Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3833-3845.doi: 10.3864/j.issn.0578-1752.2020.18.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics

ZHANG LiCui(),MA Chuan,FENG Mao,LI JianKe()   

  1. Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093
  • Received:2020-01-18 Accepted:2020-02-25 Online:2020-09-16 Published:2020-09-25
  • Contact: JianKe LI E-mail:604011320@qq.com;apislijk@126.com

Abstract:

【Objective】Royal jelly, a natural product with health-promoting effect, is rich in small-molecule bioactive compounds. The systematic analysis of the metabolite extraction from royal jelly is still lacking. This study performed metabolic profiling of royal jelly with an aim to compare the metabolite extraction efficiency using different solvents, optimize the metabolite extraction protocol, and globally identify the small-molecule compounds in royal jelly. 【Method】Metabolites in royal jelly were extracted separately using six different solvents including 50% and 80% methanol, ethanol, and acetonitrile. They were analyzed by reverse phase liquid chromatography (RPLC) and hydrophilic interaction chromatography (HILIC) each combined with Quadrupole-Exactive Orbitrap high resolution mass spectrometry (HRMS). The amount and relative standard deviation (RSD) values of metabolite features among the solvent groups were compared. Principal component analysis (PCA) was conducted on the basis of these metabolite features. The compound identification was based on mass spectrometry databases and was validated with standards. Both the RSD value comparison and clustering heatmap analysis were performed for the identified compounds. Significantly differential metabolites among the solvent groups were screened out by orthogonal partial least squares-discriminant analysis (OPLS-DA), univariate analysis (Student’s t-test) and fold change (FC). 【Result】Highly polar metabolites, including two isomeric sugars (glucose and fructose), and medium and weakly polar metabolites such as lipids were sufficiently separated using the HILIC and PRLC approach, respectively. The combination of the two separation methods enabled comprehensive detection of metabolites with different polarity in royal jelly. A total of 70 high-abundance compounds were identified, including carbohydrates, amino acids, lipids, and vitamins, with the highest difference of 8 340 times in abundance. Among them, 17 compounds were reported for the first time. The lowest number of metabolite features was obtained with acetonitrile, and a worse coverage was obtained with 80% than 50% acetonitrile. For methanol and ethanol, the number of metabolite features was higher at higher solvent concentrations. The RSD values of most metabolite features were lower than 20% in all solvent groups, and the 80% acetonitrile group had the lowest proportion within 10% RSD values compared with other solvents. The RSD values of the 70 identified compounds provided further evidence for the poor repeatability of 80% acetonitrile. The PCA score plots indicated a similar metabolic profiling from the same solvent. Differences in metabolic profiling were observed among the solvents, and the largest difference existed between 80% acetonitrile and the five other solvents. The clustering heatmap showed a lower abundance of medium and weakly polar metabolites obtained from 50% solvents and a lower abundance of highly polar metabolites including, in particular, fructose, glucose, sucrose, lysine, adenosine, choline, phosphorylcholine, and gluconic acid from 80% acetonitrile. 【Conclusion】The combination of RPLC-HRMS and HILIC-HRMS enables comprehensive and accurate detection of small-molecule compounds in royal jelly. 80% methanol or 80% ethanol is an optimal solvent for metabolite extraction from royal jelly.

Key words: royal jelly, metabolomics, sample extraction, high resolution mass spectrometry (HRMS)

Fig. 1

Overlapping of total ion chromatography (TIC) of QCs"

Fig. 2

The PCA score plots based on metabolite features"

Table 1

Tentatively identified compounds in royal jelly"

