Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (2): 307-319.doi: 10.3864/j.issn.0578-1752.2022.02.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize

GENG WenJie(),LI Bin(),REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang()   

  1. Maize Technology Innovation Center of Shandong Province, Laizhou 261400, Shandong
  • Received:2021-04-01 Accepted:2021-10-29 Online:2022-01-16 Published:2022-01-26
  • Contact: JiWang ZHANG E-mail:1475511234@qq.com;2902933140@qq.com;jwzhang@sdau.edu.cn

Abstract:

【Objective】 The purpose of this study was to investigate the regulation mechanism of planting density and spraying ethephon on lignin metabolism and lodging resistance characteristics and to explore the mechanism of planting density and ethephon application on lodging resistance characteristics of summer maize. 【Method】 In this study, the summer maize hybrid, Xundan20, was grown by spraying water or ethephon at the seven-expanded-leaf stage under three different plant densities (60 000 plants/hm2, low density, L; 75 000 plants/hm2, medium density, M; 90 000 plants/hm2, high density, H) in order to explore the effects of density and ethephon on plant morphology, the third internode microstructure, lignin metabolism and yield, etc. 【Result】 Compared with LCK at milking stage, the internode length of the third stem under HCK increased by 19.75%. The stem diameter, stalk rind penetration strength, small vascular bundle number, small vascular bundle area and cortex thickness under HCK were 8.00%, 43.46%, 20.41%, 26.92% and 22.05% lower than those under LCK, respectively. The lignin accumulation and enzyme activity of PAL, 4-CL, CAD and POD under HCK were 24.04%, 33.81%、10.92%, 49.06% and 20.78% lower than those under LCK, respectively. Compared with HCK at milking stage, the internode length of the third stem under HE decreased by 34.84%. The stem diameter, stalk rind penetration strength, small vascular bundle number, small vascular bundle area and cortex thickness of HE were 14.22%,66.10%,22.71%,22.11% and 35.96% higher than those under HCK, respectively. The lignin accumulation and enzyme activity of PAL, 4-CL, CAD and POD of HE were 28.28%, 30.74%, 13.01%, 59.26% and 16.99% higher than those under HCK, respectively. 【Conclusion】 Lodging resistance of summer maize decreased with the increasing of planting density. After the application of ethephon, the stem strength and lignin metabolism of summer maize were enhanced, the lodging resistance was enhanced, and finally maize yield was increased. The effect of spraying ethephon on the lignin metabolism and lodging resistance of XD 20 was the most significant when the planting density was 90 000 plants/hm2, and yield was the highest.

Key words: planting density, ethephon, summer maize, lodging resistance, lignin metabolism

Fig. 1

Climate data for temperature and precipitation during the experimental period"

Table 1

Effects of planting density and ethephon on lodging rate of summer maize"

处理
Treatment
2017 2018
调查时期Investigation stage 倒伏率 Lodging percentage (%) 调查时期Investigation stage 倒伏率 Lodging percentage (%)
LCK R3 3.4e R3 11.1c
MCK R3 14.5b R3 44.1b
ME R3 5.3d R3 6.7d
HCK R3 20.5a VT 69.2a
HE R3 10.2c R3 11.2c

Fig. 2

Effects of planting density and ethephon on plant height and center of gravity height of summer maize LCK, MCK, ME, HCK and HE are the treatments of low density control, medium density control, medium density sprayed with ethephon, high density control and high density sprayed with ethephon, respectively. Different lowercase letters in the figure indicate significant difference at 5% level. The same as below"

Table2

Effects of planting density and ethephon on internode length of summer maize (cm)"

年份
Year
处理
Treatment
抽雄期 Tasseling stage 乳熟期 Milking stage
第1节间
1st
第3节间
3rd
第5节间
5th
第7节间
7th
第1节间
1st
第3节间
3rd
第5节间
5th
第7节间
7th
2017 LCK 3.00a 10.00c 13.50c 14.00b 2.67a 9.17a 15.33a 17.13a
MCK 3.33a 11.67b 15.00b 14.83b 2.67a 10.17a 15.50a 17.83a
ME 3.33a 8.33d 12.00d 12.33c 3.17a 7.33b 9.00b 13.00b
HCK 3.33a 13.00a 17.17a 17.00a 2.67a 10.50a 16.33a 18.83a
HE 3.67a 10.33c 12.33d 11.00d 2.33a 7.00b 8.67b 12.00b
2018 LCK 6.67a 13.10ab 15.27c 16.40b 6.00ab 13.20c 16.50bc 16.65b
MCK 7.00a 13.67a 17.00b 17.00b 6.50a 15.33b 17.00b 16.67b
ME 4.33b 11.33b 14.33c 15.33c 4.93b 8.93d 15.23c 15.93b
HCK 7.33a 14.43a 19.00a 18.33a 6.33a 16.50a 19.00a 18.25a
HE 4.00b 11.67b 14.00c 16.50b 5.50ab 8.57d 15.47bc 15.57b
ANOVA
年份Year (Y) ** ** ** ** ** ** ** ns
密度Density (D) ns ** ** ** ns * ns ns
乙烯利Ethephon (E) ** ** ** ** * ** ** **
密度×乙烯利 (D×E) ns ns ** * ns ns ns *

