Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (12): 2472-2484.doi: 10.3864/j.issn.0578-1752.2022.12.017

• RESEARCH NOTES • Previous Articles    

Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper

GONG XiaoYa1(),SHI JiBo2,FANG Ling3,FANG YaPeng1,WU FengZhi1()   

  1. 1College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030
    2Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 110024
    3Horticulture Research Institute, Anhui Academy of Agriculture Sciences, Hefei 230031
  • Received:2021-09-29 Accepted:2022-04-11 Online:2022-06-16 Published:2022-06-23
  • Contact: FengZhi WU;


【Objective】This paper aimed to clarify the effect of farmland flooding on the soil environment of continuous pepper cropping, and to provide the technical basis for reducing the soil sickness caused by continuous pepper cropping. 【Method】In this experiment, the flooded and non-flooded soil of continuous cropped pepper in Hexian County of Anhui Province were analyzed, with non-flooded soil as control. The determination of chemical property and microbial community structure in soil with flowing analyser, qPCRand Illumina MiSeq sequencing explored the effect of flooding on the soil. Besides, the pepper was used as plant material to explore the effects of flooded and non-flooded soil on seed germination and seedling growth by the Petri dish method. 【Result】Soil flooding significantly decreased the soil EC value, organic matter, nitrate N, ammonium N, available K, and Olsen P. Quantitative PCR analysis showed that soil flooding significantly increased the bacterial community abundance (P<0.05), however decreased that of the fungal communities. Illumina MiSeq sequencing showed that the soil flooding significantly increased the relative abundances of Actinobacteria and Myxococcota, which decreased the Firmicutes and Mortierellomycota at phylum level. The soil flooding decreased the relative abundance of potential pathogenic fungi, such as Fusarium spp., positive correlation with nitrate N. The soil flooding increased potential Azotobacter, including Azoarcus, Gemmatimonas, Sideroxydans, Candidatus_Solibacter, Bryobacter, Sideroxydans spp. and plant-beneficial potential such as Aspergillus and Acremonium spp., which were negatively correlated with nitrate N. The soil microbial community structure and composition was significantly affected by soil nitrate N. In petri dish, the seed germination rate, seeding fresh weight and root length of peppers planted in flooded soil were significantly higher than those in non-flooded soil. 【Conclusion】Soil flooding significantly reduced the EC value and abundance of potentially pathogenic microbial community and increased the abundance of potentially beneficial bacterial, but significantly reduced the content of available nutrients. At the same time, Soil flooding was conducive to the seed germination and seedling growth and alleviated the pepper continuous cropping obstacles.

Key words: pepper continuous cropping, soil chemical properties, soil microbial community structure, soil microbial community composition, seedling growth

Table 1

Effects of soil flooding on the soil chemical properties"

EC value
Organic matter
Ammonium N
Nitrate N
Olsen P
Available K
6.13±0.10a 1.38±0.16a 39.21±2.77a 15.12±0.58a 219.05±9.89a 62.80±5.59a 402.00±46.29a
淹水Flooded 6.37±0.16a 0.37±0.16b 30.95±3.54b 13.97±0.06b 154.97±17.46b 47.45±5.52b 244.33±34.44b

Fig. 1

Effects of soil flooding on the abundances of soil microbe Fig. A represent total bacterial and total fungal abundance. Fig. B, C, D, E represent fungal and bacterial had significant difference in phylum and genus level.Fig. B and Fig. C represent fungal phylum and bacterial phylum relative abundance, respectively. Fig. D and Fig. E represent fungal genus and bacterial genus relative abundance, respectively"

Fig. 2

Effect of soil flooding on microbial diversity Fig. A and Fig. C represent bacterial and fungal alpha diversity index. Venn diagram analyses of bacterial (B) and fungal (D) demonstrated the numbers of shared and unique observed OTUs at 97% similarity among treatments. Fig. E and Fig. F represent bacterial and fungal beta diversity index, respectively"

Table 2

Mantel analysis of soil chemical properties and soil bacterial community structure"

