Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 111-122.doi: 10.3864/j.issn.0578-1752.2022.01.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil

LU Peng(),LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun()   

  1. College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2020-12-23 Accepted:2021-02-20 Online:2022-01-01 Published:2022-01-07
  • Contact: XueYun YANG E-mail:lupeng8602@163.com;xueyunyang@hotmail.com

Abstract:

【Objective】 The influence of organic carbon on the contents and transformation of soil in organic phosphorus fractions were investigated, which can help to formulate soil managemental strategies whereby to improve phosphorus use efficiency in tier soil.【Method】 The soil samples were collected and selected with a gradient of organic carbon levels but similar in Olsen-P (ranges from 17.41 mg·kg-1to 18.72 mg·kg-1) under winter wheat summer maize cropping in the Guanzhong Plain of Shaanxi Province. The organic carbon contents of the selected soil samples were 6.38, 8.34, 10.17, 11.95, 13.64 and 15.74 g·kg-1, respectively. Then the soil inorganic phosphorus fractions (dicalcium phosphate (Ca2-P), octa-calcium phosphate (Ca8-P), apatite (Ca10-P), aluminum bounded phosphate (Al-P), iron bounded phosphate (Fe-P) and occluded phosphate (O-P)) were analyzed with the phosphorus fractionation procedure proposed by Chang & Jackson and modified by Jiang and Gu.【Result】 The results showed that organic carbon played an important role in transformation of soil inorganic phosphorus in the winter wheat-summer maize cropping in Guanzhong Plain of Shaanxi Province. The soil Ca2-P, Ca8-P, Al-P, Fe-P, O-P fractions, moderately labile P (Ca8-P, Al-P and Fe-P), and stable P (O-P and Ca10-P) pools were increased significantly and linearly with increasing soil organic carbon, whereas Ca10-P remained unchanged. The relative contents of labile-P (Ca2-P), moderately labile P (mainly Al-P) were significantly and positively correlated with SOC content, but stable P (mainly Ca10-P) showed significant negative correlation with SOC. Soil Olsen-P increased significantly and linearly with increasing stable P.【Conclusion】 Under the similar soil Olsen-P and total phosphorus conditions, soil organic carbon improved the availability of soil phosphorus mainly through promoting the conversion of stable P to moderately labile P and labile P in the soil, increasing the ratio of available phosphorus to inorganic phosphorus, and improving the availability of soil phosphorus. The results implied that improvement of soil fertility (SOC) could promote the activation and utilization of legacy phosphorus in soil.

Key words: fractionation of inorganic phosphorus, winter wheat-summer maize cropping, tier soil, phosphorus availability, inorganic phosphorus transformation

Table 1

Some soil chemical properties of investigated tier soil collected in Guanzhong Plain of Shaanxi Province"

土壤样品
Soil sample
有机碳含量
SOC (g·kg-1)
有效磷含量
Olsen-P (mg·kg-1)
酸度
(1﹕2.5土﹕水)
pH
全磷含量
Total P (g·kg-1)
S1 6.38f 17.41a 7.16 0.857
S2 8.34e 17.52a 7.54 1.030
S3 10.17d 17.55a 7.57 1.014
S4 11.95c 17.20a 7.61 0.990
S5 13.64b 18.10a 7.85 1.012
S6 15.74a 18.72a 7.94 1.067

Fig. 1

Content of inorganic phosphorus fractions and pools in tier soil with equivalent soil Olsen-P but a gradient of organic carbon level Different lower-case letters on top of the bar represent significant difference of the phosphorus fraction between the soil samples in question (P≤5%). Moderately labile P refers to the summation of Ca8-P, Al-P and Fe-P; Stable P means the summation of Ca10-P and Occluded P (O-P). The same as Fig. 2, Fig. 3 and Fig. 4"

Fig. 2

Correlation of the content of soil inorganic phosphorus (fractions) pools as a function of the concentration of soil organic carbon in soils with equivalent Olsen-P but a gradient of organic carbon level in a tier soil"

Fig. 3

The relationship between the relative content of inorganic phosphorus (fractions) pools (defined as the proportion of a given P form/pool to the total inorganic P) and the content of soil organic carbon in a tier soil"

Fig. 4

Soil Olsen-P as a function of inorganic phosphorus pools based on their availability in soils with equivalent Olsen-P content but a gradient organic carbon level in a tier soil Labile P refers to Ca2-P"

Table 2

The correlation between the soil chemical properties and different forms of inorganic phosphorus in soils with a gradient organic carbon level of a tier soil"

