Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3488-3501.doi: 10.3864/j.issn.0578-1752.2021.16.011
• HORTICULTURE • Previous Articles Next Articles
LIU Kai(),HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei()
[1] | 丛佩华, 张彩霞, 韩晓蕾, 田义, 张利义, 李武兴. 我国苹果育种研究现状及展望. 中国果树, 2018(6):1-5. |
CONG P H, ZHANG C X, HAN X L, TIAN Y, ZHANG L Y, LI W X. Current research situation and prospect of apple breeding in China. China Fruits, 2018(6):1-5. (in Chinese) | |
[2] |
VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, DAL RI A, GOREMYKIN V, et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10):833-839.
doi: 10.1038/ng.654 |
[3] | 常源升, 程来亮, 王海波, 何平, 李慧峰, 李林光. 苹果分子标记及辅助育种研究进展. 园艺学报, 2017, 44(9):1658-1680. |
CHANG Y S, CHENG L L, WANG H B, HE P, LI H F, LI L G. Review of molecular marker and marker assisted breeding of apple. Acta Horticulturae Sinica, 2017, 44(9):1658-1680. (in Chinese) | |
[4] | JAMES D J, PASSEY A J, BARBARA D J, BEVAN M. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Reports, 1989, 7(8):658-661. |
[5] |
EUN S S, KWAN J S, SUNG J, CHANG Y Y, ILL M C. Silver nitrate and aminoethoxyvinylglycine affect Agrobacterium -mediated apple transformation. Plant Growth Regulation, 2005, 45(1):75-82.
doi: 10.1007/s10725-004-6126-y |
[6] |
DAI H Y, LI W R, HAN G F, YANG Y, MA Y E, LI H, ZHANG Z H. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae, 2013, 164:202-208.
doi: 10.1016/j.scienta.2013.09.033 |
[7] |
VIDAL N, MALLÓN R, VALLADARES S, MEIJOMÍN A M, VIEITEZ A M. Regeneration of transgenic plants by Agrobacterium- mediated transformation of somatic embryos of juvenile and mature Quercus robur. Plant Cell Reports, 2010, 29(12):1411-1422.
doi: 10.1007/s00299-010-0931-8 |
[8] | RICHARD L B, RALPH S, DELORES L. Adventitious shoot regeneration of pear (Pyrus spp.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 108(2):229-236. |
[9] | 赵政阳, 付润民, 税守岐, 张秀琴, 黄英. 苹果试管苗叶片再生植株研究. 陕西农业科学, 1992(6):18-19. |
ZHAO Z Y, FU R M, SHUI S Q, ZHANG X Q, HUANG Y. Study on the regeneration of apple plantlets from the leaves. Shaanxi Journal of Agricultural Sciences, 1992(6):18-19. (in Chinese) | |
[10] |
IIZASA S, IIZASA E, WATANABE K, NAGANO Y. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants. BMC Genomics, 2017, 18(1):995.
doi: 10.1186/s12864-017-4372-4 |
[11] | 向亚男, 黄蕊蕊, 顾婷婷, 甘立军. 基于RNA-Seq的拟南芥不定芽再生过程的基因表达谱分析. 南京农业大学学报, 2018, 41(2):308-320. |
XIANG Y N, HUANG R R, GU T T, GAN L J. Analysis of RNA- Seq-based expression profiles during adventitious shoot regeneration in Arabidopsis thaliana. Journal of Nanjing Agricultural University, 2018, 41(2):308-320. (in Chinese) | |
[12] |
CHE P, LALL S, NETTLETON D, HOWELL S H. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology, 2006, 141(2):620-637.
doi: 10.1104/pp.106.081240 |
[13] |
MAYER K F X, SCHOOF H, HAECKER A, LENHARD M, JÜRGENS G, LAUX T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95(6):805-815.
doi: 10.1016/S0092-8674(00)81703-1 |
[14] |
ZHANG T Q, LIAN H, TANG H B, DOLEZAL K, ZHOU C M, YU S, CHEN J H, CHEN Q, LIU H T, LJUNG K, WANG J W. An intrinsic MicroRNA timer regulates progressive decline in shoot regenerative capacity in plants. The Plant Cell, 2015, 27(2):349-360.