编号
No.
化合物
Compound
分子式
Molecular
formula
保留时间Retention
time (min)
分子量测量值Measured
mass
分子量理论值Theoretical
mass
质量偏差
Mass error (×10-6)
匹配度得分Match
score
平均峰面积
Average
peak area
色谱柱
Column
1 马尿酸Hippuric acidab C9H9NO3 3.34 179.05835 179.05824 0.61 <50.0 1.93E+05 RPLC
2 咖啡碱Caffeic acida C9H8O4 3.65 180.04238 180.04226 0.67 85.0 3.28E+05 RPLC
3 3,10-二羟基癸酸3,10-Dihydroxydecanoic acid C10H20O4 3.94 204.13618 204.13616 0.10 <50.0 2.24E+08 RPLC
4 辛二酸Suberic acida C8H14O4 3.95 174.08918 174.08921 -0.17 97.1 1.03E+06 RPLC
5 8-羟基辛酸8-Hydroxyoctanoic acida C8H16O3 4.05 160.10992 160.10994 -0.12 <50.0 2.26E+06 RPLC
6 壬酸Nonanoic acid C9H18O2 4.67 158.13068 158.13068 0.00 88.1 4.79E+06 RPLC
7 2-癸二酸2-Decenedioic acid C10H16O4 4.80 200.10483 200.10486 -0.15 97.0 2.42E+08 RPLC
8 癸二酸Decenedioic acida C10H18O4 4.95 202.12048 202.12051 -0.15 85.2 3.83E+08 RPLC
9 10-羟基二癸烯酸10-Hydroxy-2-decenoic acida C10H18O3 4.96 186.12558 186.12559 -0.05 97.0 5.35E+07 RPLC
10 10-羟基癸酸10-Hydroxydecanoic acida C10H20O3 5.12 188.14120 188.14124 -0.21 89.0 1.90E+07 RPLC
11 十四烷二酸Tetradecanedioic acidb C14H26O4 5.43 258.18337 258.18311 1.01 52.0 9.89E+05 RPLC
12 愈伤酸Traumatic acida C12H20O4 5.72 228.13631 228.13616 0.66 84.7 2.22E+07 RPLC
13 3-羟基癸酸3-Hydroxydecanoic acida C10H20O3 5.74 188.14121 188.14124 -0.16 89.7 8.69E+07 RPLC
14 十二烷二酸Dodecanedioic acida C12H22O4 5.85 230.15179 230.15181 -0.09 87.2 3.73E+07 RPLC
15 脂肪酸(12:1)FA (12:1) C12H22O2 5.91 198.16194 198.16198 -0.20 50.8 1.37E+07 RPLC
16 11-羟基十二烷酸
11-Hydroxydodecanoic acida
C12H24O3 5.92 216.17257 216.17254 0.14 78.3 1.24E+06 RPLC
17 12-羟基十二烷酸
12-Hydroxydodecanoic acida
C12H24O3 6.05 216.17256 216.17254 0.09 66.8 1.48E+06 RPLC
18 柯因Chrysina C15H10O4 6.51 254.05777 254.05791 -0.55 97.1 2.12E+06 RPLC
19 脂肪酸(14:2)FA (14:2) C14H24O2 6.61 224.17759 224.17763 -0.18 89.4 2.39E+06 RPLC
20 13-羟基十四烷酸13-Hydroxytetradecanoic acid C14H28O3 6.74 244.20393 244.20384 0.37 95.2 7.39E+06 RPLC
21 脂肪酸(16:1)FA (16:1) C16H30O2 7.48 254.22445 254.22458 -0.51 95.2 5.32E+05 RPLC