Table 3

Effects of planting density and ethephon on stalk diameter of summer maize (mm)"

年份
Year
处理
Treatment
抽雄期 Tasseling stage 乳熟期 Milking stage
第1节间
1st
第3节间
3rd
第5节间
5th
第7节间
7th
第1节间
1st
第3节间
3rd
第5节间
5th
第7节间
7th
2017 LCK 27.84a 26.62a 23.87a 21.96ab 26.36a 22.92b 22.44b 22.52ab
MCK 26.38b 24.76b 22.52b 20.06c 25.48bc 21.92c 22.19b 22.00b
ME 29.00a 26.70a 23.89a 22.69a 25.46bc 22.64bc 22.39b 23.04ab
HCK 24.45c 21.97c 19.97c 19.91c 23.48d 20.65d 20.45c 20.35c
HE 28.07a 25.65ab 22.59b 20.64bc 24.93c 23.15ab 22.86b 22.99ab
2018 LCK 28.83b 27.43b 26.50b 24.02c 26.06a 21.65b 23.33a 22.67a
MCK 26.00c 25.19c 24.17c 23.14d 24.58b 20.53c 19.00b 19.33c
ME 28.17ab 29.32a 29.50a 27.14a 26.73a 23.67a 22.35a 22.33a
HCK 25.76c 25.75c 22.07d 21.31e 23.30c 20.33c 17.03c 17.00d
HE 29.61a 30.58a 30.07a 28.08a 24.21b 23.65a 23.33a 21.33b
ANOVA
年份Year (Y) ns ** ** ** ns ns ns *
密度Density (D) ** ** ** ns ** * * *
乙烯利Ethephon (E) ** ** ** ** * ** ** **
密度×乙烯利 (D×E) ns ns ns ns ns ns ns ns

Fig. 3

Effects of planting density and ethephon on stalk rind penetration strength of summer maize"

Fig. 4

Effects of planting density and ethephon on microstructure of summer maize a, b, c, d and e respectively show the microstructure at LCK, MCK, ME, HCK and HE"

Table 4

Effects of planting density and ethephon on microstructure of summer maize"

处理
Treatment
单株维管束数目 Number of vascular bundle per plant (No.) 小维管束面积
Small vascular bundle area (mm2)
皮层厚度
Cortex thickness (μm)
小维管束
Small vascular bundle
大维管束
Big vascular bundle
总数
Total number of vascular bundle
LCK 457.33±1.20a 170.67±0.67a 628.00±0.58a 0.130±0.003a 67.79±0.07b
MCK 388.00±0.58c 165.33±0.33ab 624.00±0.33a 0.102±0.002c 58.09±0.14c
ME 416.00±1.53b 153.33±0.88bc 581.33±2.19b 0.114±0.002b 68.10±0.52b
HCK 364.00±0.58d 144.00±0.67cd 522.67±0.33c 0.095±0.000c 52.84±0.13d
HE 446.67±3.28a 134.67±2.60d 517.33±4.58c 0.116±0.001b 71.84±0.38a

Fig. 5

Effects of planting density and ethephon on lignin content of summer maize V12, VT, R3 and R6 are twelve-leaf stage, tasseling stage, milking stage and maturity stage, respectively. The same as below"

Fig. 6

Effects of planting density and ethephon on lignin synthase activity of summer maize"

Table 5

Effects of planting density and ethephon on summer maize yield"

年份
Year
处理
Treatment
公顷穗数
Ears (No. hm-2)
穗粒数
Kernels per ear
千粒重
1000-grain weight (g)
产量
Grain yield (kg·hm-2)
2017 LCK 50420d 532a 331.55a 8894.91c
MCK 60161c 509ab 324.49a 9932.49b
ME 65346b 506b 301.27b 9954.73b
HCK 59414c 476c 309.76b 8767.37c
HE 82617a 496bc 306.52b 12566.32a
2018 LCK 45949d 600a 318.26a 8777.77d
MCK 59678c 578b 303.92b 10500.73c
ME 68140b 573b 298.61c 11665.40b
HCK 25166e 353d 268.29e 2381.91e
HE 82587a 543c 290.59d 13039.17a
ANOVA
年份Year (Y) * ns ** ns
密度Density (D) ns ** ** ns
乙烯利Ethephon (E) ** ** ns **
密度×乙烯利 (D×E) ** ** ** **