doi: 10.1105/tpc.114.135186 |
[15] |
HIROYA I, KAORU S, PAUL T T, HARUKA T, SATOSHI K, YAYOI I, TAKUYA S, TAKU S, MITSUHIRO A, TAKAMASA S, SOICHI I, KENGO M, MOTOAKI S, TETSUJI K, ELLIOT M M, SACHIHIRO M. Primed histone demethylation regulates shoot regenerative competency. Nature Communications, 2019, 10(1):1786.
doi: 10.1038/s41467-019-09386-5 |
[16] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 |
[17] |
OH Y, DONOFRIO N, PAN H Q, COUGHLAN S, BROWN D E, MENG S W, MITCHELL T, DEAN R A. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biology, 2008, 9(5):R85.
doi: 10.1186/gb-2008-9-5-r85 |
[18] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 |
[19] |
ATTA R, LAURENS L, BOUCHERON-DUBUISSON E, GUIVARC'H A, CARNERO E, GIRAUDAT-PAUTOT V, RECH P, CHRIQUI D. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, 2009, 57(4):626-644.
doi: 10.1111/tpj.2009.57.issue-4 |
[20] |
SUGIMOTO K, JIAO Y L, MEYEROWITZ E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Developmental Cell, 2010, 18(3):463-471.
doi: 10.1016/j.devcel.2010.02.004 |
[21] |
DUCLERCQ J, SANGWAN-NORREEL B, CATTEROU M, SANGWAN R S. De novo shoot organogenesis: from art to science. Trends in Plant Science, 2011, 16(11):597-606.
doi: 10.1016/j.tplants.2011.08.004 |
[22] |
ZHANG T Q, LIAN H, ZHOU C M, XU L, JIAO Y L, WANG J W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell, 2017, 29(5):1073-1087.
doi: 10.1105/tpc.16.00863 |
[23] |
GRAFI G, BEN-MEIR H, AVIVI Y, MOSHE M Y, DAHAN Y, ZEMACH A. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Developmental Biology, 2007, 306(2):838-846.
doi: 10.1016/j.ydbio.2007.03.023 |
[24] |
WILLIAMS A C, FORD W C L. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biology of Reproduction, 2004, 71(4):1309-1316.
doi: 10.1095/biolreprod.104.028407 |
[25] |
FAJKUS J, FULNEČKOVÁ J, HULÁNOVÁ M, BERKOVÁ K, ŘÍHA K, MATYÁŠEK R. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Molecular and General Genetics MGG, 1998, 260(5):470-474.
doi: 10.1007/s004380050918 |
[26] |
BHATIA R, DALTON S, ROBERTS L A, MORON-GARCIA O M, IACONO R, KOSIK O, GALLAGHER J A, BOSCH M. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Scientific Reports, 2019, 9(1):8800.
doi: 10.1038/s41598-019-45225-9 |
[27] |
TAKEDA Y, KOSHIBA T, TOBIMATSU Y, SUZUKI S, MURAKAMI S, YAMAMURA M, RAHMAN M M, TAKANO T, HATTORI T, SAKAMOTO M, UMEZAWA T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 2017, 246(2):337-349.
doi: 10.1007/s00425-017-2692-x |
[28] | SHANG B, XU C, ZHANG X, CAO H, XIN W, HU Y. Very-long- chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18):5101-5106. |
[29] | 孙贝贝, 刘杰, 葛亚超, 盛李宏, 陈吕琴, 胡小梅, 杨仲南, 黄海, 徐麟. 植物再生的研究进展. 科学通报, 2016, 61(36):3887-3902. |
SUN B B, LIU J, GE Y C, SHENG L H, CHEN L Q, HU X M, YANG Z N, HUANG H, XU L. Recent progress on plant regeneration. Chinese Science Bulletin, 2016, 61(36):3887-3902. (in Chinese) | |
[30] |
GAJ M D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) heynh. Plant Growth Regulation, 2004, 43(1):27-47.
doi: 10.1023/B:GROW.0000038275.29262.fb |
[31] | GRIENEISEN V A, XU J, MARÉE A F M, HOGEWEG P, SCHERES B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 2007, 449(7165):1008-1013. |
[32] |
GORDON S P, HEISLER M G, REDDY G V, OHNO C, DAS P, MEYEROWITZ E M. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development (Cambridge, England), 2007, 134(19):3539-3548.
doi: 10.1242/dev.010298 |
[33] |
ANGELA K S, SANG H L, JONATHAN P W, NATHALIE G, HIRONORI I, DIRK I, WENDY A P, ANGUS S M, PAUL J O, WILLIAM M G. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. The Plant Journal, 2012, 70(6):978-990.
