Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 4092-4102.doi: 10.3864/j.issn.0578-1752.2020.19.021

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica

GAO Yan(),ZHU YaNan,LI QiuFang,SU SongKun(),NIE HongYi()   

  1. College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-01-17 Accepted:2020-03-10 Online:2020-10-01 Published:2020-10-19
  • Contact: SongKun SU,HongYi NIE E-mail:2726820378@qq.com;susongkun@zju.edu.cn;hnhynie@126.com

Abstract:

【Objective】The nursing behavior of Apis mellifera ligustica plays an important role in maintaining colony stability and production of royal jelly (RJ). In this study, samples (3-day-old worker bees, 10-day-old nurses/foragers, 21-day-old nurses/foragers) were obtained by constructing artificial colony, which can eliminate the influence of age on nursing behavior. Moreover, genes closely related to the nursing behavior were strictly screened out in the brain of these samples, which could reveal the molecular network of brain regulation of nursing behavior.【Method】The 3-day-old worker bees, 10-day-old nurses and foragers, 21-day-old nurses and foragers were obtained by constructing artificial bee colony. And then the head of different group’s worker bees was dissected to obtain brain tissues of these samples. RNA-seq was used to analyze the transcriptome sequencing of the 5 groups (3-day-old worker bees, 10-day-old nurses, 10-day-old foragers, 21-day-old nurses, 21-day-old foragers) of brain samples. Differentially expressed genes (DEGs) which are closely related to the nursing behavior in the nurses’ brain were screened out. GO and KEGG enrichment analysis were carried out for these genes. qPCR was used to verify the expression patterns of 4 randomly selected DEGs.【Result】RNA-seq analysis screened out 32 DEGs that were closely related to the nursing behavior of nurses. These genes were significantly up-regulated in the brain of 10-day-old nurses than 3-day-old worker bees, 10-day-old foragers and 21-day-old foragers, and the expression level in the brain of 21-day-old nurses was significantly higher than that in 21-day-old foragers. GO enrichment analysis showed that the up-regulated DEGs were mainly involved in oxidoreductase activity, odor binding, transmembrane transport and other functional items. KEGG enrichment results showed that the up-regulated DEGs were mainly involved in protein metabolism (ribosome), energy metabolism (oxidative phosphorylation, carbon metabolism, the citrate cycle (TCA cycle), starch and sucrose metabolism, nitrogen metabolism and other glycan degradation pathway), signal transduction (Toll and Imd signaling pathways, phototransduction, sphingolipid metabolism), digestive function (lysosome). Of them, only sphingolipid metabolism and other glycan degradation pathway were notably enriched. qPCR results showed that the expression patterns of 3 up-regulated DEGs (LOC409709, LOC551813, LOC409708) and 1 down-regulated DEG (LOC551165) were consistent with the sequencing data.【Conclusion】To obtain gene expression profiles of brains from age-matched nurses and foragers, the brains of 5 groups (3-day-old worker bees, 10-day-old nurses, 10-day-old foragers, 21-day-old nurses, and 21-day-old foragers) were comprehensively analyzed using transcriptome sequencing, revealing that the 32 up-regulated DEGs were associated with brain nursing behavior. These genes were mainly involved in signal transduction and energy metabolism, which can affect the nursing behavior.

Key words: Apis mellifera ligustica, nurses, brain, nursing behavior, royal jelly, RNA-seq

Table 1

Information of primer for qPCR"

基因 Gene 登录号 Accession number 引物序列 Primer sequence (5′-3′) 产物大小 Amplicon length (bp)
LOC409709 409709 F: TTGGTCAGTTGGATGGGTAGA 236
R: CCGACGGTGTAAGAAAGGC
LOC551813 551813 F: CAAAATTCAACAGCTCCTGC 210
R: TCATCGCTACCGAAATCATAA
LOC409708 409708 F: TTGTTGATCGCAATCCTGTC 480
R: CGTCGCATCGTCATCGTAA
LOC551165 551165 F:TGCCTGTTGTATTCTCGTAT 304
R:TCTGACCTTGCCCTCCTC
Actin NM_001185146.1 F: CCTAGCACCATCCACCATGAA 87
R: GAAGCAAGAATTGACCCACCAA