22 烟酰胺Nicotinamidea C6H6N2O 1.92 122.04801 122.04801 0.00 81.7 1.34E+06 HILIC
23 吡哆醛Pyridoxal C8H9NO3 2.25 167.05826 167.05824 0.12 88.5 3.04E+06 HILIC
24 泛酸Pantothenic acida C9H17NO5 3.26 219.11061 219.11067 -0.27 80.7 5.03E+07 HILIC
25 乙酰胆碱Acetylcholinea C7H15NO2 3.28 145.11018 145.11028 -0.69 95.8 1.61E+09 HILIC
26 琥珀酸Succinic acida C4H6O4 3.39 118.02665 118.02661 0.34 83.7 4.34E+07 HILIC
27 烟酸Nicotinic acida C6H5NO2 3.98 123.03209 123.03203 0.49 64.7 8.27E+05 HILIC
28 2′-脱氧腺苷2′-Deoxyadenosineab C10H13N5O3 4.01 251.10167 251.10184 -0.68 <50.0 9.55E+05 HILIC
29 腺嘌呤Adeninea C5H5N5 4.87 135.05452 135.05450 0.15 90.8 2.03E+08 HILIC
30 尿苷Uridinea C9H12N2O6 5.42 244.06970 244.06954 0.66 84.7 2.53E+07 HILIC
31 腺苷Adenosinea C10H13N5O4 5.54 267.09670 267.09675 -0.19 97.4 2.74E+08 HILIC
32 肌酐Creatininea C4H7N3O 5.58 113.05896 113.05891 0.44 <50.0 4.75E+05 HILIC
33 胞嘧啶Cytosinea C4H5N3O 5.94 111.04327 111.04326 0.09 95.5 7.44E+05 HILIC
34 胆碱Cholinea C5H13NO 6.09 103.09963 103.09971 -0.78 91.3 2.32E+08 HILIC
35 溶血磷脂酰胆碱(18:3)LysoPC (18:3)b C26H48NO7P 6.32 517.31677 517.31684 -0.14 78.6 2.04E+06 HILIC
36 N,N-二乙基乙醇胺N,N-Diethylethanolamineb C6H15NO 6.33 117.11532 117.11536 -0.34 75.7 4.21E+07 HILIC
37 N-乙酰基组胺N-Acetylhistamineab C7H11N3O 6.60 153.09019 153.09021 -0.13 91.4 4.34E+06 HILIC
38 肌苷Inosinea C10H12N4O5 6.76 268.08081 268.08077 0.15 90.0 5.05E+06 HILIC
39 次黄嘌呤Hypoxanthinea C5H4N4O 6.76 136.03854 136.03851 0.22 92.8 4.34E+06 HILIC
40 鸟嘌呤Guaninea C5H5N5O 6.93 151.04944 151.04941 0.20 93.0 2.70E+05 HILIC
41 甜菜碱Betainea C5H11NO2 7.26 117.07893 117.07898 -0.43 96.0 2.18E+07 HILIC
42 鸟苷Guanosinea C10H13N5O5 7.27 283.09147 283.09167 -0.71 98.9 1.32E+06 HILIC
43 果糖Fructosea C6H12O6 7.35 180.06350 180.06339 0.61 92.4 4.07E+08 HILIC
44 胡芦巴碱Trigonellinea C7H7NO2 7.39 137.04766 137.04768 -0.15 93.8 3.81E+07 HILIC
45 胆碱Prolinea C5H9NO2 7.61 115.06330 115.06333 -0.26 97.4 6.82E+07 HILIC
46 肉碱Carnitineab C7H15NO3 7.66 161.10514 161.10519 -0.31 82.4 1.26E+06 HILIC
47 γ-氨基丁酸γ-Aminobutyric acida C4H9NO2 7.66 103.06332 103.06333 -0.10 92.1 2.88E+06 HILIC
