[43] |
AON M A, BERNIER M, MITCHELL S J, DI GERMANIO C, MATTISON J A, EHRLICH M R, COLMAN R J, ANDERSON R M, DE CABO R. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metabolism, 2020, 32(1): 100-116. e4.
doi: 10.1016/j.cmet.2020.04.018 |
[44] | LAYMAN D K. The role of leucine in weight loss diets and glucose homeostasis. The Journal of Nutrition, 2003, 133(1): 261S-267S. |
[45] | 谢小利, 王敏奇. 支链氨基酸在动物营养中的研究进展. 中国饲料, 2009(11): 11-14. |
XIE X L, WANG M Q. Research advance of branced-chain amino acids in animal nutrition. China Feed, 2009(11): 11-14. (in Chinese) | |
[46] |
BURMESTER T, SCHELLER K. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. Journal of Molecular Evolution, 1996, 42(6): 713-728.
doi: 10.1007/BF02338804 |
[47] | ZHOU J J. Odorant-binding proteins in insects. Vitamins and Hormones 2010, 83: 241-272. |
[48] |
LEAL W S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 2013, 58: 373-391.
doi: 10.1146/annurev-ento-120811-153635 |
[49] |
DANI F R, IOVINELLA I, FELICIOLI A, NICCOLINI A, CALVELLO M A, CARUCCI M G, QIAO H, PIERACCINI G, TURILLAZZI S, MONETI G, PELOSI P. Mapping the expression of soluble olfactory proteins in the honeybee. Journal of Proteome Research, 2010, 9(4): 1822-1833.
doi: 10.1021/pr900969k |
[50] |
IOVINELLA I, CAPPA F, CINI A, PETROCELLI I, CERVO R, TURILLAZZI S, DANI F R. Antennal protein profile in honeybees: Caste and task matter more than age. Frontiers in Physiology, 2018, 9: 748.
doi: 10.3389/fphys.2018.00748 |
[51] |
LI R, ZHANG L, FANG Y, HAN B, LU X, ZHOU T, FENG M, LI J K. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics, 2013, 14: 766.
doi: 10.1186/1471-2164-14-766 |
[52] |
TRHLIN M, RAJCHARD J. Chemical communication in the honeybee (Apis mellifera L.): A review. Veterinarni Medicina, 2011, 56(6): 265-273.
doi: 10.17221/1543-VETMED |
[53] | KUCHARSKI R, MALESZKA R. Transcriptional profiling reveals multifunctional roles for transferrin in the honeybee, Apis mellifera. Journal of Insect Science, 2003, 3: 27. |
[54] |
ASGARI S, ZHANG G, ZAREIE R, SCHMIDT O. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochemistry and Molecular Biology, 2003, 33(10): 1017-1024.
doi: 10.1016/S0965-1748(03)00116-4 |
[55] |
ZHANG L, FANG Y, LI R, FENG M, HAN B, ZHOU T, LI J K. Towards posttranslational modification proteome of royal jelly. Journal of Proteomics, 2012, 75(17): 5327-5341.
doi: 10.1016/j.jprot.2012.06.008 |
[1] | LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591. |
[2] | LIANG LiJuan, CHENG LiXiang, YUAN JianLong, SA Gang, ZHANG Feng. Jasmonic Acid Regulates the Changes of Major Metabolites in Potato Tuber Development in vitro [J]. Scientia Agricultura Sinica, 2024, 57(13): 2525-2538. |
[3] | HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124. |
[4] | ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600. |
[5] | GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102. |
[6] | ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845. |
[7] | YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284. |
[8] | ZHANG Bo,WU XiaoBo,LIAO ChunHua,HE XuJiang,YAN WeiYu,ZENG ZhiJiang. Research and Application of Honeybee Non-Grafting Larvae Technology [J]. Scientia Agricultura Sinica, 2018, 51(22): 4387-4394. |
[9] | LI Shuang, LI JianKe. Comparative Analysis of Phosphoproteome Between Mandibular Glands of High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2017, 50(23): 4656-4670. |
[10] | YUAN Ke-jun, CHENG Lai-liang, NIU Qing-lin, WANG Jiang-yong. Identification and Analysis of Phosphoproteins in Red and Non-Red Apple Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(8): 1530-1539. |
[11] | LI Rong-Li, ZHANG Lan, HAN Bin, FANG Yu, FENG Mao, ZHOU Tian-E, LI Jian-Ke. Proteome Comparison of Honeybee (Apis mellifera ligustica) Worker Venom Between Collected from Venom Glands and Electrical Stimulated [J]. Scientia Agricultura Sinica, 2013, 46(7): 1448-1462. |
[12] | CAI Yong-Zhan, ZHOU Pu-Xiong, LI Fu-Lin, ZHAO Chang-Ling, LIN Chun, YANG Huan-Wen, MAO Zi-Chao. Proteomic Analysis of Tobacco Rosette Stage Leaves Under Different Climatic Conditions [J]. Scientia Agricultura Sinica, 2013, 46(4): 859-870. |
[13] | LU Xiao-Shan-12, HAN Bin-2, ZHANG Lan-2, FENG Mao-2, FANG Yu-2, LI Rong-Li-2, ZHOU Tian-E-12, LI Jian-Ke-2. Phosphoproteome Analysis of Hypopharyngeal Glands of High Royal Jelly Producing Bee (Apis mellifera L.) [J]. Scientia Agricultura Sinica, 2013, 46(23): 5050-5057. |
[14] | YUAN Ting-Jie, WANG Jia-Qi, YANG Yong-Xin, BU Deng-Pan, YANG Jin-Hui, ZHOU Ling-Yun. Effects of Transportation on Serum Proteome in Dairy Cows [J]. Scientia Agricultura Sinica, 2012, 45(9): 1807-1813. |
[15] | HUANG Qiao-Ling, HUANG Xing, SUN Fu, SUN Bo, YANG Li-Tao, LI Yang-Rui. Effects of Chilling Stress on Protein and Related Gene Expression in Chloroplasts of Sugarcane [J]. Scientia Agricultura Sinica, 2012, 45(24): 4978-4987. |
|