化学性质 Soil property r p
pH -0.082 0.661
EC 0.546 0.098
有机质 SOM 0.492 0.065
铵态氮NH4+-N 0.421 0.075
硝态氮NO3--N 0.746* 0.041
有效磷 Available P (AP) 0.342 0.125
有效钾 Available K (AK) 0.542 0.095
NH4+-N×NO3--N 0.696 0.056
AP×AK 0.542 0.090
NH4+-N×NO3--N×AP×AK 0.171 0.226
pH×EC×SOM×NH4+-N×AP×AK 0.5571 0.098
pH×EC×SOM×NH4+-N×NO3--N×AP×AK 0.5714 0.097

Table 3

Mantel analysis of soil chemical properties and soil fungal community structure"

化学性质 Soil property r p
pH 0.039 0.445
EC 0.621 0.078
有机质 SOM 0.396 0.099
铵态氮NH4+-N 0.242 0.158
硝态氮NO3--N 0.775* 0.031
有效磷 Available P (AP) 0.532 0.051
有效钾 Available K (AK) 0.567 0.086
NH4+-N×NO3--N 0.5536 0.094
AP×AK 0.611 0.072
NH4+-N×NO3--N×AP×AK 0.607 0.085
pH×EC×SOM×NH4+-N×AP×AK 0.604 0.086
pH×EC×SOM×NH4+-N×NO3--N×AP×AK 0.621 0.082

Fig. 3

Correlation analysis of soil properties and relative abundance of bacterial (A) and fungal (B) genus * presents significant difference at P<0.05 level. ** presents significant difference at P<0.01 level"

Fig. 4

The effects of soil flooding on the germination and growth of pepper Different lowercase letters indicate significant differences (P<0.05)"