Ca2-P Ca8-P Ca10-P Al-P Fe-P O-P SOC Olsen-P Total P pH
Ca2-P 1 0.624** 0.363 0.841** 0.652** 0.827** 0.923** 0.388 0.344 0.356
Ca8-P 1 0.237 0.591** 0.621** 0.469* 0.639** 0.114 0.466 0.208
Ca10-P 1 0.438 0.077 0.396 0.396 0.464 0.749** -0.015
Al-P 1 0.412 0.854** 0.854** 0.392 0.470* 0.439
Fe-P 1 0.585* 0.639** 0.049 0.199 0.278
O-P 1 0.907** 0.326 0.307 0.410
SOC 1 0.401 0.314 0.453
Olsen-P 1 0.103 -0.008
Total P 1 0.015
pH 1
[1] ELSER J J, BRACKEN M E S, CLELAND E E, GRUNER D S, HARPOLE W S, HILLEBRAND H, NGAI J T, SEABLOOM E W, SHURINJ B, SMITH J E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10(12): 1135-1142.
[2] 陆文龙, 曹一平, 张福锁. 根分泌的有机酸对土壤磷和微量元素的活化作用. 应用生态学报, 1999, 10(3): 379-382.
LU W L, CAO Y P, ZHANG F S. Role of root-exuded organic acids in mobilization of soil phosphorus and micronutrients. Chinese Journal of Applied Ecology, 1999, 10(3): 379-382.(in Chinese)
[3] 李想, 刘艳霞, 刘益仁, 徐阳春. 无机有机肥磷配施对作物产量及土壤磷形态的影响. 土壤, 2013, 45(4): 641-647.
LI X, LIU Y X, LIU Y R, XU Y C. Interactive effects of combining inorganic and organic fertilizers on grain yields and phosphorus forms. Soils, 2013, 45(4): 641-647. (in Chinese)
[4] MACDONALD G K, BENNETT E M, POTTER P A, RAMANKUTTY N. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086-3091.
[5] 常艳丽, 刘俊梅, 李玉会, 孙本华, 张树兰, 杨学云. 陕西关中平原小麦/玉米轮作体系施肥现状调查与评价. 西北农林科技大学学报(自然科学版), 2014, 42(8): 51-61.
CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y. Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong Plain, Shaanxi Province. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(8): 51-61. (in Chinese)
[6] AULAKH M S, GARG A K, KABBA B S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics. Soil Use & Management, 2010, 23(4): 417-427.
[7] 向春阳, 马艳梅, 田秀平. 长期耕作施肥对白浆土磷组分及其有效性的影响. 作物学报, 2005(1): 48-52.
XIANG C Y, MA Y M, TIAN X P. Effects of long-term culture and fertilization on the contents of forms of phosphorus and their availability in Albic soil. Acta Agricultura Sinica, 2005(1): 48-52. (in Chinese)
[8] 李若楠, 王政培, BATBAYAR Javkhlan, 张东杰, 张树兰, 杨学云. 等有机质塿土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865.
LI R N, WANG Z P, BATBAVAR J, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. (in Chinese)
[9] 于淑芳, 张漱铭. 石灰性土壤中无机磷形态和有效性的研究. 中国土壤与肥料, 1992(3): 1-4.
YU S F, ZHANG S M. Study on the form and availability of inorganic phosphorus in calcareous soil. Soil and Fertilizer Sciences in China, 1992(3): 1-4. (in Chinese)
[10] 沈仁芳, 蒋柏藩. 石灰性土壤无机磷的形态分布及其有效性. 土壤学报, 1992, 29(1): 80-86.
SHEN R F, JIANG B F. Distribution and availability of various forms of inorganic phosphorus in calcareous soils. Acta Pedologica Sinca, 1992, 29(1): 80-86. (in Chinese)
[11] UK R E S. Report of the Rothamsted Experimental Station for 1969. Nature, 1965, 184(4689): 781-782.
doi: 10.1038/184781a0
[12] 郭智芬, 涂书新, 李晓华, 潘勇, 张宜春. 石灰性土壤不同形态无机磷对作物磷营养的贡献. 中国农业科学, 1997, 30(1): 26-32.
GUO Z F, TU S X, LI X H, PAN Y, ZHANG Y C. Contribution of different forms of inorganic phosphates in calcareous soils to phosphorus nutrition of crops. Scientia Agricultura Sinica, 1997, 30(1): 26-32. (in Chinese)
[13] BOL R, JULICH D, BRODLIN D, ROLAND B, DORIT J, DOMINIK B, JAN S, KLAUS K, MICHAELA A D, SANDRA S, THOMAS Z, DANIELA M, FRIEDHELM B, HEIKE P, STEFAN H, MARKUS W, WULF A, FRIEDERIKE L, YAKOV K, KARL H E, NINA G, ERWIN K, ANNA M, CAROLA W, DAVID U, JAKOB S, KLAUS W, BEI W, FRANK H. Dissolved and colloidal phosphorus fluxes in forest ecosystems-An almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 2016(179): 425-438.
