Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3187-3204.doi: 10.3864/j.issn.0578-1752.2020.15.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker

GENG SiHai(),SHI CaiYun(),FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui()   

  1. College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2019-12-02 Accepted:2019-12-28 Online:2020-08-01 Published:2020-08-06
  • Contact: Rui GUO E-mail:15737313592@163.com;1901638174@qq.com;ruiguo@fafu.edu.cn

Abstract:

【Objective】Differentially expressed miRNAs (DEmiRNAs) and their target mRNAs in purified spores of Nosema ceranae and N. ceranae infecting Apis mellifera ligustica worker were systematically analyzed, followed by screening, investigation and exploration of DEmiRNAs and corresponding regulatory networks associated with pathogenic virulence factors and infection factors to reveal the mechanism of N. ceranae infection to A. m. ligustica worker.【Method】A. m. ligustica workers' midguts at 7 d and 10 d post infection (dpi) with N. ceranae and purified spores of N. ceranae (NcCK) were deeply sequenced using small RNA-seq (sRNA-seq), followed by screening out datasets of N. ceranae during the infection process (NcT1 and NcT2) and purified spores through sequential mapping to rRNA database, Apis mellifera genome and N. ceranae genome. Based on the criteria of P≤0.05, |log2 fold change|≥1, DEmiRNAs in each comparison group were filtered out by comparative analysis. Expression profiling of DEmiRNAs, prediction of target mRNAs, function and pathway annotations of target mRNAs, and construction and survey of regulatory networks were performed by relevant bioinformatic software. The differential expression trend of DEmiRNAs and the reliability of sequencing data were verified by RT-qPCR.【Result】There were 164, 122 and 60 DEmiRNAs in NcCK vs NcT1, NcCK vs NcT2 and NcT1 vs NcT2 comparison groups. Venn analysis showed that 5 up-regulated miRNAs and 6 down-regulated ones were shared by these three comparison groups. In total, 1 885, 1 733 and 1 524 target mRNAs of DEmiRNAs were respectively predicted. These targets were annotated to 27, 25, and 26 functional terms, respectively, with the most abundant annotations being metabolic processes, catalytic activity, cellular processes, binding and cell. These targets were as well respectively annotated to 84, 84, and 84 pathways, among them the largest groups were metabolic pathway, ribosome, and secondary metabolite biosynthesis. In addition, 35, 26 and 12 target mRNAs associated with MAPK signaling pathway were targeted by DEmiRNAs in NcCK vs NcT1, NcCK vs NcT2 and NcT1 vs NcT2, while 49, 40 and 17 target mRNAs related to glycolysis/gluconeogenesis pathway were targeted by DEmiRNAs in the aforementioned three comparison groups. Further analysis revealed that DEmiRNAs of N. ceranae were involved in regulating the expression of genes encoding virulence factors such as ricin B lectin, apoptosis inhibitor, polar tube protein and spore wall protein; and genes encoding infection factors such as hexokinase and ATP/ADP transferase, ABC transporter and transcription factor ste12.【Conclusion】The differential expression profile of miRNAs in N. ceranae infecting A. m. ligustica worker was parsed via in-depth and detailed investigation and exploration. N. ceranae may regulate the expression level of genes encoding virulence factors including ricin B lectin, apoptosis inhibitor, polar tube protein and spore wall protein, as well as genes encoding infection factors such as hexokinase, ATP/ADP transferase, ABC transporter and transcription factor ste12 corresponding miRNAs, by controlling the expression of corresponding miRNAs, thus adapting to the environment within the host cell and promoting its proliferation and infection.

Key words: Nosema ceranae, Apis mellifera ligustica, microRNA (miRNA), infection mechanism, regulatory network

Table 1

Primers used in this study"

引物ID Primer ID 引物序列 Primer sequence
miR-2478-y Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTGGTGTC
F: GCGCGCGTCGAATCCCACT
novel-m0017-5p Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGGGCATA
F: GCGCGCGTGGACCAGTGGC
novel-m0010-5p Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGCTCGCT
F: GCGCGCGTTTAGTTTGGCT
miR-3968-y Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTGGTGTC
F: GCGCGCGTCGAATCCCACT
miR-146-x Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACAACCCAT
R: GCGCGCGTGAGAACTGAAT
miR-24-y Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGTTCCTG
F: GCGCGCGTGGCTCAGTTCA
miR-2965-y Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTGCTCTC
F: GCGCCGGAGGACTGCT
miR-318-y Loop: GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACGACCAAC
F: CGGCCGCTCACTGGGC
R: CAGTGCGTGTCGTGGAGT
5S rRNA F: CGAGCGGTTTCCCATCTCAGTA
R: AAAACACCGGAACTCGTCAGCT

