Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3488-3501.doi: 10.3864/j.issn.0578-1752.2021.16.011

• HORTICULTURE • Previous Articles     Next Articles

Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple

LIU Kai(),HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei()   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Germplasm Resources Utilization, Ministry of Agriculture and Rural Areas/National Apple Breeding Center, Xingcheng 125100, Liaoning
  • Received:2020-09-19 Accepted:2021-01-07 Online:2021-08-16 Published:2021-08-24
  • Contact: XiaoLei HAN E-mail:liukai2429@163.com;hanxiaolei@caas.cn

Abstract:

【Objective】In this study, the differentially expressed genes (DEGs) in adventitious shoot regeneration of ‘GL-3’ apple leaves were screened. The potential mechanism of adventitious shoot regeneration of apple leaves was analyzed, which will contribute to develop an efficient genetic transformation system for apple. 【Method】The explants of ‘Gl-3’ apple were cultured on regeneration medium. Samples were taken for RNA extraction and construction of mRNA library at 3, 7, 14 and 21 d post culture, respectively, further sequenced on the Illumina Nova seq platform. On the basis of the Kyoto Encyclopedia of Gene and Genome (KEGG) and Gene ontology (GO), the terms and pathway enrichment were then analyzed using the Phyper function with R software. Gene annotation was performed by using BLAST software. The DEGs related to plant regeneration, such as hormones, enzymes, transcription factors (TFs) and polyamines were analyzed, the expression levels of DEGs were verified by qRT-PCR. 【Result】Compared with the control group, 5 250, 4 937, 6 852 and 6 493 DEGs were identified at 3, 7, 14 and 21 d post culture, respectively, and 3 027 DEGs were shared in all four points. GO functional enrichment analysis showed that the up-regulated DEGs shared in all four points were mainly related to oxidation reduction process, cell periphery, protein kinase activity and organic cyclic compound binding, while the down-regulated DEGs were mainly related to single organism metabolic process, calcium ion binding, photosynthetic membrane and thylakoid part. KEGG pathway enrichment analysis indicated that the up-regulated DEGs shared in all four points were significantly enriched in pentose phosphate pathway, plant hormone signal transduction, plant pathogen interaction and protein processing in endoplasmic reticulum, while the down-regulated DEGs were significantly enriched in alpha linolenic acid metabolism, phenylpropanoid biosynthesis, carbon metabolism and photosynthesis. In addition, the DEGs encoding transcription factors, enzymes, and components of hormone biosynthesis and signaling pathways were analyzed. The results of qRT-PCR showed that most of these DEGs were up-regulated, which was consistent with data of RNA-Seq. 【Conclusion】Through the detection and comparative analysis of large-scale gene expression profiles in adventitious shoot of ‘GL-3’ apple leaves at different time points, a number of genes related to adventitious shoot regeneration of apple leaves were obtained, which could provide a basis for further study on the mechanism of apple leaves in vitro regeneration.

Key words: apple, leaves regeneration, RNA-Seq, differentially expressed genes, impact factors

Table 1

Primers for quantitative validation of differentially expressed genes (DEGs)"

基因ID Gene ID 基因名称 Gene name 正向引物 Forward primer 反向引物 Reverse primer
MD02G1100200 SAUR72 AATTTCAGGAGACCTCCGCC CGTTGATCGTGTCGTCGTCT
MD10G1121700 LAX2 AACACAACTTCCGCTCCTCC CCGGGCGTGGAGTAATCAAA
MD05G1052100 SAUR14 TTCCGTCTTCCGGCTGTAAT TCTCGCCAACATAAACCGCA
MD15G1208300 CKX3 ATACAACCCAGCAGCCGTTT CCTCTGGTGGAATGACCGTG
MD01G1164700 MSD1 GCGCTCCGATTAGGTCTTCA TGGATCTGCATGATCTCGCC
MD03G1014400 PA2 ACGGAAGCGGAGATACGTTG CTGATCGGTCTGGAGAAGCC
MD10G1103500 LBD38 CCGTTTTGTTGTTGCCGAGT CAACGCAATGCAAGAGTGCT
MD17G1073700 RAV2 TTGACCAAGGGATGGACACG TGAACCGCAGACTATCGACG
MD13G1252700 PLT2 CCTCAGTTTGCTACTGCCGA AACCACGGAGGAAACTAGCG
MD03G1118500 IFL TGCGGCAGTACCCATTGATT AGGCTTCCACATGACAGCAA
MD08G1077100 ANT AATCCGTCCTCGTTGGTGAC CCGCAGAGGTTGGACTTACA
MD01G1162100 PRX52 GCCTTGCAAGATGCACAACA AGGTTGTCGTCATTTCCGCT