[1] 孙盈, 李萍萍, 付为国. 芦苇根系及根际土中酚酸类化感物质的水分响应特性研究. 安徽农业科学, 2018, 46(25): 71-74. doi: 10.13989/j.cnki.0517-6611.2018.25.020.
doi: 10.13989/j.cnki.0517-6611.2018.25.020
SUN Y, LI P P, FU W G. Study on the moisture response of phenolic acids in Phragmites australis root and rhizosperic soil. Journal of Anhui Agricultural Sciences, 2018, 46(25): 71-74. doi: 10.13989/j.cnki.0517-6611.2018.25.020. (in Chinese)
doi: 10.13989/j.cnki.0517-6611.2018.25.020
[2] 周开胜. 强还原土壤消毒防控连作障碍效果及影响因素研究[D]. 南京: 南京师范大学, 2021.
ZHOU K S. Clearing up continuous-cropping obstacles by reductive soil disinfestations (RSD) and influencing factors[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese)
[3] 古力, 李烜桢, 李明杰, 余志坚, 林梅桂, 王建明, 谢加唯, 张重义. 强还原和淹水处理对地黄连作障碍的消减效应. 中国生态农业学报(中英文), 2021, 29(8): 1305-1314. doi: 10.13930/j.cnki.cjea.210114.
doi: 10.13930/j.cnki.cjea.210114
GU L, LI X Z, LI M J, YU Z J, LIN M G, WANG J M, XIE J W, ZHANG C Y. Alleviating effect of strong reduction and flooding treatment on continuous cropping obstacles in Rehmannia glutinosa. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1305-1314. doi: 10.13930/j.cnki.cjea.210114. (in Chinese)
doi: 10.13930/j.cnki.cjea.210114
[4] 饶德安. 烤烟连作土壤的修复技术及其应用效果研究[D]. 无锡: 江南大学, 2021.
RAO D A. Study on soil remediation technology of flue-cured tobacco continuous cropping and its application effect[D]. Wuxi: Jiangnan University, 2021. (in Chinese)
[5] 王光飞, 马艳, 常志州, 周淑霞, 徐跃定, 张建英. 淹水改良土壤性状及对辣椒疫病的防效研究. 水土保持学报, 2013, 27(2): 209-214. doi: 10.13870/j.cnki.stbcxb.2013.02.047.
doi: 10.13870/j.cnki.stbcxb.2013.02.047
WANG G F, MA Y, CHANG Z Z, ZHOU S X, XU Y D, ZHANG J Y. Effect of flooding on soil character and disease control of Phytophthora blight of chilli pepper. Journal of Soil and Water Conservation, 2013, 27(2): 209-214. doi: 10.13870/j.cnki.stbcxb.2013.02.047. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2013.02.047
[6] 郭志霞, 刘任涛, 冯永宏, 王文帆, 蒋嘉瑜. 不同降水对荒漠灌丛土壤理化性质和地表植被分布的影响. 水土保持通报, 2021, 41(1): 56-65. doi: 10.13961/j.cnki.stbctb.2021.01.009.
doi: 10.13961/j.cnki.stbctb.2021.01.009
GUO Z X, LIU R T, FENG Y H, WANG W F, JIANG J Y. Effects of different precipitation on soil properties and ground vegetation distribution in desert shrub microhabitats. Bulletin of Soil and Water Conservation, 2021, 41(1): 56-65. doi: 10.13961/j.cnki.stbctb.2021.01.009. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2021.01.009
[7] 苏玲, 林咸永, 章永松, 杨玉爱. 水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响. 浙江大学学报(农业与生命科学版), 2001, 27(2): 124-128.
SU L, LIN X Y, ZHANG Y S, YANG Y A. Effects of flooding on iron transformation and phosphorus adsorption desorption properties in different layers of the paddy soils. Journal of Zhejiang Agricultural University (Agric & Life Sci), 2001, 27(2): 124-128. (in Chinese)
[8] 刘淑军, 黄晶, 李冬初, 张会民, 秦道珠. 钾肥和稻草不同配比下水稻产量及钾素释放规律研究. 南方农业学报, 2016, 47(5): 627-631. doi: 10.3969/j:issn.2095-1191.2016.05.627.
doi: 10.3969/j:issn.2095-1191.2016.05.627
LIU S J, HUANG J, LI D C, ZHANG H M, QIN D Z. Effects of potash fertilizer and straw in different proportions on rice yield and potassium release law. Journal of Southern Agriculture, 2016, 47(5): 627-631. doi: 10.3969/j:issn.2095-1191.2016.05.627. (in Chinese)
doi: 10.3969/j:issn.2095-1191.2016.05.627
[9] 龚小雅. 轮作水芹对连作黄瓜产量及土壤微生物的影响[D]. 哈尔滨: 东北农业大学, 2020.
GONG X Y. Effect of rotation with cress on yield and soil microbial communities of continuous cropped cucumber[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese)
[10] CREGGER M A, SCHADT C W, MCDOWELL N G, POCKMAN W T, CLASSEN A T. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied and Environmental Microbiology, 2012, 78(24): 8587-8594. doi: 10.1128/AEM.02050-12.