Table 2

Overview of RNA-seq data"

样品
Sample
原始读数
Number of raw reads
有效读数
Number of clean reads
有效匹配数(匹配率)
Clean map
(Map rate)
单一匹配数(匹配率)Unique map
(Map rate)
多匹配数(匹配率)Multiple map
(Map rate)
99.9%的碱基正确率99.9% base accuracy (%)
3 d_1 67515798 66708824 56766708 (85.10%) 55951632 (83.87%) 815076 (1.22%) 88.25
3 d_2 83920302 81832028 70899666 (86.64%) 69821133 (85.32%) 1078533 (1.32%) 90.59
3 d_3 81546254 80442702 69502321 (86.40%) 68471536 (85.12%) 1030785 (1.28%) 89.66
10 dN_1 57288572 56348822 49321933 (87.53%) 48015717 (85.21%) 1306216 (2.32%) 90.51
10 dN_2 83787622 82964416 63408429 (76.43%) 60124557 (72.47%) 3283872 (3.96%) 90.66
10 dN_3 72837334 71663646 56922446 (79.43%) 56028890 (78.18%) 893556 (1.25%) 91.00
10 dF_1 67610626 66671128 55057317 (82.58%) 54208585 (81.31%) 848732 (1.27%) 90.37
10 dF_2 81258562 80246018 63725456 (79.41%) 62620480 (78.04%) 1104976 (1.38%) 90.06
10 dF_3 66021926 65365544 52522944 (80.35%) 51744723 (79.16%) 778221 (1.19%) 91.00
21 dN_1 71882296 71020506 56181047 (79.11%) 54846870 (77.23%) 8223024 (13.18%) 92.19
21 dN_2 72018192 70803290 60295752 (85.16%) 58523770 (82.66%) 11236986 (15.51%) 92.33
21 dN_3 72458810 71460376 59684702 (83.52%) 57902404 (81.03%) 8742852 (13.63%) 92.50
21 dF_1 72168956 70890254 59385891 (83.77%) 58485427 (82.50%) 900464 (1.27%) 91.94
21 dF_2 69418794 68335020 55559809 (81.31%) 54623413 (79.93%) 936396 (1.37%) 88.98
21 dF_3 81670548 80692702 67432186 (83.57%) 66368993 (82.25%) 1063193 (1.32%) 91.86

Fig. 1

Analysis on the expression trend of DEGs related to nurses’ nursing behavior"

Table 3

Significance of 41 DEGs in brain of 5 honeybee samples of dependent age"

基因数目
Gene number
10 dN vs 3 d显著性比较Significant comparison of 10 dN vs 3 d 10 dN vs 21 dF显著性比较Significant comparison of 10 dN vs 21 dF 10 dN vs 10 dF显著性比较Significant comparison of 10 dN vs 10 dF 21 dN vs 21 dF显著性比较Significant comparison of 21 dN vs 21 dF 10 dN vs 21 dN显著性比较
Significant comparison of 10 dN vs 21 dN
32 ns
6 ns
3 ns

Table 4

Expression information of top 11 up-regulated DEGs in brain of 5 samples"