48 牛磺酸Taurinea C2H7NO3S 7.66 125.01462 125.01466 -0.32 82.2 1.53E+06 HILIC
49 葡萄糖Glucosea C6H12O6 7.67 180.06344 180.06339 0.28 97.8 1.30E+08 HILIC
50 吡哆胺Pyridoxamine C8H12N2O2 7.81 168.08986 168.08988 -0.12 87.4 4.25E+06 HILIC
51 β-丙氨酸β-Alaninea C3H7NO2 7.88 89.04772 89.04768 0.45 88.9 5.48E+06 HILIC
52 苏氨酸Threonic acida C4H8O5 7.99 136.03725 136.03717 0.59 55.0 7.53E+05 HILIC
53 蔗糖Sucrosea C12H22O11 8.08 342.11652 342.11621 0.91 93.6 1.71E+08 HILIC
54 葡萄糖酸Gluconic acida C6H12O7 8.24 196.05822 196.05830 -0.41 95.9 4.08E+08 HILIC
55 谷氨酸Glutamic acida C5H9NO4 8.26 147.05315 147.05316 -0.07 95.2 7.14E+06 HILIC
56 甘油3-磷酸乙醇胺
Glycerol 3-phosphoethanolamineb
C5H14NO6P 8.29 215.05582 215.05587 -0.23 <50.0 2.47E+06 HILIC
57 N3,N4-二甲基-L-精氨酸N3,N4-Dimethyl-L-arginineb C8H18N4O2 8.37 202.14296 202.14298 -0.10 90.5 8.42E+06 HILIC
58 5′-单磷酸腺苷
Adenosine 5′-monophosphatea
C10H14N5O7P 8.45 347.06309 347.06308 0.03 84.3 1.36E+07 HILIC
59 尿苷一磷酸Uridine monophosphateab C9H13N2O9P 8.52 324.03609 324.03587 0.68 86.2 8.36E+05 HILIC
60 N6,N6,N6-三甲基-L-赖氨酸N6,N6,N6-Trimethyl-L-lysineb C9H20N2O2 8.53 188.15221 188.15248 -1.44 56.5 5.95E+06 HILIC
61 天冬氨酸Aspartic acida C4H7NO4 8.54 133.03753 133.03751 0.15 90.5 1.72E+06 HILIC
62 N6-甲基-L-赖氨酸N6-Methyl-L-lysineb C7H16N2O2 8.59 160.12116 160.12118 -0.12 87.6 1.44E+06 HILIC
63 1-甲基组氨酸1-Methylhistidineab C7H11N3O2 8.71 169.08506 169.08513 -0.41 91.2 2.11E+06 HILIC
64 组氨酸Histidinea C6H9N3O2 8.73 155.06952 155.06948 0.26 98.3 1.36E+07 HILIC
65 赖氨酸Lysinea C6H14N2O2 8.81 146.10548 146.10553 -0.34 90.2 7.32E+07 HILIC
66 鸟氨酸Ornithinea C5H12N2O2 8.86 132.08986 132.08988 -0.15 92.8 8.47E+05 HILIC
67 鸟苷单磷酸Guanosine monophosphateab C10H14N5O8P 8.87 363.05817 363.05800 0.47 78.1 2.64E+06 HILIC
68 烟酰胺腺嘌呤二核苷酸
Nicotinamide adenine dinucleotideab
C21H27N7O14P2 8.94 663.10950 663.10912 0.57 94.2 4.80E+05 HILIC
69 UDP-N-乙酰氨基葡萄糖UDP-N-Acetylglucosamineb C17H27N3O17P2 9.08 607.08223 607.08157 1.09 91.0 1.29E+06 HILIC
70 磷酸胆碱Phosphorylcholineab C5H14NO4P 9.26 183.06600 183.06604 -0.22 97.5 7.18E+07 HILIC