[14] 刘建玲, 张福锁. 小麦-玉米轮作长期肥料定位试验中土壤磷库的变化: Ⅰ.磷肥产量效应及土壤磷库、无机磷库的变化. 应用生态学报, 2000, 11(3): 365-368.
LIU J L, ZHANG F S. Dynamics of soil P pool in a long-term fertilizing experiment of wheat -maize rotation.Ⅰ. Crop yield effect of fertilizer P and dynamics of soil total P and inorganic P. Chinese Journal of Applied Ecology, 2000, 11(3): 365-368. (in Chinese)
[15] 展晓莹, 任意, 张淑香, 康日峰. 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015, 48(23): 4728-4737.
ZHAN X Y, REN Y, ZHANG S X, KANG R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. (in Chinese)
[16] LUO L, MA Y B, SANDERS R L, XU C, LI J, SATISH C B M. Phosphorus speciation and transformation in long-term fertilized soil: Evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226.
doi: 10.1007/s10705-017-9830-5
[17] 周宝库, 张喜林. 长期施肥对黑土磷素积累、形态转化及其有效性影响的研究. 植物营养与肥料学报, 2005, 11(2): 143-147.
ZHOU B K, ZHANG X L. Effect of long-term phosphorus fertilization on the phosphorus accumulation and distribution in black soil and its availability. Journal of Plant Nutrition and Fertilizer, 2005, 11(2): 143-147. (in Chinese)
[18] 王永和, 曹翠玉, 史瑞和. 有机肥对石灰性土壤无机磷组分的影响. 土壤, 1996, 28(4): 180-182.
WANG Y H, CAO C Y, SHI R H. Effect of organic fertilizer on inorganic phosphorus components in calcareous soil. Soils, 1996, 28(4): 180-182. (in Chinese)
[19] WU J S, HUANG M, XIAO H A. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant & Soil, 2007, 290(1/2): 333-342.
[20] 安志装, 介晓磊, 李有田, 白由路, 魏义长, 刘世亮. 不同水分和添加物料对石灰性土壤无机磷形态转化的影响. 植物营养与肥料学报, 2002, 8(1): 58-64.
AN Z Z, JIE X L, LI Y T, BAI Y L, WEI Y C, LIU S L. Effect of different water and material on inorganic phosphorus transformation in calcareous soil. Journal of Plant Nutrition and Fertilizer, 2002, 8(1): 58-64. (in Chinese)
[21] WILLIAMS J D H, SYERS J K, HARRIS R F, ARMSTRONG D E. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Science Society of America Journal, 1971, 35(2): 250-255.
doi: 10.2136/sssaj1971.03615995003500020023x
[22] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2005.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2005. (in Chinese)
[23] 蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究. 中国农业科学, 1989, 22(3): 58-66.
JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989, 22(3): 58-66. (in Chinese)
[24] 韩晓日, 马玲玲, 王晔青, 王颖, 战秀梅. 长期定位施肥对棕壤无机磷形态及剖面分布的影响. 水土保持学报, 2007, 21(4): 51-55.
HAN X R, MA L L, WANG Y Q, WANG Y, ZHAN X M. Effects of long-term fertilization on inorganic phosphorus forms and profile distribution in Brown soil. Journal of Soil and Water Conservation, 2007, 21(4): 51-55. (in Chinese)
[25] 韩晓飞, 高明, 谢德体, 王子芳, 陈晨. 长期定位施肥条件下紫色土无机磷形态演变研究. 草业学报, 2016, 25(4): 63-72.
HAN X F, GAO M, XIE D T, WANG Z F, CHEN C. Inorganic phosphorus in a regosol (purple) soil under long term phosphorus fertilization. Acta Prataculturae Sinica, 2016, 25(4): 63-72. (in Chinese)
[26] 宋付朋. 长期施磷石灰性土壤无机磷形态特征及其有效性研究[D]. 泰安: 山东农业大学, 2006.
SONG F P. Charicteristics and availability of inorganic phosphate fractions in calcareous soils under long-term fertilization[D]. Taian: Shandong Agricultural University, 2006. (in Chinese)
[27] 谢林花. 长期不同施肥对石灰性土壤磷形态转化及剖面分布的影响[D]. 杨凌: 西北农林科技大学, 2001.