Table 6

Correlation analysis between lodging rate and various factors"

因子
Factor
相关系数
Correlation coefficient
因子
Factor
相关系数
Correlation coefficient
因子
Factor
相关系数
Correlation coefficient
产量
Grain yield
-0.815 穿刺强度
Stalk rind penetration strength
-0.944* 木质素含量
Lignin content
-0.907*
株高
Plant height
0.965** 皮层厚度
Cortex thickness
-0.967** 苯丙氨酸解氨酶活性
PAL activity
-0.839
重心高
Center of gravity height
0.980** 大维管束数目
Number of big vascular bundle
-0.106 4-香豆酸CoA连接酶活性
4-CL activity
-0.896*
节间长
Internode length
0.860 小维管束数目
Number of small vascular bundle
-0.891* 肉桂醇脱氢酶活性
CAD activity
-0.843
茎粗
Stem diameter
-0.844 小维管束面积
Small vascular bundle area
-0.863 过氧化物酶活性
POD activity
-0.931*
[1] 李姝彤, 边大红, 何璐, 王东梅, 郑晓萌, 崔彦宏. 黄淮海夏玉米倒伏及化控抗倒技术研究进展. 玉米科学, 2018, 26(3):95-101.
LI S T, BIAN D H, HE L, WANG D M, ZHENG X M, CUI Y H. Lodging characteristics of summer maize and chemical control research progresses preventing lodging in the North China Plain. Journal of Maize Sciences, 2018, 26(3):95-101. (in Chinese)
[2] 薛军, 王克如, 谢瑞芝, 勾玲, 张旺锋, 明博, 侯鹏, 李少昆. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51(10):1845-1854.
XUE J, WANG K R, XIE R Z, GOU L, ZHANG W F, MING B, HOU P, LI S K. Research progress of maize lodging during late stage. Scientia Agricultura Sinica, 2018, 51(10):1845-1854. (in Chinese)
[3] 刘洋, 侯廷荣, 郭新平, 柳京国, 白星焕, 董国豪, 董树亭, 孔晓民, 贾春兰, 吴明泉, 张吉旺. 山东省玉米产业发展现状与对策分析. 山东农业大学学报(社会科学版), 2017, 19(2):24-30.
LIU Y, HOU T R, GUO X P, LIU J G, BAI X H, DONG G H, DONG S T, KONG X M, JIA C L, WU M Q, ZHANG J W. Analysis on current situation and countermeasures of maize industry in Shandong province. Journal of Shandong Agricultural University(Social Science Edition), 2017, 19(2):24-30. (in Chinese)
[4] 李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009, 42(6):1941-1951.
LI S K, WANG C T. Evolution and development of maize production techniques in China. Scientia Agricultura Sinica, 2009, 42(6):1941-1951. (in Chinese)
[5] TOLLENAAR M, LEE E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 75(2/3):161-169.
doi: 10.1016/S0378-4290(02)00024-2
[6] 刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉. 种植密度对夏玉米产量和源库特性的影响. 应用生态学报, 2010, 21(7):1737-1743.
LIU W, LÜ P, SU K, YANG J S, ZHANG J W, DONG S T, LIU P, SUN Q Q. Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chinese Journal of Applied Ecology, 2010, 21(7):1737-1743. (in Chinese)
[7] 冯尚宗, 王世伟, 彭美祥, 刘宁, 赵桂涛. 不同种植密度对夏玉米产量、叶面积指数和干物质积累的影响. 江西农业学报, 2015, 27(3):1-5, 22.
FENG S Z, WANG S W, PENG M X, LIU N, ZHAO G T. Effects of different planting densities on grain yield, LAI and dry matter accumulation of summer maize. Acta Agriculturae Jiangxi, 2015, 27(3):1-5, 22. (in Chinese)
[8] 黄海. 群体密度对玉米茎秆及根系抗倒伏特性的影响[D]. 吉林: 吉林农业大学, 2013.
HUANG H. Effects of population density on lodging-resistance characteristic of stalk and root in maize[D]. Jilin: Jilin Agricultural University, 2013. (in Chinese)
[9] BAUCHER M, MONTIES B, MOMTAGU M V, BOERJAN W. Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Sciences, 1998, 17(2):125-197.
doi: 10.1080/07352689891304203
[10] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54(1):519-546.
doi: 10.1146/arplant.2003.54.issue-1
[11] HAHLBROCK K, SCHEEL D. Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1):347-369.
doi: 10.1146/arplant.1989.40.issue-1
[12] 耿飒, 徐存拴, 李玉昌. 木质素的生物合成及其调控研究进展. 西北植物学报, 2003, 23(1):171-181.
GENG S, XU C S, LI Y C. Advance in biosynthesis of lignin and its regulation. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1):171-181. (in Chinese)