Fig. 1

Morphological changes of adventitious shoot regeneration from leaf explants"

Fig. 2

The number of DEGs at each time point during adventitious bud regeneration of ‘Gl-3’ apple leaves A: The number of up-regulated genes and down-regulated DEGs at each time point; B: Scattered plot of DEGs at each time point; C: The venn of DEGs at each time point"

Fig. 3

GO enrichment analysis of DEGs shared in all four points A and B represent the GO enrichment results of the up-regulated and down-regulated DEGs shared in in all four points, respectively"

Fig. 4

KEGG enrichment analysis of DEGs shared in all four points A and B represent the KEGG enrichment results of the up-regulated and down-regulated DEGs shared in all four points, respectively"

Table 2

Functional analysis of highly DEGs"

基因ID Gene ID GO功能 GO function KEGG途径 KEGG_pathway
MD00G1137700 植物细胞壁 Plant-type cell wall;胞间连丝 Plasmodesma
MD13G1023200 防御反应 Defense response;对生物刺激的反应 Response to biotic stimulus
MD15G1208300 细胞分裂素代谢过程Cytokinin metabolic process;氧化还原过程Oxidation- reduction process;膜的整体成分 Integral component of membrane;氧化还原酶活性 Oxidoreductase activity;细胞分裂素脱氢酶活性 Cytokinin dehydrogenase activity;黄素腺嘌呤二核苷酸结合 Fflavin adenine dinucleotide binding 玉米素生物合成
Zeatin biosynthesis
MD08G1161200 磷酸化信号转导系统 Phosphorelay signal transduction system;胞内受体 Intracellular 植物激素信号转导 Plant hormone signal transduction
MD11G1093400 氧化还原过程 Oxidation-reduction process;氧化还原酶活性Oxidoreductase activity 托烷、哌啶和吡啶生物碱的生物合成
Tropane, piperidine and pyridine alkaloid biosynthesis
MD04G1089800 果胶分解过程 Pectin catabolic process;膜的整体成分 Integral component of membrane;果胶裂解酶活性 Pectate lyase activity;金属离子结合 Metal ion binding 戊糖和葡萄糖醛酸转换
Pentose and glucuronate interconversions
MD03G1192000 - -
MD12G1226800 磷酸化信号转导系统 Phosphorelay signal transduction system;细胞分裂素激活信号通路 Cytokinin-activated signaling pathway;磷酸化 Phosphorylation;氧化还原过程 Oxidation-reduction process;细胞核 Nucleus;细胞质 Cytoplasm;组氨酸磷酸转移激酶活性 Histidine phosphotransfer kinase activity;2-烯醛还原酶活性 2-Alkenal reductase activity;蛋白质组氨酸激酶结合 Protein histidine kinase binding 植物激素信号转导
Plant hormone signal transduction

Fig. 5

Heatmaps of DEGs involved in phytohormone signaling pathways, including IAA and CTK signaling pathways Each horizontal row represents a DEG with its gene ID, and the vertical columns represent log2 (3 d FPKM/0 d FPKM), log2 (7 d FPKM/0 d FPKM), log2 (14 d FPKM/0 d FPKM), log2 (21 d FPKM/0 d FPKM) from left to right. Red for greater than 0 and up-regulated, green for less than 0 and down-regulated. The same as below"

Fig. 6

Heatmaps of DEGs encoding transcriptional factors including AP2-EREBP, ARR, HD-ZIP, bZIP and LBD"

Fig. 7

Heatmaps of DEGs encoding enzymes including POD, SOD and CAT"

Fig. 8

Heatmaps of DEGs encoding polyamines including Spm, Spd and Put"