XIE L H. Effects on long-term different fertilization on calcareous soil phosphorus morphology transformation and soil profile distribution[D]. Yangling: Northwest A&F University, 2001. (in Chinese)
[28] WANG R J, ZHOU J X, XIE J Y, KHAN A, YANG X Y, SUN B H, ZHANG S L. Carbon sequestration in irrigated and rain-fed cropping systems under long-term fertilization regimes. Journal of Soil Science and Plant Nutrition, 2020, 20(6). DOI: 10.1007/s42729-020-00181-6.
doi: 10.1007/s42729-020-00181-6
[29] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENE O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1/2): 27-37.
doi: 10.1007/s11104-013-1696-y
[30] TANG X, M Y B, HAO X Y, LI X Y, LI J M, HUANG S M, YANG X Y. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 2009, 323(1/2): 143-151.
doi: 10.1007/s11104-009-9919-y
[31] COOKE G W. Long-term fertilizer experiments in England. Agronomy, 1976, 27: 503-536.
[32] 章永松, 林咸永, 罗安程, 苏玲. 有机肥(物)对土壤中磷的活化作用及机理研究──Ⅰ.有机肥(物)对土壤不同形态无机磷的活化作用. 植物营养与肥料学报, 1998, 4(2): 145-150.
ZHANG Y S, LIN X Y, LUO A C, SU L. Studies on activation of phosphorus by organic manure in soils and its mechanisms. Ⅰ. Effect of organic manure (matter) on activation to different phosphate in soils. Plant Nutrition and Fertilizer Science, 1998, 4(2): 145-150. (in Chinese)
[33] 黄敏, 尹维文, 余婉霞, 周开来, 黄永炳, 石晓娟. 两种外源性有机物料对土壤磷变化的影响. 农业环境科学学报, 2015, 34(3): 501-508.
HUANG M, YIN W W, YU W X, ZHOU K L, HUANG Y B, SHI X J. Effects of two organic amendments on phosphorus transformation in greenhouse soil. Journal of Agro-Environment Science, 2015, 34(3): 501-508. (in Chinese)
[34] 陈安磊, 王凯荣, 谢小立, 刘迎新. 不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应. 应用生态学报, 2007, 18(12): 2733-2738.
CHEN A L, WANG K R, XIE X L, LIU Y X. Responses of microbial biomass P to the changes of organic C and P in paddy soils under different fertilization systems. Chinese Journal of Applied Ecology, 2007, 18(12): 2733-2738. (in Chinese)
[35] 李蕴慧. 增施有机物料黑土磷素形态转化规律研究[D]. 长春: 吉林农业大学, 2017.
LI Y H. The changes of phosphorous fractions in black soil applied organic materials[D]. Changchun: Jilin Agricultural University, 2017. (in Chinese)
[36] 赵晓齐, 鲁如坤. 有机肥对土壤磷素吸附的影响. 土壤学报, 1991, 28(1): 7-15.
ZHAO X Q, LU R K. Effects of organic manure on soil phosphorus adsorption. Acta Pedologica Sinica, 1991, 28(1): 7-15. (in Chinese)
[37] 杨毅, 赵文婷. 不同施肥制度对北方石灰性土壤无机磷形态影响研究. 灌溉排水学报, 2015, 34(7): 28-33.
YANG Y, ZHAO W T. Influence of inorganic phosphorus forms on calcareous soil under different fertilization systems in Northern China. Journal of Irrigation and Drainage, 2015, 34(7): 28-33. (in Chinese)
[38] 王伯仁, 徐明岗, 文石林, 李冬初. 长期施肥对红壤旱地磷组分及磷有效性的影响. 湖南农业大学学报(自然科学版), 2002, 28(4): 293-297.
WANG B R, XU M G, WEN S L, LI D C. The effects of long term fertilization on chemical fractions and availability of inorganic phosphate in red soil upland. Journal of Hunan Agricultural University (Natural Sciences), 2002, 28(4): 293-297. (in Chinese)
[39] 王晔青, 韩晓日, 马玲玲, 王玲莉, 赵立勇, 李鑫. 长期不同施肥对棕壤微生物量磷及其周转的影响. 植物营养与肥料学报, 2008, 14(2): 322-327.
WANG H Q, HAN X R, MA L L, WANG L L, ZHAO L Y, LI X. Effect of long-term fertilization on the content and turnover of soil microbial biomass P. Plant Nutrition and Fertilizer Science, 2008, 14(2): 322-327. (in Chinese)
[40] 于群英, 李孝良, 李粉茹, 汪建飞. 安徽省土壤无机磷组分状况及施肥对土壤磷素的影响. 水土保持学报, 2006, 20(4): 57-61.