doi: 10.1128/AEM.02050-12
[11] MANZONI S, SCHIMEL J P, PORPORATO A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 2012, 93(4): 930-938. doi: 10.1890/11-0026.1.
doi: 10.1890/11-0026.1
[12] 张星. 淹水胁迫对不同土壤类型理化特性及玉米养分吸收分配的影响[D]. 郑州: 河南农业大学, 2017.
ZHANG X. Effects of waterlogging stress on physicochemical properties and maize nutrient absorption and distribution in different soil types[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese)
[13] 常超, 谢宗强, 熊高明, 储立民. 三峡水库蓄水对消落带土壤理化性质的影响. 自然资源学报, 2011, 26(7): 1236-1244.
CHANG C, XIE Z Q, XIONG G M, CHU L M. The effect of flooding on soil physical and chemical properties of riparian zone in the Three Gorges reservoir. Journal of Natural Resources, 2011, 26(7): 1236-1244. (in Chinese)
[14] GONG X Y, SHI J B, ZHOU X G, YUAN T, GAO D M, WU F Z. Crop rotation with cress increases cucumber yields by regulating the composition of the rhizosphere soil microbial community. Frontiers in Microbiology, 2021, 12: 631882. doi: 10.3389/fmicb.2021.631882.
doi: 10.3389/fmicb.2021.631882
[15] WANG X Y, HE T H, GEN S Y, ZHANG X Q, WANG X, JIANG D, LI C Y, LI C S, WANG J L, ZHANG W Y, LI C D. Soil properties and agricultural practices shape microbial communities in flooded and rainfed croplands. Applied Soil Ecology, 2020, 147: 103449.
doi: 10.1016/j.apsoil.2019.103449
[16] 王莹, 王龙, 马静, 林多, 杨延杰. 水杨酸对盐胁迫下辣椒种子萌发及幼苗生长的影响. 北方园艺, 2020, 44(8): 1-6.
WANG Y, WANG L, MA J, LIN D, YANG Y J. Effects of salicylic acid on seed germination and seedling growth of pepper under salt stress. Northern Horticulture, 2020, 44(8): 1-6. (in Chinese)
[17] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[18] BORYMSKI S, CYCOŃ M, BECKMANN M, MUR L A J, PIOTROWSKA-SEGET Z. Plant species and heavy metals affect biodiversity of microbial communities associated with metal-tolerant plants in metalliferous soils. Frontiers in Microbiology, 2018, 9: 1425. doi: 10.3389/fmicb.2018.01425.
doi: 10.3389/fmicb.2018.01425
[19] OP DE BEECK M, LIEVENS B, BUSSCHAERT P, DECLERCK S, VANGRONSVELD J, COLPAERT J V. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE, 2014, 9(6): e97629. doi: 10.1371/journal.pone.0097629.
doi: 10.1371/journal.pone.0097629
[20] MUYZER G, DE WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700. doi: 10.1128/aem.59.3.695-700.1993.
doi: 10.1128/aem.59.3.695-700.1993
[21] BOKULICH N A, MILLS D A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high- throughput profiling of fungal communities. Applied and Environmental Microbiology, 2013, 79(8): 2519-2526. doi: 10.1128/AEM.03870-12.
doi: 10.1128/AEM.03870-12
[22] ZHOU X G, LIU J, WU F Z. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 2017, 415(1/2): 507-520. doi: 10.1007/s11104-017-3181-5.
doi: 10.1007/s11104-017-3181-5
[23] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604.
doi: 10.1038/nmeth.2604
[24] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN F D, COSTELLO E K, FIERER N, PEÑA A G, GOODRICH J K, GORDON J I, HUTTLEY G A, KELLEY S T, KNIGHTS D, KOENIG J E, LEY R E, LOZUPONE C A, MCDONALD D, MUEGGE B D, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303.
doi: 10.1038/nmeth.f.303
[25] SOLYMOS P, STEVENS M H, WAGNER H. Vegan: Community ecology package. R Package Version 2.0-4. 2012.
[26] FERNANDES A D, REID J N, MACKLAIM J M, MCMURROUGH T A, EDGELL D R, GLOOR G B. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2014, 2: 15. doi: 10.1186/2049-2618-2-15.
doi: 10.1186/2049-2618-2-15