Fig. 9

Validation of DEGs by qRT-PCR"

[1] 丛佩华, 张彩霞, 韩晓蕾, 田义, 张利义, 李武兴. 我国苹果育种研究现状及展望. 中国果树, 2018(6):1-5.
CONG P H, ZHANG C X, HAN X L, TIAN Y, ZHANG L Y, LI W X. Current research situation and prospect of apple breeding in China. China Fruits, 2018(6):1-5. (in Chinese)
[2] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, DAL RI A, GOREMYKIN V, et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10):833-839.
doi: 10.1038/ng.654
[3] 常源升, 程来亮, 王海波, 何平, 李慧峰, 李林光. 苹果分子标记及辅助育种研究进展. 园艺学报, 2017, 44(9):1658-1680.
CHANG Y S, CHENG L L, WANG H B, HE P, LI H F, LI L G. Review of molecular marker and marker assisted breeding of apple. Acta Horticulturae Sinica, 2017, 44(9):1658-1680. (in Chinese)
[4] JAMES D J, PASSEY A J, BARBARA D J, BEVAN M. Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Reports, 1989, 7(8):658-661.
[5] EUN S S, KWAN J S, SUNG J, CHANG Y Y, ILL M C. Silver nitrate and aminoethoxyvinylglycine affect Agrobacterium -mediated apple transformation. Plant Growth Regulation, 2005, 45(1):75-82.
doi: 10.1007/s10725-004-6126-y
[6] DAI H Y, LI W R, HAN G F, YANG Y, MA Y E, LI H, ZHANG Z H. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae, 2013, 164:202-208.
doi: 10.1016/j.scienta.2013.09.033
[7] VIDAL N, MALLÓN R, VALLADARES S, MEIJOMÍN A M, VIEITEZ A M. Regeneration of transgenic plants by Agrobacterium- mediated transformation of somatic embryos of juvenile and mature Quercus robur. Plant Cell Reports, 2010, 29(12):1411-1422.
doi: 10.1007/s00299-010-0931-8
[8] RICHARD L B, RALPH S, DELORES L. Adventitious shoot regeneration of pear (Pyrus spp.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 108(2):229-236.
[9] 赵政阳, 付润民, 税守岐, 张秀琴, 黄英. 苹果试管苗叶片再生植株研究. 陕西农业科学, 1992(6):18-19.
ZHAO Z Y, FU R M, SHUI S Q, ZHANG X Q, HUANG Y. Study on the regeneration of apple plantlets from the leaves. Shaanxi Journal of Agricultural Sciences, 1992(6):18-19. (in Chinese)
[10] IIZASA S, IIZASA E, WATANABE K, NAGANO Y. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants. BMC Genomics, 2017, 18(1):995.
doi: 10.1186/s12864-017-4372-4
[11] 向亚男, 黄蕊蕊, 顾婷婷, 甘立军. 基于RNA-Seq的拟南芥不定芽再生过程的基因表达谱分析. 南京农业大学学报, 2018, 41(2):308-320.
XIANG Y N, HUANG R R, GU T T, GAN L J. Analysis of RNA- Seq-based expression profiles during adventitious shoot regeneration in Arabidopsis thaliana. Journal of Nanjing Agricultural University, 2018, 41(2):308-320. (in Chinese)
[12] CHE P, LALL S, NETTLETON D, HOWELL S H. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology, 2006, 141(2):620-637.
doi: 10.1104/pp.106.081240
[13] MAYER K F X, SCHOOF H, HAECKER A, LENHARD M, JÜRGENS G, LAUX T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95(6):805-815.
doi: 10.1016/S0092-8674(00)81703-1
[14] ZHANG T Q, LIAN H, TANG H B, DOLEZAL K, ZHOU C M, YU S, CHEN J H, CHEN Q, LIU H T, LJUNG K, WANG J W. An intrinsic MicroRNA timer regulates progressive decline in shoot regenerative capacity in plants. The Plant Cell, 2015, 27(2):349-360.
doi: 10.1105/tpc.114.135186
[15] HIROYA I, KAORU S, PAUL T T, HARUKA T, SATOSHI K, YAYOI I, TAKUYA S, TAKU S, MITSUHIRO A, TAKAMASA S, SOICHI I, KENGO M, MOTOAKI S, TETSUJI K, ELLIOT M M, SACHIHIRO M. Primed histone demethylation regulates shoot regenerative competency. Nature Communications, 2019, 10(1):1786.
doi: 10.1038/s41467-019-09386-5
[16] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324