[13] 李伟, 熊谨, 陈晓阳. 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003, 23(4):675-681.
LI W, XIONG J, CHEN X Y. Advances in the research of physiological significances and genetic regulation of lignin metabolism. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(4):675-681. (in Chinese)
[14] 董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响. 中国农业科学, 2020, 53(21):4399-4414.
DONG H H, LUO Y L, LI W Q, WANG Y Y, ZHANG Q X, CHEN J, JIN M, LI Y, WANG Z L. Effects of different spring nitrogen topdressing modes on lodging resistance and lignin accumulation of winter wheat. Scientia Agricultura Sinica, 2020, 53(21):4399-4414. (in Chinese)
[15] 王庭杰. 水稻茎组织构建与木质素代谢对抗倒伏的影响[D]. 新乡:河南师范大学, 2015.
WANG T J. Effects of stalk tissue and lignin metabolism on the lodging resistance of rice[D]. Xinxiang: Henan Normal University, 2015. (in Chinese)
[16] 邹俊林. 套作大豆苗期茎秆抗倒特征及其与木质素合成的关系研究[D]. 成都: 四川农业大学, 2015.
ZOU J L. Characteristics of stem lodging resistance of relay strip intercropping soybean and its relationship with lignin synthesis at seedling stage[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese)
[17] 张云明, 田保明, 师恭曜, 黄乐乐, 柳洋洋. 油菜茎秆几种发育相关酶的活性对茎秆抗倒伏性的影响. 中国农学通报, 2011, 27(18):135-138.
ZHANG Y M, TIAN B M, SHI G Y, HUANG L L, LIU Y Y. Effects of the key enzymes activity on the stem lodging resistance in Brassica napus L. Chinese Agricultural Science Bulletin, 2011, 27(18):135-138. (in Chinese)
[18] BANDARA P, TANINO K. Paclobutrazol enhances minituber production in Norland potatoes. Journal of Plant Growth Regulation, 1995, 14(3):151-155.
doi: 10.1007/BF00210917
[19] 刘文彬, 冯乃杰, 李东, 张洪鹏, 何天明, 赵晶晶, 王畅, 徐延辉. 2种调节剂对玉米抗倒伏和产量的影响. 黑龙江八一农垦大学学报, 2018, 30(2):19-24.
LIU W B, FENG N J, LI D, ZHANG H P, HE T M, ZHAO J J, WANG C, XU Y H. Effect of two kinds of regulator on lodging- resistance and yield of maize. Journal of Heilongjiang Bayi Agricultural University, 2018, 30(2):19-24. (in Chinese)
[20] 张子学, 朱仕燕, 李文阳, 刘正. 化控剂-乙烯利对玉米植株主要性状和产量的影响. 中国农学通报, 2014, 30(3):209-213.
ZHANG Z X, ZHU S Y, LI W Y, LIU Z. Effect of chemical control agent-ethephon on main characters and yield of maize. Chinese Agricultural Science Bulletin, 2014, 30(3):209-213. (in Chinese)
[21] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 北京: 高等教育出版社, 2009.
ZHANG Z L, QU W J, LI X F. Experimental Instruction in Plant Physiology. Beijing: Higher Education Press, 2009. (in Chinese)
[22] MORRISON T A, KESSLER J R, HATFIELD R D, BUXTON D. Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food and Agriculture, 2010, 65(2):133-139.
doi: 10.1002/(ISSN)1097-0010
[23] MOERSCHBACHER B M, NOLL U M, FLOTT B E. Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines. Physiological and Molecular Plant Pathology, 1988, 33(1):33-46.
doi: 10.1016/0885-5765(88)90041-0
[24] 王庭杰, 张亮, 韩琼, 郑凤霞, 王天琪, 冯娜娜, 王太霞. 玉米茎秆细胞壁和组织构建对抗压强度的影响. 植物科学学报, 2015, 33(1):109-115.
WANG T J, ZHANG L, HAN Q, ZHENG F X, WANG T Q, FENG N N, WANG T X. Effects of stalk cell wall and tissue on the compressive strength of maize. Plant Science Journal, 2015, 33(1):109-115. (in Chinese)
[25] 姚敏娜, 施志国, 薛军, 杨再文, 勾玲, 张旺锋. 种植密度对玉米茎秆皮层结构及抗倒伏能力的影响. 新疆农业科学, 2013, 50(11):2006-2014.
YAO M N, SHI Z G, XUE J, YANG Z W, GOU L, ZHANG W F. The effects of different planting densities on the cortex structure of steam and lodging resistance in maize. Xinjiang Agricultural Sciences, 2013, 50(11):2006-2014. (in Chinese)
[26] 田晓东. 乙烯利对夏玉米抗倒伏能力的影响研究[D]. 保定: 河北农业大学, 2014.