[27] 苏玲, 章永松, 林咸永. 干湿交替过程中水稻土铁形态和磷吸附解吸的变化. 植物营养与肥料学报, 2001, 7(4): 410-415. doi: 10.3321/j.issn:1008-505X.2001.04.009.
doi: 10.3321/j.issn:1008-505X.2001.04.009
SU L, ZHANG Y S, LIN X Y. Changes of iron oxides and phosphorus adsorption-desorption in paddy soils under alternating flooded and dried conditions. Plant Nutrition and Fertilozer Science, 2001, 7(4): 410-415. doi: 10.3321/j.issn:1008-505X.2001.04.009. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2001.04.009
[28] 马良, 黄志霖, 华琳. 三峡库区小流域土地利用结构对土壤养分流失及水质影响. 水生态学杂志, 2022, 43(1): 1-7. doi: 10.15928/j.1674-3075.201912220322.
doi: 10.15928/j.1674-3075.201912220322
MA L, HUANG Z L, HUA L. Effects of land use on soil nutrient loss and water quality in the Three Gorges reservoir area of China. Journal of Hydroecology, 2022, 43(1): 1-7. doi: 10.15928/j.1674-3075.201912220322. (in Chinese)
doi: 10.15928/j.1674-3075.201912220322
[29] UNGER I M, MOTAVALLI P P, MUZIKA R M. Changes in soil chemical properties with flooding: A field laboratory approach. Agriculture Ecosystems and Environment, 2009, 131(1/2): 105-110.
doi: 10.1016/j.agee.2008.09.013
[30] XU M, XIAN Y, WU J, GU Y F, YANG G, ZHANG X H, PENG H, YU X Y, XIAO Y L, LI L. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years. Journal of Soils and Sediments, 2019, 19(5): 2534-2542. doi: 10.1007/s11368-019-02258-x.
doi: 10.1007/s11368-019-02258-x
[31] BREIDENBACH B, BRENZINGER K, BRANDT F B, BLASER M B, CONRAD R. The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots. Plant and Soil, 2017, 419(1/2): 435-445. doi: 10.1007/s11104-017-3351-5.
doi: 10.1007/s11104-017-3351-5
[32] 杨阳, 章妮, 蒋莉莉, 陈克龙. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应. 草地学报, 2021, 29(5): 1043-1052. doi: 10.11733/j.issn.1007-0435.2021.05.021.
doi: 10.11733/j.issn.1007-0435.2021.05.021
YANG Y, ZHANG N, JIANG L L, CHEN K L. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on the Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(5): 1043-1052. doi: 10.11733/j.issn.1007-0435.2021.05.021. (in Chinese)
doi: 10.11733/j.issn.1007-0435.2021.05.021
[33] 李云龙, 王宝英, 常亚锋, 续勇波, 黄新琦, 张金波, 蔡祖聪, 赵军. 土壤强还原处理对三七连作障碍因子及再植三七生长的影响. 土壤学报, 2019, 56(3): 703-715. doi: 10.11766/trxb201806110164.
doi: 10.11766/trxb201806110164
LI Y L, WANG B Y, CHANG Y F, XU Y B, HUANG X Q, ZHANG J B, CAI Z C, ZHAO J. Effects of reductive soil disinfestation on obstacles and growth of replant seedlings in Sanqi ginseng mono-cropped soils. Acta Pedologica Sinica, 2019, 56(3): 703-715. doi: 10.11766/trxb201806110164. (in Chinese)
doi: 10.11766/trxb201806110164
[34] SUN H H, NARIHIRO T, MA X Y, ZHANG X X, REN H Q, YE L. Diverse aromatic-degrading bacteria present in a highly enriched autotrophic nitrifying sludge. The Science of the Total Environment, 2019, 666: 245-251. doi: 10.1016/j.scitotenv.2019.02.172.
doi: 10.1016/j.scitotenv.2019.02.172
[35] 王岚, 张静, 路璐. 不同浓度鼠李糖脂对土壤多环芳烃去除率及微生物群落结构的影响. 环境污染与防治, 2019, 41(8): 901-905. doi: 10.15985/j.cnki.1001-3865.2019.08.007.
doi: 10.15985/j.cnki.1001-3865.2019.08.007
WANG L, ZHANG J, LU L. Effects of different concentrations of rhamnolipid on soil polycyclic aromatic hydrocarbons removal rate and microbial community structure. Environmental Pollution & Control, 2019, 41(8): 901-905. doi: 10.15985/j.cnki.1001-3865.2019.08.007. (in Chinese)
doi: 10.15985/j.cnki.1001-3865.2019.08.007
[36] MIAO Y, JOHNSON N W, GEDALANGA P B, ADAMSON D, NEWELL C, MAHENDRA S. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1, 4-dioxane and co-contaminants. Water Research, 2019, 149: 74-85. doi: 10.1016/j.watres.2018.10.070.
doi: 10.1016/j.watres.2018.10.070