基因登录号
Gene_ID
基因
Gene
基因描述
Gene description
平均FPKM值 Average FPKM value log2 FC
(10 dN vs 10 dF)
log2 FC
(21 dN vs 21 dF)
3 d 10 dN 10 dF 21 dN 21 dF
551813 LOC551813 王浆主蛋白1
Major royal jelly protein 1
0.40 1564.78 2.27 510.71 9.64 9.44 5.71
725215 LOC725215 毒酸磷酸酶Acph-1样
Venom acid phosphatase Acph-1-like
0.31 29.97 0.66 23.80 0.73 5.52 5.01
411186 LOC411186 突触小泡糖蛋白2C
Synaptic vesicle glycoprotein 2C
0.22 12.81 0.47 11.96 0.60 4.78 4.29
410149 LOC410149 羧肽酶Q样 Carboxypeptidase Q-like 1.59 31.09 1.82 26.29 2.81 4.10 3.21
409709 LOC409709 假定的葡萄糖基神经酰胺酶4
Putative glucosylceramidase 4
2.83 75.03 7.81 50.90 8.63 3.27 2.54
552478 Obp17 气味结合蛋白17
Odorant binding protein 17
1.77 6.43 0.73 4.05 0.80 3.14 2.33
551935 Obp21 气味结合蛋白21
Odorant binding protein 21
4.50 34.70 4.43 22.20 7.71 2.97 1.51
677673 Obp14 气味结合蛋白14
Odorant binding protein 14
1.00 7.70 1.01 3.32 0.69 2.92 2.24
409708 LOC409708 葡糖基神经酰胺酶样 Glucosylceramidase-like 13.84 132.92 22.42 113.84 27.93 2.57 2.01
726798 LOC726798 Sn1特异性二酰基甘油脂肪酶β Sn1-specific diacylglycerol lipase beta 0.53 2.67 0.49 3.46 0.85 2.45 2.01
408383 CYP6AQ1 细胞色素P450 6AQ1
Cytochrome P450 6AQ1
0.49 1.97 0.42 1.41 0.39 2.22 1.84

Table 5

GO term enrichment of up-regulated DEGs"

GO条目
GO term
基因
Gene
氧化还原酶活性
Oxidoreductase activity
CYP6AQ1/LOC726418/
LOC408734/LOC413590
气味结合 Odorant binding Obp21/Obp14/Obp17
跨膜运输 Transmembrane transport LOC411186/LOC725462
蛋白质水解 Proteolysis LOC725215/LOC725154
翻译 Translation LOC550715
脂质代谢 Lipid metabolism LOC726798
DNA复制 DNA replication LOC725238
细胞器组分Organelle part LOC408444

Fig. 2

KEGG functional enrichment analysis of DEGs related to nurses’ nursing behavior"

Fig. 3

qPCR validation of transcriptome data"