[17] OH Y, DONOFRIO N, PAN H Q, COUGHLAN S, BROWN D E, MENG S W, MITCHELL T, DEAN R A. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biology, 2008, 9(5):R85.
doi: 10.1186/gb-2008-9-5-r85
[18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
[19] ATTA R, LAURENS L, BOUCHERON-DUBUISSON E, GUIVARC'H A, CARNERO E, GIRAUDAT-PAUTOT V, RECH P, CHRIQUI D. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, 2009, 57(4):626-644.
doi: 10.1111/tpj.2009.57.issue-4
[20] SUGIMOTO K, JIAO Y L, MEYEROWITZ E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Developmental Cell, 2010, 18(3):463-471.
doi: 10.1016/j.devcel.2010.02.004
[21] DUCLERCQ J, SANGWAN-NORREEL B, CATTEROU M, SANGWAN R S. De novo shoot organogenesis: from art to science. Trends in Plant Science, 2011, 16(11):597-606.
doi: 10.1016/j.tplants.2011.08.004
[22] ZHANG T Q, LIAN H, ZHOU C M, XU L, JIAO Y L, WANG J W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell, 2017, 29(5):1073-1087.
doi: 10.1105/tpc.16.00863
[23] GRAFI G, BEN-MEIR H, AVIVI Y, MOSHE M Y, DAHAN Y, ZEMACH A. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Developmental Biology, 2007, 306(2):838-846.
doi: 10.1016/j.ydbio.2007.03.023
[24] WILLIAMS A C, FORD W C L. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biology of Reproduction, 2004, 71(4):1309-1316.
doi: 10.1095/biolreprod.104.028407
[25] FAJKUS J, FULNEČKOVÁ J, HULÁNOVÁ M, BERKOVÁ K, ŘÍHA K, MATYÁŠEK R. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Molecular and General Genetics MGG, 1998, 260(5):470-474.
doi: 10.1007/s004380050918
[26] BHATIA R, DALTON S, ROBERTS L A, MORON-GARCIA O M, IACONO R, KOSIK O, GALLAGHER J A, BOSCH M. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Scientific Reports, 2019, 9(1):8800.
doi: 10.1038/s41598-019-45225-9
[27] TAKEDA Y, KOSHIBA T, TOBIMATSU Y, SUZUKI S, MURAKAMI S, YAMAMURA M, RAHMAN M M, TAKANO T, HATTORI T, SAKAMOTO M, UMEZAWA T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 2017, 246(2):337-349.
doi: 10.1007/s00425-017-2692-x
[28] SHANG B, XU C, ZHANG X, CAO H, XIN W, HU Y. Very-long- chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18):5101-5106.
[29] 孙贝贝, 刘杰, 葛亚超, 盛李宏, 陈吕琴, 胡小梅, 杨仲南, 黄海, 徐麟. 植物再生的研究进展. 科学通报, 2016, 61(36):3887-3902.
SUN B B, LIU J, GE Y C, SHENG L H, CHEN L Q, HU X M, YANG Z N, HUANG H, XU L. Recent progress on plant regeneration. Chinese Science Bulletin, 2016, 61(36):3887-3902. (in Chinese)
[30] GAJ M D. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) heynh. Plant Growth Regulation, 2004, 43(1):27-47.
doi: 10.1023/B:GROW.0000038275.29262.fb
[31] GRIENEISEN V A, XU J, MARÉE A F M, HOGEWEG P, SCHERES B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 2007, 449(7165):1008-1013.
[32] GORDON S P, HEISLER M G, REDDY G V, OHNO C, DAS P, MEYEROWITZ E M. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development (Cambridge, England), 2007, 134(19):3539-3548.
doi: 10.1242/dev.010298
[33] ANGELA K S, SANG H L, JONATHAN P W, NATHALIE G, HIRONORI I, DIRK I, WENDY A P, ANGUS S M, PAUL J O, WILLIAM M G. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. The Plant Journal, 2012, 70(6):978-990.
doi: 10.1111/tpj.2012.70.issue-6
[34] BARTRINA I, OTTO E, STRNAD M, WERNER T, SCHMÜLLING T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell, 2011, 23(1):69-80.
doi: 10.1105/tpc.110.079079