[37] 王军, 闫立昆, 李宏铎, 万一. 一株黏细菌Archangium gephyra的鉴定及其代谢产物抑菌活性的研究. 西北大学学报(自然科学版), 2013, 43(3): 437-441. doi: 10.16152/j.cnki.xdxbzr.2013.03.013.
doi: 10.16152/j.cnki.xdxbzr.2013.03.013
WANG J, YAN L K, LI H D, WAN Y. Identification of Archangium gephyra NX0045 (Myxobacteria) and study on antimicrobial activities of its metabolites. Journal of Northwest University (Natural Science Edition), 2013, 43(3): 437-441. doi: 10.16152/j.cnki.xdxbzr.2013.03.013. (in Chinese)
doi: 10.16152/j.cnki.xdxbzr.2013.03.013
[38] LI B Q, XU R, SUN X X, HAN F, XIAO E Z, CHENG L, QIU L, SUN W M. Microbiome-environment interactions in antimony- contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. Chemosphere, 2020, 263: 128227.
doi: 10.1016/j.chemosphere.2020.128227
[39] NIE H J, QIN T L, YAN D H, LV X Z, WANG J W, HUANG Y H, LV Z Y, LIU S S, LIU F. How do tree species characteristics affect the bacterial community structure of subtropical natural mixed forests? The Science of the Total Environment, 2021, 764: 144633. doi: 10.1016/j.scitotenv.2020.144633.
doi: 10.1016/j.scitotenv.2020.144633
[40] SI P, SHAO W, YU H L, YANG X J, GAO D T, QIAO X S, WANG Z Q, WU G L. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in Northern China. Frontiers in Microbiology, 2018, 9: 3147. doi: 10.3389/fmicb.2018.03147.
doi: 10.3389/fmicb.2018.03147
[41] BAI Y C, CHANG Y Y, HUSSAIN, LU B, ZHANG J P, SONG X B, LEI X S, PEI D. Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms, 2020, 8(5): 694.
doi: 10.3390/microorganisms8050694
[42] ZHU J H, REN Z J, HUANG B, CAO A C, WANG Q X, YAN D D, OUYANG C B, WU J J, LI Y. Effects of fumigation with allyl isothiocyanate on soil microbial diversity and community structure of tomato. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1226-1236. doi: 10.1021/acs.jafc.9b07292.
doi: 10.1021/acs.jafc.9b07292
[43] JIAO N, SONG X S, SONG R Q, YIN D C, DENG X. Diversity and structure of the microbial community in rhizosphere soil of Fritillaria ussuriensis at different health levels. PeerJ, 2022, 10: e12778. doi: 10.7717/peerj.12778.
doi: 10.7717/peerj.12778
[44] LIU Y J, CHENG J J, LIU X, ZHONG H, WANG B H, KONG Z Y, WU L. Tracking the changes of wetland soil bacterial community and metabolic potentials under drought and flooding conditions in experimental microcosms. Journal of Soils and Sediments, 2021, 21(6): 2404-2417. doi: 10.1007/s11368-021-02920-3.
doi: 10.1007/s11368-021-02920-3
[45] 宋佳珅, 张晓丽, 孔凡磊, 刘晓林, 安文静, 李玉义. 生物质调理剂对川西北高寒草地沙化土壤养分和微生物群落特征的影响. 应用生态学报, 2021, 32(6): 2217-2226. doi: 10.13287/j.1001-9332.202106.036.
doi: 10.13287/j.1001-9332.202106.036
SONG J S, ZHANG X L, KONG F L, LIU X L, AN W J, LI Y Y. Effects of biomass conditioner on soil nutrient and microbial community characteristics of alpine desertified grassland in northwest Sichuan, China. Chinese Journal of Applied Ecology, 2021, 32(6): 2217-2226. doi: 10.13287/j.1001-9332.202106.036. (in Chinese)
doi: 10.13287/j.1001-9332.202106.036
[46] 马晓丹, 高灵芳, 谭文博, 远野, 黄聪, 赵友康, 徐熙俊, 盛涛, 王爱杰. 一株异养脱硫反硝化菌株的筛选及其生物脱硫脱氮特性研究. 微生物学通报, 2015, 42(5): 853-857. doi: 10.13344/j.microbiol.china.140884.
doi: 10.13344/j.microbiol.china.140884
MA X D, GAO L F, TAN W B, YUAN Y, HUANG C, ZHAO Y K, XU X J, SHENG T, WANG A J. Isolation and characterization of a functional strain with the highly efficient of biological desulfurization and denitrification. Microbiology China, 2015, 42(5): 853-857. doi: 10.13344/j.microbiol.china.140884. (in Chinese)
doi: 10.13344/j.microbiol.china.140884
[47] HU H Y, LI H, HAO M M, REN Y N, ZHANG M K, LIU R Y, ZHANG Y, LI G, CHEN J S, NING T Y, KUZYAKOV Y. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria. Journal of Applied Ecology, 2021, 58(10): 2243-2255.