YU Q Y, LI X L, LI F R, WANG J F. Contents of soil inorganic phosphorus fractions in Anhui Province and effects of fertilization on soil phosphorus. Journal of Soil and Water Conservation, 2006, 20(4): 57-61. (in Chinese)
[41] 林国林, 云鹏, 陈磊, 高翔, 张金涛, 卢昌艾, 刘荣乐, 汪洪. 小麦季磷肥施用对后作玉米的效果及土壤中无机磷形态转化的影响. 土壤通报, 2011(3): 676-680.
LIN G L, YUN P, CHEN L, GAO X, ZHANG J T, LU C A, LIU R L, WANG H. Residual effects of phosphate fertilizer applied to winter wheat on following maize and transformation of phosphate fractions in soil. Chinese Journal of Soil Science, 2011(3): 676-680. (in Chinese)
[42] 刘建玲, 张福锁. 小麦-玉米轮作长期肥料定位试验中土壤磷库的变化. Ⅱ. 土壤Olsen-P及各形态无机磷的动态变化. 应用生态学报, 2000, 11(3): 365-368.
LIU J L, ZHANG F S. Dynamics of soil P pool in a long-term fertilizing experiment of wheat-maize rotation. Ⅱ. Dynamics of soil Olsen-P and inorganic P. Chinese Journal of Applied Ecology, 2000, 11(3): 365-368. (in Chinese)
[43] 陆文龙, 张福锁, 曹一平, 王敬国. 低分子量有机酸对石灰性土壤磷吸附动力学的影响. 土壤学报, 1999, 36(2): 3-5.
LU W L, ZHANG F S, CAO Y P, WANG J G. Influence of low- molecular weight organic acids on kinetics of phosphorus adsorption by soils. Acta Pedologica Sinica, 1999, 36(2): 3-5. (in Chinese)
[44] 余婉霞. 设施菜地土壤磷与有机碳的转化及其相互关系[D]. 武汉: 武汉理工大学, 2014.
YU W X. Transformation of phosphorus and organic carbon and their interaction in greenhouse vegetable soil[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese)
[45] 林治安, 谢承陶, 张振山, 张雪瑶. 石灰性土壤无机磷形态、转化及其有效性研究. 土壤通报, 1997, 28(6): 274-276.
LIN Z A, XIE C T, ZHANG Z S, ZHANG X Y. Study on the form, transformation and effectiveness of inorganic phosphorus in limestone soil. Chinese Journal of Soil Science, 1997, 28(6): 274-276. (in Chinese)
[1] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[2] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[3] ZHOU BaoYuan, MA Wei, SUN XueFang, GAO ZhuoHan, DING ZaiSong, LI CongFeng, ZHAO Ming. Effects of Different Sowing and Harvest Dates of Winter Wheat- Summer Maize Under Double Cropping System on the Annual Climate Resource Distribution and Utilization [J]. Scientia Agricultura Sinica, 2019, 52(9): 1501-1517.
[4] LI RuoNan,WANG ZhengPei,BATBAYAR Javkhlan,ZHANG DongJie,ZHANG ShuLan,YANG XueYun. Relationship Between Soil Available Phosphorus and Inorganic Phosphorus Forms Under Equivalent Organic Matter Condition in a Tier Soil [J]. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865.
[5] SHANG Jie, GENG Zeng-chao, WANG Yue-ling, CHEN Xin-xiang, ZHAO Jun. Effect of Biochar Amendment on Soil Microbial Biomass Carbon and Nitrogen and Enzyme Activity in Tier Soils [J]. Scientia Agricultura Sinica, 2016, 49(6): 1142-1151.
[6] WANG Ren-jie, Qiang Jiu Ci-ren, XUE Yan-fei, ZHANG Shu-lan, YANG Xue-yun. Effect of Long-Term Organic-Manure Combined with Chemical Fertilizers on Aggregate Sizes Distribution and Its Organic and Inorganic Carbon on a Tier Soil [J]. Scientia Agricultura Sinica, 2015, 48(23): 4678-4689.
[7] LI Chun-Yue, WANG Yi, PhilipBrookes , DANG Ting-Hui, WANG Wan-Zhong. Effect of Soil pH on Soil Microbial Carbon Phosphorus Ratio [J]. Scientia Agricultura Sinica, 2013, 46(13): 2709-2716.
[8] WANG Yuan,ZHOU Jian-bin,YANG Xue-yun
. Effects of Different Long-Term Fertilization on the Fractions of Organic Nitrogen and Nitrogen Mineralization in Soils#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1173-1180 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!