doi: 10.1111/tpj.2012.70.issue-6 |
[34] |
BARTRINA I, OTTO E, STRNAD M, WERNER T, SCHMÜLLING T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell, 2011, 23(1):69-80.
doi: 10.1105/tpc.110.079079 |
[35] | 许智宏, 张宪省, 苏英华, 胡玉欣, 徐麟, 王佳伟. 植物细胞全能性和再生. 中国科学(生命科学), 2019, 49(10):1282-1300. |
XU Z H, ZHANG X S, SU Y H, HU Y X, XU L, WANG J W. Plant cell totipotency and regeneration. Science in China (Series C), 2019, 49(10):1282-1300. (in Chinese) | |
[36] |
FAN M Z, XU C Y, XU K, HU Y X. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research, 2012, 22(7):1169-1180.
doi: 10.1038/cr.2012.63 |
[37] |
XU C Y, CAO H F, ZHANG Q Q, WANG H Z, XIN W, XU E J, ZHANG S Q, YU R X, YU D X, HU Y X. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. Nature Plants, 2018, 4(2):108-115.
doi: 10.1038/s41477-017-0095-4 |
[38] |
LAUX T, MAYER K F, BERGER J, JÜRGENS G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 1996, 122(1):87-96.
doi: 10.1242/dev.122.1.87 |
[39] |
MENG W J, CHENG Z J, SANG Y L, ZHANG M M, RONG X F, WANG Z W, TANG Y Y, ZHANG X S. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6):1357-1372.
doi: 10.1105/tpc.16.00640 |
[40] |
HORSTMAN A, WILLEMSEN V, BOUTILIER K, HEIDSTRA R. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science, 2014, 19(3):146-157.
doi: 10.1016/j.tplants.2013.10.010 |
[41] |
KAREEM A, DURGAPRASAD K, SUGIMOTO K, DU Y J, PULIANMACKAL A J, TRIVEDI Z B, ABHAYADEV P V, PINON V, MEYEROWITZ E M, SCHERES B, PRASAD K. PLETHORA genes control regeneration by a two-step mechanism. Current Biology, 2015, 25(8):1017-1030.
doi: 10.1016/j.cub.2015.02.022 |
[42] |
SHAFI A, GILL T, SREENIVASULU Y, KUMAR S, AHUJA P S, SINGH A K. Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma, 2015, 252(1):41-51.
doi: 10.1007/s00709-014-0653-9 |
[43] | TANG W, HARRIS L C, OUTHAVONG V, NEWTON R J. Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill.). Plant Cell Reports, 2004, 22(12):871-877. |
[44] | SRIVASTAVA S, DWIVEDI U N. Plant regeneration from callus of Cuscuta reflexa-an angiospermic parasite- and modulation of catalase and peroxidase activity by salicylic acid and naphthalene acetic acid. Plant Physiology & Biochemistry, 2001, 39(6):529-538. |
[45] | CHAI M L, JIA Y F, CHEN S, GAO Z S, WANG H F, LIU L L, WANG P J, HOU D Q. Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella[L.] Merr. Plant Cell,Tissue and Organ Culture (PCTOC), 2011, 104(2):187-192. |
[46] |
FLORES H E, GALSTON A W. Osmotic stress-induced polyamine accumulation in cereal leaves I. physiological parameters of the response. Plant Physiology, 1984, 75(1):102-109.
doi: 10.1104/pp.75.1.102 |
[47] |
SHOEB F, YADAV J S, BAJAJ S, RAJAM M V. Polyamines as biomarkers for plant regeneration capacity: Improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Science, 2001, 160(6):1229-1235.
doi: 10.1016/S0168-9452(01)00375-2 |
[48] |
MUKHOPADHYAY A, CHOUDHURI M M, SEN K, GHOSH B. Changes in polyamines and related enzymes with loss of viability in rice seeds. Phytochemistry, 1983, 22(7):1547-1551.
doi: 10.1016/0031-9422(83)80086-7 |
[1] | DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722. |
[2] | QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694. |
[3] | CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768. |
[4] | LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557. |
[5] | GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264. |
[6] | BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628. |
[7] | ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288. |
[8] | XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612. |
[9] | SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95. |
[10] | XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151. |
[11] | SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229. |
[12] | CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799. |
[13] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
[14] | LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336. |
[15] | SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944. |
|