[1] BEZABIH G, CHENG H, HAN B, FENG M, XUE Y, HU H, LI J K. Phosphoproteome analysis reveals phosphorylation underpinnings in the brains of nurse and forager honeybees ( Apis mellifera). Scientific Reports, 2017, 7: 1973.
doi: 10.1038/s41598-017-02192-3 pmid: 28512345
[2] HAN B, FANG Y, FENG M, HU H, HAO Y, MA C, HUO X, MENG L, ZHANG X, WU F, LI J K. Brain membrane proteome and phosphoproteome reveal molecular basis associating with nursing and foraging behaviors of honeybee workers. Journal of Proteome Research, 2017, 16(10): 3646-3663.
doi: 10.1021/acs.jproteome.7b00371 pmid: 28879772
[3] SIALANA F J, MENEGASSO A R S, SMIDAK R, HUSSEIN A M, ZAVADIL M, RATTEI T, LUBEC G, PALMA M S, LUBEC J. Proteome changes paralleling the olfactory conditioning in the forager honey bee and provision of a brain proteomicsdataset. Proteomics, 2019, 19(13): e1900094.
doi: 10.1002/pmic.201900094 pmid: 31115157
[4] CONTE Y L, MOHAMMEDI A, ROBINSON G E. Primer effects of a brood pheromone on honeybee behavioural development. Proceedings. Biological Sciences, 2001, 268(1463): 163-168.
doi: 10.1098/rspb.2000.1345 pmid: 11209886
[5] FUJITA T, KOZUKA-HATA H, AO-KONDO H, KUNIEDA T, OYAMA M, KUBO T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research, 2012, 12(1): 404-411.
doi: 10.1021/pr300700e pmid: 23157659
[6] ALTAYE S Z, MENG L F, LI J K. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee ( Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 2019, 50(4): 436-453.
doi: 10.1007/s13592-019-00656-1
[7] WHITFIELD C W, CZIKO A M, ROBINSON G E. Gene expression profiles in the brain predict behavior in individual honey bees. Science, 2003, 302(5643): 296-299.
doi: 10.1126/science.1086807 pmid: 14551438
[8] KUCHARSKI R, MALESZKA R. Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biology, 2002, 3(2): RESEARCH0007.
doi: 10.1186/gb-2002-3-2-research0007 pmid: 11864369
[9] RODRIGUEZ-ZAS S L, SOUTHEY B R, SHEMESH Y, RUBIN E B, COHEN M, ROBINSON G E, BLOCH G. Microarray analysis of natural socially regulated plasticity in circadian rhythms of honey bees. Journal of Biological Rhythms, 2012, 27(1): 12-24.
doi: 10.1177/0748730411431404 pmid: 22306970
[10] HERNÁNDEZ L G, LU B, DA CRUZ G C, CALÁBRIA L K, MARTINS N F, TOGAWA R, ESPINDOLA F S, YATES J R, CUNHA R B, DE SOUSA M V. Worker honeybee brain proteome. Journal of Proteome Research, 2012, 11(3): 1485-1493.
doi: 10.1021/pr2007818 pmid: 22181811
[11] PAERHATI Y, ISHIGURO S, UEDA-MATSUO R, YANG P, YAMASHITA T, ITO K, MAEKAWA H, TANI H, SUZUKI K. Expression of AmGR10 of the gustatory receptor family in honey bee is correlated with nursing behavior. PLoS ONE, 2015, 10(11): e0142917.
doi: 10.1371/journal.pone.0142917 pmid: 26588091
[12] KNECHT D, KAATZ H H. Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie, 1990, 21(5): 457-468.
doi: 10.1051/apido:19900507
[13] HAN B, FANG Y, FENG M, HU H, QI Y P, HUO X M, MENG L F, WU B, LI J K. Quantitative neuropeptidome analysis reveals neuropeptides are correlated with social behavior regulation of the honeybee workers. Journal of Proteome Research, 2015, 14(10): 4382-4393.
pmid: 26310634
[14] 韩宾. 工蜂劳动分工与蜂王浆高产机理的大脑神经肽组、膜蛋白质组和膜磷酸化蛋白质组研究[D]. 北京: 中国农业科学院, 2017.
HAN B. Investigation of molecular basis associating with division of labor and high royal jelly yields by analyzing brain neuropeptidome, membrane proteome and membrane phosphoproteome[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[15] TSUCHIMOTO M, AOKI M, TAKADA M, KANOU Y, SASAGAWA H, KITAGAWA Y, KADOWAKI T. The changes of gene expression in honeybee ( Apis mellifera) brains associated with ages. Zoological Science, 2004, 21(1): 23-28.