Table 2

Overview of sRNA-seq data"

样品Sample 原始读段Raw reads 有效标签Clean tags 映射读段Mapped reads 映射率Mapping ratio (%)
NcCK1 16506662 13466818 7560765 56.14
NcCK2 15368310 11938692 7655068 64.12
NcCK3 12180663 10160918 6349388 62.49
NcT1-1 13345686 6950844 1865571 26.84
NcT1-2 12837034 7324633 2510215 34.27
NcT1-3 13943680 7249967 1934012 26.68
NcT2-1 13820326 10605224 5503089 51.89
NcT2-2 14311818 9988951 4763103 47.68
NcT2-3 14013040 9722581 4513943 46.43

Fig. 1

Structural characteristics of N. ceranae miRNAs"

Fig. 2

Expression analysis of miRNAs in each sample"

Fig. 3

GO database annotation of DEmiRNA’s target genes in each comparison group"

Table 3

Top 15 pathways enriched by DEmiRNA target mRNAs in each comparison group"

通路
Pathway
NcCK vs NcT1比较组
NcCK vs NcT1 group
NcCK vs NcT2比较组
NcCK vs NcT2 group
NcT1 vs NcT2比较组
NcT1 vs NcT2 group
新陈代谢途径 Metabolic pathways 119 113 103
核糖体 Ribosome 56 50 41
次生代谢产物合成 Biosynthesis of secondary metabolites 48 47 42
真菌生物核糖体的生物合成 Ribosome biogenesis in eukaryotes 37 38 29
抗生素的生物合成 Biosynthesis of antibiotics 36 35 31
内质网蛋白质加工 Protein processing in endoplasmic reticulum 35 32 29
嘌呤代谢 Purine metabolism 33 28 26
嘧啶代谢 Pyrimidine metabolism 32 28 25
细胞周期 Cell cycle 31 30 28
RNA转运 RNA transport 30 26 24
蛋白酶体 Proteasome 28 25 24
减数分裂 Meiosis 26 24 24
mRNA监督通路 mRNA surveillance pathway 24 21 22
DNA复制 DNA replication 24 24 22
泛素蛋白水解 Ubiquitin mediated proteolysis 24 24 20

Fig. 4

Regulatory networks of DEmiRNAs and corresponding target mRNAs associated with MAPK signaling pathway and glycolysis/gluconeogenesis pathway"

Fig. 5

Regulatory networks of DEmiRNAs and corresponding target mRNAs related to virulence factors and infection-associated factors of N. ceranae"

Fig. 6

RT-qPCR confirmation of DEmiRNAs"