Fig. 3

The relative standard deviation of metabolite features"

Fig. 4

The relative standard deviation of identified compounds"

Fig. 5

Differential metabolites between the 80% acetonitrile and the five other solvents"

Fig. 6

The clustering heatmap of identified compounds"

[1] FUJTA T, KOZUKA-HATA H, AO-KONDO H, KUNIEDA T, OYAMA M, KUBO T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research, 2013,12(1):404-411.
doi: 10.1021/pr300700e pmid: 23157659
[2] RAMADAN M F, AL-GHAMDI A. Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of Functional Foods, 2012,4(1):39-52.
doi: 10.1016/j.jff.2011.12.007
[3] AHMAD S, CAMPOS M G, FRATINI F, ALTAYE S Z, LI J K. New insights into the biological and pharmaceutical properties of royal jelly. International Journal of Molecular Sciences, 2020,21:382.
[4] FRATINI F, CILIA G, MANCINI S, FELICIOLI A. Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research, 2016,192:130-141.
doi: 10.1016/j.micres.2016.06.007 pmid: 27664731
[5] GIKA H G, THEODORIDIS G A, WILSON I D. Metabolic profiling: Status, challenges, and perspective// Methods in Molecular Biology, 2018,1738:3-13.
doi: 10.1007/978-1-0716-0676-6_1 pmid: 32529359
[6] KIM S, KIM J, YUN E J, KIM K H. Food metabolomics: From farm to human. Current Opinion in Biotechnology, 2016,37:16-23.
doi: 10.1016/j.copbio.2015.09.004 pmid: 26426959
[7] VUCKOVIC D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2012,403(6):1523-1548.
doi: 10.1007/s00216-012-6039-y pmid: 22576654
[8] KIM H K, VERPOORTE R. Sample preparation for plant metabolomics. Phytochemical Analysis, 2010,21(1):4-13.
doi: 10.1002/pca.1188 pmid: 19904733
[9] T’KINDT R, DE VEYLDER L, STORME M, DEFORCE D, VAN BOCXLAER J. LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC-MS procedure parameters. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2008,871(1):37-43.
[10] 李思钒, 胡朝阳, 宋越, 詹舜安, 石建新. 不同提取液配方对水稻种子代谢组学研究的影响. 中国农机化学报, 2017,38(2):108-113, 153.
LI S F, HU C Y, SONG Y, ZHAN S A, SHI J X. Effects of different extraction methods on metabolomics analysis of rice seeds. Journal of Chinese Agricultural Mechanization, 2017,38(2):108-113, 153. (in Chinese)
[11] ISIDOROV V A, BAKIER S, GRZECH I. Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2012,885/886:109-116.
doi: 10.1016/j.jchromb.2011.12.025
[12] PINA A, BEGOU O, KANELIS D, GIKA H, KALOGIANNIS S, TANANAKI C, THEODORIDIS G, ZOTOU A. Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography-tandem mass spectrometry . Journal of Chromatography A, 2018,1531:53-63.
doi: 10.1016/j.chroma.2015.10.035 pmid: 26518491
[13] VIRGILIOU C, KANELIS D, PINA A, GIKA H, TANANAKI C, ZOTOU A, THEODORIDIS G. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of royal jelly . Journal of Chromatography A, 2020,1616:460783.
doi: 10.1016/j.chroma.2019.460783 pmid: 31952813
[14] WU L M, ZHOU J H, XUE X F, LI Y, ZHAO J. Fast determination of 26 amino acids and their content changes in royal jelly during storage using ultra-performance liquid chromatography. Journal of Food Composition and Analysis, 2009,22(3):242-249.
doi: 10.1016/j.jfca.2008.10.022
[15] BOSELLI E, CABONI M F, SABATINI A G, MARCAZZAN G L, LERCKER G. Determination and changes of free amino acids in royal jelly during storage. Apidologie, 2003,34(2):129-137.
[16] WYTRYCHOWSKI M, CHENAVAS S, DANIELE G, CASABIANCA H, BATTEAU M, GUIBERT S, BRION B. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. Journal of Food Composition and Analysis, 2013,29(2):126-133.
[17] SESTA G. Determination of sugars in royal jelly by HPLC. Apidologie, 2006,37(1):84-90.
doi: 10.1051/apido:2005061
[18] PYRZANOWSKA J, PIECHAL A, BLECHARZ-KLIN K, JONIEC- MACIEJAK I, GRAIKOU K, CHINOU I, WIDY-TYSZKIEWICZ E. Long-term administration of Greek royal jelly improves spatial memory and influences the concentration of brain neurotransmitters in naturally aged Wistar male rats. Journal of Ethnopharmacology, 2014,155(1):343-351.
doi: 10.1016/j.jep.2014.05.032
[19] PRESOTO A E F, RIOS M D G, DE ALMEIDA-MURADIAN L B. Simultaneous high performance liquid chromatographic analysis of vitamins B1, B2 and B6 in royal jelly. Journal of the Brazilian Chemical Society, 2004,15(1):136-139.