pmid: 14745100
[16] 赵元洪, 赵晓蒙, 苏松坤. 蜜蜂全脑解剖新方法的研究. 中国蜂业, 2014, 65(Z1): 4-7.
ZHAO Y H, ZHAO X M, SU S K. New method on dissection of whole brain of honeybee. Apiculture of China, 2014, 65(Z1): 4-7. (in Chinese)
[17] ANDERS S, HUBER W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): R106.
doi: 10.1186/gb-2010-11-10-r106 pmid: 20979621
[18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[19] SCHULZ D J, BARRON A B, ROBINSON G E. A role for octopamine in honey bee division of labor. Brain, Behavior and Evolution, 2002, 60(6): 350-359.
doi: 10.1159/000067788 pmid: 12563167
[20] XU G, TENG Z W, GU G X, QI Y X, GUO L, XIAO S, WANG F, FANG Q, WANG F, SONG Q S, STANLEY D, YE G Y. Genome- wide characterization and transcriptomic analyses of neuropeptides and their receptors in an endoparasitoid wasp, Pteromalus puparum. Archives of Insect Biochemistry and Physiology, 2019, 103(2): e21625.
pmid: 31565815
[21] PRATAVIEIRA M, DA SLIVA MENEGASSO A R, ESTEVES F G, SATO K U, MALASPINA O, PALMA M S. MALDI imaging analysis of neuropeptides in africanized honeybee ( Apis mellifera) brain: Effect of aggressiveness. Journal of Proteome Research, 2018, 17(7): 2358-2369.
doi: 10.1021/acs.jproteome.8b00098 pmid: 29775065
[22] LIU Z, JI T, YIN L, SHEN J, SHEN F, CHEN G. Transcriptome sequencing analysis reveals the regulation of the hypopharyngeal glands in the honey bee, Apis mellifera carnica Pollmann. PLoS ONE, 2013, 8(12): e81001.
doi: 10.1371/journal.pone.0081001 pmid: 24339892
[23] WU Y Q, ZHENG H Q, CORONA M, PIRK C, MENG F, ZHENG Y F, HU F L. Comparative transcriptome analysis on the synthesis pathway of honey bee ( Apis mellifera) mandibular gland secretions. Scientific Reports, 2017, 7(1): 4530.
doi: 10.1038/s41598-017-04879-z pmid: 28674395
[24] STOUT K A, DUNN A R, HOFFMAN C, MILLER G W. The synaptic vesicle glycoprotein 2: Structure, function, and disease relevance. ACS Chemical Neuroscience, 2019, 10(9): 3927-3938.
pmid: 31394034
[25] MAZZUCCHELLI C, BRAMBILLA R. Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cellular and Molecular Life Sciences, 2000, 57(4): 604-611.
doi: 10.1007/PL00000722 pmid: 11130460
[26] ASTUDILLO L, THERVILLE N, COLACIOS C, SÉGUI B, ANDRIEU-ABADIE N, LEVADE T . Glucosylceramidases and malignancies in mammals. Biochimie, 2016, 125: 267-280.
doi: 10.1016/j.biochi.2015.11.009 pmid: 26582417
[27] 孙九丽, 林慧珍, 苟萍. 鞘脂代谢及其相关疾病研究进展. 生物技术, 2011, 21(5): 93-97.
SUN J L, LIN H Z, GOU P. Research progress of sphingolipid metabolism and related diseases. Biotechnology, 2011, 21(5): 93-97. (in Chinese)
[28] SHI J, ANDERSON D, LYNCH B A, CASTAIGNE J G, FOERCH P, LEBON F. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. Biochemical Society Transactions, 2011, 39(5): 1341-1347.
doi: 10.1042/BST0391341 pmid: 21936812
[29] BISOGNO T, HOWELL F, WILLIAMS G, MINASSI A, CASCIO M, LIGRESTI A, MATIAS I, SCHIANO-MORIELLO A, PAUL P, WILLIAMS E J, GANGADHARAN U, HOBBS C, DI MARZO V, DOHERTY P. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. The Journal of Cell Biology, 2003, 163(3): 463-468.
pmid: 14610053
[30] BRITTIS P A, SILVER J, WALSH F S, DOHERTY P. Fibroblast growth factor receptor function is required for the orderly projection of ganglion cell axons in the developing mammalian retina. Molecular and Cellular Neuroscience, 1996, 8(2/3): 120-128.
doi: 10.1006/mcne.1996.0051 pmid: 8954627