TIAN X D. Studies on the effect of ethephon on lodging resistance of summer maize[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
[27] 郑孟静. 不同小麦品种抗倒性能差异的内在机制及其对氮密互作的调控响应[D]. 泰安: 山东农业大学, 2017.
ZHENG M J. The mechanism of culm lodging resistance difference in wheat varieties and its regulation effects of nitrogen and density[D]. Tai’an: Shandong Agricultural University, 2017. (in Chinese)
[28] 柴孟竹, 李钊, 秦东玲, 刘禹辰, 徐密林, 董璐铭, 张倩, 杨德光, 张平. 乙烯利对玉米茎秆抗倒伏性的调控效应. 玉米科学, 2017, 25(6):63-72.
CHAI M Z, LI Z, QIN D L, LIU Y C, XU M L, DONG L M, ZHANG Q, YANG D G, ZHANG P. Effect of ethephon on lodging resistance of maize stem. Journal of Maize Sciences, 2017, 25(6):63-72. (in Chinese)
[29] 杨增玲, 梅佳琪, 曹聪, 纪冠亚, 韩鲁佳. 基于红外光谱的不同农作物秸秆磨木木质素差异表征. 农业工程学报, 2018, 34(19):219-224.
YANG Z L, MEI J Q, CAO C, JI G Y, HAN L J. Traits of milled wood lignin isolated from different crop straw based on FT-IR. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19):219-224. (in Chinese)
[30] MANGA-ROBLES A, SANTIAGO R, MALVAR R A, MORENO- GONZALEZ V, FORNALE S, LOPEZ I, CENTENO M L, ACEBES J L, ALVAREZ J M, CAPARROS-PUIZ D, ENCINA A, GARCIA- ANGULO P. Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. Plant Science, 2021, 307:110882.
doi: 10.1016/j.plantsci.2021.110882
[31] 佘恒志, 聂姣, 李英双, 刘星贝, 胡丹, 马珊, 次仁卓嘎, 汪灿, 吴东倩, 阮仁武, 易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征. 中国农业科学, 2017, 50(7):1202-1209.
SHE H Z, NIE J, LI Y S, LIU X B, HU D, MA S, CIREN Z G, WANG C, WU D Q, RUAN R W, YI Z L. Lignin and lignin monomer synthetic characteristics of culm in common buckwheat with different lodging resistance capabilities. Scientia Agricultura Sinica, 2017, 50(7):1202-1209. (in Chinese)
[32] 张洪生, 赵明, 吴沛波, 翟延举, 姜雯. 种植密度对玉米茎秆和穗部性状的影响. 玉米科学, 2009, 17(5):130-133.
ZHANG H S, ZHAO M, WU P B, ZHAI Y J, JIANG W. Effects of the plant density on the characteristics of maize stem and ear. Journal of Maize Sciences, 2009, 17(5):130-133. (in Chinese)
[33] 王海永, 陈小文, 牛晓雪, 苏贺, 申婷婷, 董学会. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014, 22(5):64-70.
WANG H Y, CHEN X W, NIU X X, SU H, SHEN T T, DONG X H. Influence of ethephon on maize cluster growth and development and the physiological mechanism. Journal of Maize Sciences, 2014, 22(5):64-70. (in Chinese)
[1] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] JIAO ZhiHui, CHEN GuiPing, FAN Hong, ZHANG JinDan, YIN Wen, LI HanTing, WANG QiMing, HU FaLong, CHAI Qiang. Water Use Characteristics of Increased Plant Density and Reduced Nitrogen Application Maize in Oasis Irrigated Area [J]. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099.
[4] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[7] FANG MengYing, LU Lin, WANG QingYan, DONG XueRui, YAN Peng, DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[8] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[9] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[10] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[11] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[12] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[13] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[14] HU DanDan,LI RongFa,LIU Peng,DONG ShuTing,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Mixed-Cropping Improved on Grain Filling Characteristics and Yield of Maize Under High Planting Densities [J]. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868.
[15] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!