[35] 许智宏, 张宪省, 苏英华, 胡玉欣, 徐麟, 王佳伟. 植物细胞全能性和再生. 中国科学(生命科学), 2019, 49(10):1282-1300.
XU Z H, ZHANG X S, SU Y H, HU Y X, XU L, WANG J W. Plant cell totipotency and regeneration. Science in China (Series C), 2019, 49(10):1282-1300. (in Chinese)
[36] FAN M Z, XU C Y, XU K, HU Y X. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research, 2012, 22(7):1169-1180.
doi: 10.1038/cr.2012.63
[37] XU C Y, CAO H F, ZHANG Q Q, WANG H Z, XIN W, XU E J, ZHANG S Q, YU R X, YU D X, HU Y X. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. Nature Plants, 2018, 4(2):108-115.
doi: 10.1038/s41477-017-0095-4
[38] LAUX T, MAYER K F, BERGER J, JÜRGENS G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 1996, 122(1):87-96.
doi: 10.1242/dev.122.1.87
[39] MENG W J, CHENG Z J, SANG Y L, ZHANG M M, RONG X F, WANG Z W, TANG Y Y, ZHANG X S. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6):1357-1372.
doi: 10.1105/tpc.16.00640
[40] HORSTMAN A, WILLEMSEN V, BOUTILIER K, HEIDSTRA R. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science, 2014, 19(3):146-157.
doi: 10.1016/j.tplants.2013.10.010
[41] KAREEM A, DURGAPRASAD K, SUGIMOTO K, DU Y J, PULIANMACKAL A J, TRIVEDI Z B, ABHAYADEV P V, PINON V, MEYEROWITZ E M, SCHERES B, PRASAD K. PLETHORA genes control regeneration by a two-step mechanism. Current Biology, 2015, 25(8):1017-1030.
doi: 10.1016/j.cub.2015.02.022
[42] SHAFI A, GILL T, SREENIVASULU Y, KUMAR S, AHUJA P S, SINGH A K. Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma, 2015, 252(1):41-51.
doi: 10.1007/s00709-014-0653-9
[43] TANG W, HARRIS L C, OUTHAVONG V, NEWTON R J. Antioxidants enhance in vitro plant regeneration by inhibiting the accumulation of peroxidase in Virginia pine (Pinus virginiana Mill.). Plant Cell Reports, 2004, 22(12):871-877.
[44] SRIVASTAVA S, DWIVEDI U N. Plant regeneration from callus of Cuscuta reflexa-an angiospermic parasite- and modulation of catalase and peroxidase activity by salicylic acid and naphthalene acetic acid. Plant Physiology & Biochemistry, 2001, 39(6):529-538.
[45] CHAI M L, JIA Y F, CHEN S, GAO Z S, WANG H F, LIU L L, WANG P J, HOU D Q. Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella[L.] Merr. Plant Cell,Tissue and Organ Culture (PCTOC), 2011, 104(2):187-192.
[46] FLORES H E, GALSTON A W. Osmotic stress-induced polyamine accumulation in cereal leaves I. physiological parameters of the response. Plant Physiology, 1984, 75(1):102-109.
doi: 10.1104/pp.75.1.102
[47] SHOEB F, YADAV J S, BAJAJ S, RAJAM M V. Polyamines as biomarkers for plant regeneration capacity: Improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Science, 2001, 160(6):1229-1235.
doi: 10.1016/S0168-9452(01)00375-2
[48] MUKHOPADHYAY A, CHOUDHURI M M, SEN K, GHOSH B. Changes in polyamines and related enzymes with loss of viability in rice seeds. Phytochemistry, 1983, 22(7):1547-1551.
doi: 10.1016/0031-9422(83)80086-7
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[8] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[9] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[10] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[11] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[12] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[13] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[14] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[15] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!