doi: 10.1590/S0103-50532004000100021
[20] CIULU M, FLORIS I, NURCHI V M, PANZANELLI A, PILO M I, SPANO N, SANNA G. HPLC determination of pantothenic acid in royal jelly. Analytical Methods, 2013,5(23):6682-6685.
doi: 10.1039/c3ay41284a
[21] WU L M, CHEN L Z, SELVARAJ J N, WEI Y, WANG Y, LI Y, ZHAO J, XUE X F. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly . Food Chemistry, 2015,173:1111-1118.
doi: 10.1016/j.foodchem.2014.10.137 pmid: 25466132
[22] WU L M, WEI Y, DU B, CHEN L Z, WANG Y, LI Y, ZHAO J, XUE X F. Freshness determination of royal jelly by analyzing decomposition products of adenosine triphosphate . LWT-Food Science and Technology, 2015,63(1):504-510.
[23] DUNN W B, BROADHURST D, BEGLEY P, ZELENA E, FRANCIS-MCINTYRE S, ANDERSON N, BROWN M, KNOWLES J D, HALSALL A, HASELDEN J N, NICHOLLS A W, WILSON I D, KELL D B, GOODACRE R, The Human Serum Metabolome (HUSERMET) Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry . Nature Protocols, 2011,6(7):1060-1083.
doi: 10.1038/nprot.2011.335 pmid: 21720319
[24] BAJAD S U, LU W Y, KIMBALL E H, YUAN J, PETERSON C, RABINOWITZ J D. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography- tandem mass spectrometry. Journal of Chromatography A, 2006,1125(1):76-88.
doi: 10.1016/j.chroma.2006.05.019 pmid: 16759663
[25] CUBBON S, ANTONIO C, WILSON J, THOMAS-OATES J. Metabolomic applications of HILIC-LC-MS. Mass Spectrometry Reviews, 2010,29(5):671-684.
doi: 10.1002/mas.20252 pmid: 19557839
[26] SPAGOU K, TSOUKALI H, RAIKOS N, GIKA H, WILSON I D, THEODORIDIS G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. Journal of Separation Science, 2010,33(6/7):716-727.
[27] TANG D Q, ZOU L, YIN X X, ONG C N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS . Mass Spectrometry Reviews, 2016,35(5):574-600.
doi: 10.1002/mas.21445 pmid: 25284160
[28] BRUCE S J, TAVAZZI I, PARISOD V, REZZI S, KOCHHAR S, GUY P A. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 2009,81(9):3285-3296.
doi: 10.1021/ac8024569 pmid: 19323527
[29] KIM S, LEE D Y, WOHLGEMUTH G, PARK H S, FIEHN O, KIM K H. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Analytical Chemistry, 2013,85(4):2169-2176.
doi: 10.1021/ac302881e
[30] AA J, TRYGG J, GULLBERG J, JOHANSSON A I, JONSSON P, ANTTI H, MARKLUND S L, MORITZ T. Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 2005,77(24):8086-8094.
doi: 10.1021/ac051211v pmid: 16351159
[31] 夏广辉, 沈伟健, 余可垚, 吴斌, 张睿, 沈崇钰, 赵增运, 卞筱泓, 许激扬. 气相色谱-负化学源质谱法测定蜂蜜和王浆中4种杀虫剂的残留. 色谱, 2014,32(7):741-745.
doi: 10.3724/SP.J.1123.2014.01043
XIA G H, SHEN W J, YU K Y, WU B, ZHANG R, SHEN C Y, ZHAO Z Y, BIAN X H, XU J Y. Determination of four insecticide residues in honey and royal jelly by gas chromatography-negative chemical ionization mass spectrometry. Chinese Journal of Chromatographyi, 2014,32(7):741-745. (in Chinese)
doi: 10.3724/SP.J.1123.2014.01043
[32] ALTAYE S Z, MENG L F, LI J K. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee ( Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 2019,50(4):436-453.
doi: 10.1007/s13592-019-00656-1
[33] CAO L F, ZHENG H Q, PIRK C W W, HU F L, XU Z W. High royal jelly-producing honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China. Journal of Economic Entomology, 2016,109(2):510-514.
doi: 10.1093/jee/tow013 pmid: 26921226
[34] HU H, BEZABIH G, FENG M, WEI Q H, ZHANG X F, WU F, MENG L F, FANG Y, HAN B, MA C, LI J K. In-depth proteome of the hypopharyngeal glands of honeybee workers reveals highly activated protein and energy metabolism in priming the secretion of royal jelly. Molecular and Cellular Proteomics, 2019,18(4):606-621.
doi: 10.1074/mcp.RA118.001257 pmid: 30617159
[35] GIKA H G, THEODORIDIS G A, WINGATE J E, WILSON I D. Within-day reproducibility of a HPLC-MS-based method for metabonomic analysis: Application to human urine. Journal of Proteome Research, 2007,6(8):3291-3303.
doi: 10.1021/pr070183p pmid: 17625818
[36] JOHANNINGSMEIER S D, HARRIS G K, KLEVORN C M. Metabolomic technologies for improving the quality of food: Practice and promise. Annual Review of Food Science and Technology, 2016,7:413-438.