[31] RIDGE K D, ABDULAEV N G, SOUSA M, PALCZEWSKI K. Phototransduction: Crystal clear. Trends in Biochemical Sciences, 2003, 28(9): 479-487.
doi: 10.1016/S0968-0004(03)00172-5 pmid: 13678959
[32] STEINBRECHT R A. Odorant-binding proteins: Expression and function. Annals of the New York Academy of Sciences, 1998, 855(1): 323-332.
doi: 10.1111/nyas.1998.855.issue-1
[33] BRIAND L, SWASDIPAN N, NESPOULOUS C, BÉZIRARD V, BLON F, HUET J C, EBERT P, PERNOLLET J C. Characterization of a chemosensory protein (ASP3c) from honeybee ( Apis mellifera L.) as a brood pheromone carrier. The FEBS Journal, 2002, 269(18): 4586-4596.
[34] IOVINELLA I, DANI F, NICCOLINI A, SIMONA S, MICHELUCCI E, GAZZANO A, TURILLAZZI S, FELICIOLI A, PELOSI P. Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. Journal of Proteome Research, 2011, 10(8): 3439-3449.
doi: 10.1021/pr2000754 pmid: 21707107
[35] WU F, FENG Y L, HAN B, HU H, FENG M, MENG L F, MA C, YU L S, LI J K. Mechanistic insight into binding interaction between chemosensory protein 4 and volatile larval pheromones in honeybees ( Apis mellifera). International Journal of Biological Macromolecules, 2019, 141: 553-563.
doi: 10.1016/j.ijbiomac.2019.09.041 pmid: 31499112
[36] NIE H Y, XU S P, XIE C Q, GENG H Y, ZHAO Y Z, LI J H, HUANG W F, LIN Y, LI Z G, SU S K. Comparative transcriptome analysis of Apis mellifera antennae of workers performing different tasks. Molecular Genetics and Genomics, 2017, 293(1): 237-248.
doi: 10.1007/s00438-017-1382-5 pmid: 29043489
[37] LESNEFSKY E J, HOPPEL C L. Oxidative phosphorylation and aging. Ageing Research Reviews, 2006, 5(4): 402-433.
doi: 10.1016/j.arr.2006.04.001 pmid: 16831573
[38] 唐晓伟. 西方蜜蜂细胞色素P450单加氧酶特性初步研究[D]. 北京: 中国农业科学院, 2011.
TANG X W. Preliminary study on cytochrome P450 monooxygenase of Apis mellifera[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[39] HELVIG C, TIJET N, FEYEREISEN R, WALKER F A, RESTIFO L L. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Biochemical and Biophysical Research Communications, 2004, 325(4): 1495-1502.
doi: 10.1016/j.bbrc.2004.10.194 pmid: 15555597
[40] BOUTIN S, ALBURAK M, MERCIER P L, GIOVENAZZO P, DEROME N. Differential gene expression between hygienic and non-hygienic honeybee ( Apis mellifera L.) hives. BMC Genomics, 2015, 16(1): 500.
doi: 10.1186/s12864-015-1714-y
[41] GARCIA L, GARCIA C H, CALÁBRIA L K, DA CRUZ G C, PUENTES A S, BÁO S N, FONTES W, RICART C A, ESPINDOLA F S, DE SOUSA M V. Proteomic analysis of honey bee brain upon ontogenetic and behavioral development. Journal of Proteome Research, 2009, 8(3): 1464-1473.
pmid: 19203288
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[3] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[4] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[5] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[6] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[7] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[8] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[9] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[10] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[11] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[12] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[13] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[14] ShuLei GUO,XiaoMin LU,JianShuang QI,LiangMing WEI,Xin ZHANG,XiaoHua HAN,RunQing YUE,ZhenHua WANG,ShuangGui TIE,YanHui CHEN. Explore Regulatory Genes Related to Maize Leaf Morphogenesis Using RNA-Seq [J]. Scientia Agricultura Sinica, 2020, 53(1): 1-17.
[15] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!