[1] CUOMO C A, DESJARDINS C A, BAKOWSKI M A, GOLDBERG J, MA A T, BECNEL J J, DIDIER E S, FAN L, HEIMAN D I, LEVIN J Z, YOUNG S, ZENG Q, TROEMEL E R. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Research, 2012,22(12):2478-2488.
pmid: 22813931
[2] NAGELI K W. Uber die neue krankheit der seidenraupe und verwandte organismen. Botanische Zeitung, 1857,15:760-761.
[3] 吴杰, 项勋, 赵屹钦, 邓紫艳, 王世玉, 常华. 微孢子虫研究进展. 动物医学进展, 2017,38(6):78-81.
WU J, XIANG X, ZHAO Y Q, DENG Z Y, WANG S Y, CHANG H. Progress on microsporidia. Progress in Veterinary Medicine, 2017,38(6):78-81. (in Chinese)
[4] FORSGREN E, FRIES I. Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Veterinary Parasitology, 2010,170(3/4):212-217.
[5] MARTÍN-HERNÁNDEZ R, BARTOLOMÉ C, CHEJANOVSKY N, LE CONTE Y, DALMON A, DUSSAUBAT C, GARCÍA-PALENCIA P, MEANA A, PINTO M A, SOROKER V, HIGES M. Nosema ceranae in Apis mellifera: A 12 years post-detection perspective. Environmental Microbiology, 2018,20(4):1302-1329.
pmid: 29575513
[6] BOTÍAS C, MARTÍN-HERNÁNDEZ R, BARRIOS L, MEANA A, HIGES M. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Veterinary Research, 2013,44(1):25.
[7] FRIES I, FENG F, DA SILVA A, SLEMENDA S B, PIENIAZEK N J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 1996,32(3):356-365.
[8] HIGES M, MARTÍN R, MEANA A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology, 2006,92(2):93-95.
pmid: 16574143
[9] HUANG W F, JIANG J H, CHEN Y W, WANG C H. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie, 2007,38:30-37.
[10] WANG L L, XU X Y, YANG J, CHEN L H, LIU B, LIU T, JIN Q. Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum. BMC Genomics, 2018,19(1):Article number 933.
doi: 10.1186/s12864-018-5316-3 pmid: 30547762
[11] KANG K, ZHONG J, JIANG L, LIU G, GOU C Y, WU Q, WANG Y, LUO J, GOU D. Identification of microRNA-like RNAs in the filamentous fungus Trichoderma reesei by Solexa sequencing. PLoS ONE, 2013,8(10):e76288.
pmid: 24098464
[12] FRIES I, GRANADOS R, MORSE R. Intracellular germination of spores of Nosema apis Z. Apidologie, 1992,23:61-71.
[13] LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75(5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621
[14] REINHART B J, SLACK F J, BASSON M, PASQUINELLI A E, BETTINGER J C, ROUGVIE A E, HORVITZ H R, RUVKUN G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000,403(6772):901-906.
doi: 10.1038/35002607 pmid: 10706289
[15] BARTEL D P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009,136(2):215-233.
pmid: 19167326
[16] GRIFFITHS-JONES S, SAINI H K, VAN DONGEN S, ENRIGHT A J. MiRBase: Tools for microRNA genomics. Nucleic Acids Research, 2008,36(Database issue):D154-D158.
doi: 10.1093/nar/gkm952 pmid: 17991681
[17] LEE H C, LI L, GU W, XUE Z, CROSTHWAITE S K, PERTSEMLIDIS A, LEWIS Z A, FREITAG M, SELKER E U, MELLO C C, LIU Y. Diverse pathways generate microRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Molecular Cell, 2010,38(6):803-814.
pmid: 20417140
[18] ZHOU Q, WANG Z, ZHANG J, MENG H, HUANG B. Genome- wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biology, 2012,116(11):1156-1162.
[19] 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
[20] EVANS J D, HUANG Q. Interactions among host-parasite microRNAs during Nosema ceranae proliferation in Apis mellifera. Frontiers in Microbiology, 2018,9:698.
pmid: 29692768
[21] HUANG Q. Evolution of Dicer and Argonaute orthologs in microsporidian parasites. Infection, Genetics and Evolution, 2018,65:329-332.
pmid: 30142384
[22] HUANG Q, LI W, CHEN Y, RETSCHNIG-TANNER G, YANEZ O, NEUMANN P, EVANS J D. Dicer regulates Nosema ceranae proliferation in honeybees. Insect Molecular Biology, 2019,28(1):74-85.
doi: 10.1111/imb.12534 pmid: 30171639
[23] 耿四海, 周丁丁, 范小雪, 蒋海宾, 祝智威, 王杰, 范元婵, 王心蕊, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 转录组学分析揭示东方蜜蜂微孢子虫侵染意大利蜜蜂的分子机制. 昆虫学报, 2020,63(3):294-308.