doi: 10.1146/annurev-food-022814-015721 pmid: 26772413
[37] WANT E J, WILSON I D, GIKA H, THEODORIDIS G, PLUMB R S, SHOCKCOR J, HOLMES E, NICHOLSON J K. Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 2010,5(6):1005-1018.
doi: 10.1038/nprot.2010.50 pmid: 20448546
[38] GIKA H G, THEODORIDIS G A, VRHOVSEK U, MATTIVI F. Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2012,1259:121-127.
pmid: 24369998
[39] ZHAO Y Z, LI Z G, TIAN W L, FANG X M, SU S K, PENG W J. Differential volatile organic compounds in royal jelly associated with different nectar plants. Journal of Integrative Agriculture, 2016,15(5):1157-1165.
doi: 10.1016/S2095-3119(15)61274-6
[40] ZHENG H Q, HU F L, DIETEMANN V. Changes in composition of royal jelly harvested at different times: Consequences for quality standards. Apidologie, 2011,42(1):39-47.
doi: 10.1051/apido/2010033
[41] CREYDT M, ARNDT M, HUDZIK D, FISCHER M. Plant metabolomics: Evaluation of different extraction parameters for nontargeted UPLC-ESI-QTOF-mass spectrometry at the example of white Asparagus officinalis. Journal of Agricultural and Food Chemistry, 2018,66(48):12876-12887.
doi: 10.1021/acs.jafc.8b06037 pmid: 30411896
[42] WANT E J O’MAILLE G, SMITH C A, BRANDON T R, URITBOONTHAI W, QIN C, TRAUGER S A, SIUZDAK G. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Analytical Chemistry, 2006,78(3):743-752.
doi: 10.1021/ac051312t pmid: 16448047
[43] XUE X F, ZHOU J H, WU L M, HU F L, ZHAO J. HPLC determination of adenosine in royal jelly. Food Chemistry, 2009,115(2):715-719.
doi: 10.1016/j.foodchem.2008.12.003
[44] BONDIA-PONS I, SAVOLAINEN O, TÖRRÖNEN R, MARTINEZ J A, POUTANEN K, HANHINEVA K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non- targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 2014,63:132-138.
doi: 10.1016/j.foodres.2014.01.067
[45] HRBEK V, REKTORISOVA M, CHMELAROVA H, OVESNA J, HAJSLOVA J. Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry. Journal of Food Composition and Analysis, 2018,67:19-28.
doi: 10.1016/j.jfca.2017.12.020
[46] DIAZ R, POZO O J, SANCHO J V, HERNANDEZ F. Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry, 2014,157:84-93.
doi: 10.1016/j.foodchem.2014.02.009
[47] YANSHOLE V V, SNYTNIKOVA O A, KIRYUTIN A S, YANSHOLE L V, SAGDEEV R Z, TSENTALOVICH Y P. Metabolomics of the rat lens: A combined LC-MS and NMR study. Experimental Eye Research, 2014,125:71-78.
doi: 10.1016/j.exer.2014.05.016
[48] MEDIANI A, ABAS F, MAULIDIANI M, KHATIB A, TAN C P, ISMAIL I S, SHAARI K, ISMAIL A. Characterization of metabolite profile in Phyllanthus niruri and correlation with bioactivity elucidated by nuclear magnetic resonance based metabolomics. Molecules, 2017,22(6):902.
doi: 10.3390/molecules22060902
[49] MEDIANI A, ABAS F, KHATIB A, TAN C P, ISMAIL I S, SHAARI K, ISMAIL A, LAJIS N H. Phytochemical and biological features of Phyllanthus niruri and Phyllanthus urinaria harvested at different growth stages revealed by 1H NMR-based metabolomics. Industrial Crops and Products, 2015,77:602-613.
doi: 10.1016/j.indcrop.2015.09.036
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[7] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[8] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
[9] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
[10] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[11] GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102.
[12] CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis [J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
[13] XU YanYang,YAO GuiXiao,LIU PingXiang,ZHAO Jie,WANG XinLu,SUN JunMao,QIAN YongZhong. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176.
[14] ZHANG Bo,WU XiaoBo,LIAO ChunHua,HE XuJiang,YAN WeiYu,ZENG ZhiJiang. Research and Application of Honeybee Non-Grafting Larvae Technology [J]. Scientia Agricultura Sinica, 2018, 51(22): 4387-4394.
[15] LI Shuang, LI JianKe. Comparative Analysis of Phosphoproteome Between Mandibular Glands of High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2017, 50(23): 4656-4670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!