doi: 10.1111/1365-2664.13964
[48] WANG H H, LI X, LI X Y, LI F L, SU Z C, ZHANG H W. Community composition and co-occurrence patterns of diazotrophs along a soil profile in paddy fields of three soil types in China. Microbial Ecology, 2021, 82(4): 961-970. doi: 10.1007/s00248-021-01716-9.
doi: 10.1007/s00248-021-01716-9
[49] 杜思瑶, 于淼, 刘芳华, 肖雷雷, 张洪霞, 陶军, 顾卫, 顾京晏, 陈茜. 设施种植模式对土壤细菌多样性及群落结构的影响. 中国生态农业学报, 2017, 25(11): 1615-1625. doi: 10.13930/j.cnki.cjea.170291.
doi: 10.13930/j.cnki.cjea.170291
DU S Y, YU M, LIU F H, XIAO L L, ZHANG H X, TAO J, GU W, GU J Y, CHEN X. Effect of facility management regimes on soil bacterial diversity and community structure. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1615-1625. doi: 10.13930/j.cnki.cjea.170291. (in Chinese)
doi: 10.13930/j.cnki.cjea.170291
[50] 黎妍妍, 冯吉, 王林, 付裕, 李锡宏. 万寿菊-烟草轮作调理植烟土壤细菌群落结构的作用. 中国烟草科学, 2021, 42(1): 14-19. doi: 10.13496/j.issn.1007-5119.2021.01.003.
doi: 10.13496/j.issn.1007-5119.2021.01.003
LI Y Y, FENG J, WANG L, FU Y, LI X H. Effects of marigold- tobacco rotation on bacterial community structure in tobacco rhizosphere soil. Chinese Tobacco Science, 2021, 42(1): 14-19. doi: 10.13496/j.issn.1007-5119.2021.01.003. (in Chinese)
doi: 10.13496/j.issn.1007-5119.2021.01.003
[51] 童帅. 水稻、小麦内生固氮菌固氮酶nifH基因多样性及其活性研究[D]. 北京: 中国农业科学院, 2020.
TONG S. Diversity and activity of nitrogenase nifH gene from endophytic diazotrophs in rice and wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[52] 韩旭, 杨衍, 牛玉, 曹振木. 不同方法收集辣椒根系分泌物化感自毒作用研究. 中国农学通报, 2015, 31(31): 62-67.
HAN X, YANG Y, NIU Y, CAO Z M. Study on allelopathic autotoxicity of pepper root exudate by different collection methods. Chinese Agricultural Science Bulletin, 2015, 31(31): 62-67. (in Chinese)
[1] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[2] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[3] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[4] YanHua CHEN,Le WANG,ShuXiang ZHANG,Ning GUO,ChangBao MA,ChunHua LI,MingGang XU,GuoYuan ZOU. Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity [J]. Scientia Agricultura Sinica, 2019, 52(24): 4540-4554.
[5] LongLong SUI,JingShan TIAN,HeSheng YAO,PengPeng ZHANG,FuBin LIANG,Jin WANG,WangFeng ZHANG. Effects of Different Sowing Dates on Emergence Rates and Seedling Growth of Cotton Under Mulched Drip Irrigation in Xinjiang [J]. Scientia Agricultura Sinica, 2018, 51(21): 4040-4051.
[6] DING Jian-li, JIANG Xin, GUAN Da-wei, MA Ming-chao, ZHAO Bai-suo, ZHOU Bao-ku, CAO Feng-ming, LI Li, LI Jun. Responses of Micropopulation in Black Soil of Northeast China to Long-Term Fertilization and Crops [J]. Scientia Agricultura Sinica, 2016, 49(22): 4408-4418.
[7] GAO Ying-bo, TAO Hong-bin, ZHU Jin-cheng, HUANG Shou-bing, XU Cai-long, SHENG Yao-hui, WANG Pu. Effects of Wheat Stubble Height on Growth and Water Use Efficiency of Mechanized Sowing Summer Maize [J]. Scientia Agricultura Sinica, 2015, 48(19): 3803-3810.
[8] CAO Gang, ZHANG Guo-Bin, YU Ji-Hua, MA Yan-Xia. Effects of Different LED Light Qualities on Cucumber Seedling Growth and Chlorophyll Fluorescence Parameters [J]. Scientia Agricultura Sinica, 2013, 46(6): 1297-1304.
[9] HOU Xiao-juan,XU Ming-gang,LI Dong-chu,NIU De-kui,GAO Ju-sheng,SHEN Pu
. Evolution of the Soil Chemical Properties in Paddy Field Under Long-term Application of Sulfur-Containing and Chloride-Containing Fertilizers#br# [J]. Scientia Agricultura Sinica, 2010, 43(12): 2460-2468 .
Full text



No Suggested Reading articles found!