GENG S H, ZHOU D D, FAN X J, JIANG H B, ZHU Z W, WANG J, FAN Y C, WANG X R, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. Transcriptomic analysis reveals the molecular mechanism underlying Nosema ceranae infection of Apis mellifera ligustica. Acta Entomologica Sinica, 2020,63(3):294-308. (in Chinese)
[24] GUO R, CHEN D F, CHEN H Z, XIONG C L, ZHENG Y Z, HOU C S, DU Y, GENG S H, WANG H P, ZHOU D D, GUO Y L. Genome-wide identification of circular RNAs in fungal parasite Nosema ceranae. Current Microbiology, 2018,75(12):1655-1660.
pmid: 30269253
[25] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, DHIRAJ K. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49:660-670.
[26] GUO R, CHEN H Z, DU Y, ZHOU D D, GENG S H, WANG H P, ZHU Z W, SHI C Y, WAN J Q, XIONG C L, ZHENG Y Z, CHEN D F. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019,10(8):245.
[27] 付中民, 陈华枝, 刘思亚, 祝智威, 范小雪, 范元婵, 万洁琦, 张璐, 熊翠玲, 徐国钧, 陈大福, 郭睿. 意大利蜜蜂响应东方蜜蜂微孢子虫胁迫的免疫应答. 中国农业科学, 2019,52(17):3069-3082.
FU Z M, CHEN H Z, LIU S Y, ZHU Z W, FAN X X, FAN Y C, WAN J Q, ZHANG L, XIONG C L, XU G J, CHEN D F, GUO R. Immune responses of Apis mellifera ligustia to Nosema ceranae stress. Scientia Agricultura Sinica, 2019,52(17):3069-3082. (in Chinese)
[28] 周倪红, 王海朋, 周丁丁, 付中民, 祝智威, 范元婵, 张曦, 熊翠玲, 郑燕珍, 陈大福, 郭睿. 意大利蜜蜂工蜂中肠响应东方蜜蜂微孢子虫胁迫的可变剪接基因分析. 福建农林大学学报 (自然科学版), 2020,49(3):372-379.
ZHOU N H, WANG H P, ZHOU D D, FU Z M, ZHU Z W, FAN Y C, ZHANG X, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. Analysis on the response of alternatively splicing genes in Apis mellifera ligustica workers' midguts to Nosema ceranae stress. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020,49(3):372-379. (in Chinese)
[29] STOLTZ D, SHEN X R, BOGGIS C, SISSON G. Molecular diagnosis of Kashmir bee virus infection. Journal of Apicultural Research, 1995,34(3):153-160.
[30] BENJEDDOU M, LEAT N, ALLSOPP M, DAVISON S. Detection of Acute bee paralysis virus and Black queen cell virus from honeybees by reverse transcriptase PCR. Applied and Environmental Microbiology, 2001,67(5):2384-2387.
doi: 10.1128/AEM.67.5.2384-2387.2001 pmid: 11319129
[31] SINGH R, LEVITT A L, RAJOTTE E G, HOLMES E C, OSTIGUY N, VAN ENGSLEDORP D, LIPKIN W L, DE PAMPHILIS C W, TOTH A L, COX-FOSTER D L. RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE, 2010,5(12):e14357.
pmid: 21203504
[32] RIBIÈRE M, TRIBOULOT C, MATHIEU L, AURIÈRES C, FAUCON J P, PÉPIN M. Molecular diagnosis of chronic bee paralysis virus infection. Apidologie, 2002,33(3):339-351.
[33] CHEN Y, EVANS J D, SMITH I B, PETTIS J S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology, 2008,97(2):186-188.
doi: 10.1016/j.jip.2007.07.010 pmid: 17880997
[34] 郭睿, 杜宇, 童新宇, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 耿四海, 周丁丁, 郭意龙, 吴素珍, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌侵染前期的差异表达microRNA及其调控网络. 中国农业科学, 2019,52(1):166-180.
doi: 10.3864/j.issn.0578-1752.2019.01.015
GUO R, DU Y, TONG X Y, XIONG C L, ZHENG Y Z, XU G J, WANG H P, GENG S H, ZHOU D D, GUO Y L, WU S Z, CHEN D F. Differentially expressed microRNAs and their regulation networks in Apis mellifera ligustica larval gut during the early stage of Ascosphaera apis infection. Scientia Agricultura Sinica, 2019,52(1):166-180. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.015
[35] HUANG Q, CHEN Y P, WANG R W, CHENG S, EVANS J D. Host-parasite interactions and purifying selection in a microsporidian parasite of honey bees. PLoS ONE, 2016,11(2):e0147549.
doi: 10.1371/journal.pone.0147549 pmid: 26840596
[36] PALDI N, GLICK E, OLIVA M, ZILBERBERG Y, AUBIN L, PETTIS J, CHEN Y P, EVANS J D. Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Applied and Environmental Microbiology, 2010,76(17):5960-5964.
pmid: 20622131
[37] PELIN A, SELMAN M, ARIS-BROSOU S, FARINELLI L, CORRADI N. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environmental Microbiology, 2015,17(11):4443-4458.
pmid: 25914091
[38] RODRÍGUEZ-GARCÍA C, EVANS J D, LI W, BRANCHICCELA B, LI J H, HEERMAN M C, BANMEKE O, ZHAO Y, HAMILTON M, HIGES M, MARTÍN-HERNÁNDEZ R, CHEN Y P. Nosemosis control in European honey bees Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. Journal of Experimental Biology, 2018,221(19):jeb184606.
[39] KATINKA M D, DUPRAT S, CORNILLOT E, MÉTÉNIER G, THOMARAT F, PRENSIER G, BARBE V, PEYRETAILLADE E, BROTTIER P, WINCKER P, DELBAC F, ALAOUI H E, PEYRET P, SAURIN W, GOUY M, WEISSENBACH J, VIVARÈS C P. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature, 2001,414(6862):450-453.
doi: 10.1038/35106579 pmid: 11719806
[40] NDIKUMANA S, PELIN A, WILLIOT A, SANDERS J L, KENT M, CORRADI N. Genome analysis of Pseudoloma neurophilia: A microsporidian parasite of Zebrafish (Danio rerio). Journal of Eukaryotic Microbiology, 2017,64(1):18-30.
pmid: 27230544
[41] LIU H, LI M, HE X, CAI S, HE X, LU X. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochimica et Biophysica Sinica, 2016,48(3):246-256.
doi: 10.1093/abbs/gmv140 pmid: 26837419
[42] 侯彬彬, 刘霞, 张振颖, 刘晓明. 参与真菌形态及毒力形成的信号转导通路的研究进展. 中国真菌学杂志, 2015,10(4):241-244.
HOU B B, LIU X, ZHANG Z Y, LIU X M. Advances in signal transduction pathways involved in fungal morphology and virulence. Chinese Journal of Mycology, 2015,10(4):241-244. (in Chinese)
[43] LENGELER K B, DAVIDSON R C, D'SOUZA C, HARASHIMA T, SHEN W C, WANG P, PAN X, WAUGH M, HEITMAN J. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 2000,64(4):746-785.
pmid: 11104818
[44] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张瞾楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica(Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
[45] 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑艳珍, 张瞾楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
doi: 10.13343/j.cnki.wsxb.20160551
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20160551
[46] RISPAIL N, DI PIETRO A. The homeodomain transcription factor Ste12: Connecting fungal MAPK signalling to plant pathogenicity. Communicative and Integrative Biology, 2010,3(4):327-332.
pmid: 20798817
[47] DOLGIKH V V, TSAREV A A, TIMOFEEV S A, ZHURAVLYOV V S. Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitology Research, 2019,118(5):1511-1518.
doi: 10.1007/s00436-019-06279-w pmid: 30863897
[48] SOUTHERN T R, JOLLY C E, LESTER M E, HAYMAN J R. Enp1, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro. Eukaryotic Cell, 2007,6(8):1354-1362.
pmid: 17557882
[49] YANG D, PAN L, CHEN Z, DU H, LUO B, LUO J, PAN G. The roles of microsporidia spore wall proteins in the spore wall formation and polar tube anchorage to spore wall during development and infection processes. Experimental Parasitology, 2018,187:93-100.
pmid: 29522765
[50] ENDO Y, TSURUGI K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. Journal of Biological Chemistry, 1988,263(18):8735-8739.
pmid: 3288622
[51] LIU H, LI M, CAI S, HE X, SHAO Y, LU X. Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochimica et Biophysica Sinica, 2016,48(11):1050-1057.
doi: 10.1093/abbs/gmw093 pmid: 27649890
[1] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[2] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[3] GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102.
[4] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[5] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[6] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
[7] FU ZhongMin,CHEN HuaZhi,LIU SiYa,ZHU ZhiWei,FAN XiaoXue,FAN YuanChan,WAN JieQi,ZHANG Lu,XIONG CuiLing,XU GuoJun,CHEN DaFu,GUO Rui. Immune Responses of Apis mellifera ligustia to Nosema ceranae Stress [J]. Scientia Agricultura Sinica, 2019, 52(17): 3069-3082.
[8] YU Jing,ZHANG WeiXing,MA LanTing,XU BaoHua. Effect of Dietary α-Linolenic Acid Levels on Physiological Function of Apis mellifera ligustica Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2019, 52(13): 2368-2378.
[9] GUO Rui,DU Yu,TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu. Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection [J]. Scientia Agricultura Sinica, 2019, 52(1): 166-180.
[10] GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
[11] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[12] Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!