Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2897-2906.doi: 10.3864/j.issn.0578-1752.2020.14.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics of Soil Enzyme Activities and CO2 and CH4 Emissions from Natural Wetland and Paddy Field in Karst Areas

YUAN Wu1(),JIN ZhenJiang1,2,3(),CHENG YueYang1,JIA YuanHang1,LIANG JinTao1,QIU JiangMei1,PAN FuJing1,2,3,LIU DeShen1,2,3   

  1. 1 College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi
    2 Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, Guangxi
    3 Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi
  • Received:2019-09-05 Accepted:2020-02-16 Online:2020-07-16 Published:2020-08-10
  • Contact: ZhenJiang JIN E-mail:wuyuan194@163.com;zhenjiangjinjin@163.com

Abstract:

【Objective】 The purpose of this study was to explore the impacts of land-use change on the relationship between soil enzyme activities and greenhouse gas emissions of wetlands. 【Method】 Huixian karst wetland and the top soil (0-20 cm) from a lake wetland and its adjacent paddy fields were used as a research site and research objects, respectively. The soil enzyme activities and CO2 and CH4 emissions were detected with colorimetric method and static-chamber method, respectively.【Result】The results showed that the activities of β-glucosidase, cellulase, invertase, chitinase, urease and alkaline phosphatase in the paddy soil were all higher than those in the lake wetland, with a range of 11.8%-32.7%. The fluxes of CO2 and CH4 from the paddy field were 255.9-789.7 mg·m-2·h-1and -0.41-1.74 mg·m-2·h-1, respectively. The average values of CO2 and CH4 fluxes from the paddy field were 445.8 and 0.42 mg·m-2·h-1, respectively, which were lower than those in the lake wetland. Compared with the lake wetland, the amount of CO2 and CH4 emissions from the paddy field were decreased by 22.3% and 83.3%, respectively, while the GHGs (including N2O) was decreased by 29.6%. Correlation analysis showed that the CO2 flux was significantly negatively correlated with the activities of β-glucosidase, cellulase, invertase and chitinase, while the CH4 flux was significantly negatively correlated with 6 soil enzyme activities (P<0.05).【Conclusion】The above results indicated that the conversion of a natural lake wetland into a paddy field had significantly increased soil enzyme activities and decreased the emissions of CO2 and CH4 at the same time, which was conductive to the improvement of microbial carbon-use-efficiency and the sequestration of soil carbon in Huixian karst wetland.

Key words: karst wetland, paddy field, enzyme activity, greenhouse gas emission

Table 1

Physical and chemical indicators and nutrient contents of different wetland types"

因子 湿地类型Wetland type
Factor 稻田 湖泊湿地
Paddy field Lake wetland
pH (H2O) 7.36±0.02b 7.63±0.08a
阳离子交换量CEC (cmol·kg-1) 22.13±0.25a 20.05±3.21a
交换性钙 Exchangeable Ca2+ (cmol·kg-1) 14.39±2.03a 14.49±0.59a
交换性镁Exchangeable Mg2+ (cmol·kg-1) 1.03±0.11a 0.55±0.04b
土壤有机碳SOC (g·kg-1) 26.62±0.32a 14.49±8.37b
可溶性有机碳DOC (mg·kg-1) 202.30±10.34a 116.60±47.78b
全氮TN (g·kg-1) 2.46±0.01a 1.42±0.71b
碱解氮AN (mg·kg-1) 89.54±2.59a 45.24±3.36b
全磷TP (g·kg-1) 0.87±0.04a 0.33±0.12b
有效磷AP (mg·kg-1) 30.50±2.30a 3.28±0.18b

Table 2

Enzyme activity in paddy field and lake wetland during growth period"

日期 湿地类型 β-葡萄糖苷酶 纤维素酶 蔗糖酶 几丁质酶 脲酶 碱性磷酸酶
Date Wetland type β-glucosidase
(μg·g-1·h-1)
Cellulase
(mg·10g-1·72h-1)
Invertase
(mg·g-1·24h-1)
Chitinase
(μg·g-1·18h-1)
Urease
(mg·g-1·24h-1)
Alkaline phosphatase
(mg·g-1·2h-1)
5.8 稻田 Paddy field 110.2±1.77a 5.85±0.08a 68.63±4.38a 3.86±0.19a 1.54±0.07a 1.12±0.05a
湖泊湿地Lake wetland 88.67±6.80b 2.39±0.35b 32.92±5.52b 2.61±0.05b 1.12±0.33b 0.47±0.08b
5.26 稻田Paddy field 87.90±6.32a 4.04±0.57a 167.0±11.15a 4.08±0.13a 1.01±0.08a 0.74±0.04a
湖泊湿地Lake wetland 68.64±8.57b 2.69±0.19b 49.43±16.26b 2.18±0.05b 1.13±0.12a 0.39±0.07b
6.3 稻田Paddy field 104.8±19.81a 5.26±0.61a 79.25±4.48a 4.10±0.38a 1.32±0.09a 0.94±0.04a
湖泊湿地Lake wetland 28.56±15.34b 2.87±0.38b 25.67±3.94b 1.96±0.09b 0.42±0.08b 0.26±0.10b
6.18 稻田Paddy field 117.7±12.67a 4.60±0.15a 106.0±17.71a 3.23±0.28a 1.56±0.18a 1.04±0.12a
湖泊湿地Lake wetland 70.20±18.73b 2.92±0.19b 93.19±24.76a 2.65±0.57a 0.79±0.22b 0.95±0.07a
7.4 稻田Paddy field 71.14±0.49a 4.18±0.34a 47.38±2.37a 2.23±0.11a 1.22±0.05a 0.74±0.08a
湖泊湿地Lake wetland 44.91±0.41b 2.54±0.95b 46.56±3.99a 2.21±0.04a 0.97±0.17b 0.69±0.13a
7.16 稻田Paddy field 125.9±33.66a 4.97±0.59a 95.92±6.29a 4.16±0.10a 1.76±0.26a 1.13±0.08a
湖泊湿地Lake wetland 71.07±18.67b 3.63±0.54b 41.34±3.52b 2.31±0.63b 1.00±0.33b 1.18±0.24a
7.29 稻田Paddy field 113.4±12.22a 6.63±0.30a 57.30±13.02a 3.69±0.49a 2.28±0.20a 1.10±0.17a
湖泊湿地Lake wetland 73.21±6.72b 3.64±0.51b 32.98±7.59b 2.46±0.31b 1.65±0.51a 1.36±0.20a
8.5 稻田Paddy field 115.3±9.73a 8.19±0.67a 120.4±27.58a 3.65±0.27a 2.52±0.20a 1.61±0.11a
湖泊湿地Lake wetland 88.86±13.44b 3.69±0.43b 54.63±12.73b 2.82±0.13b 1.59±0.46b 1.33±0.53a

Table 3

Normalization of enzyme activity during rice growth period"

湿地类型
Wetland type
β-葡萄糖苷酶
β-glucosidase
纤维素酶
Cellulase
蔗糖酶
Invertase
几丁质酶
Chitinase
脲酶
Urease
碱性磷酸酶
Alkaline phosphatase
稻田Paddy field 0.61 0.64 0.66 0.60 0.60 0.56
湖泊湿地Lake wetland 0.39 0.36 0.34 0.40 0.40 0.44

Fig. 1

Greenhouse gas flux from paddy field and lake wetland Different letters in the figure indicate significant difference among the variables at P<0.05"

Table 4

The amount of greenhouse gas emission and the potential for warming up during rice growth period"

湿地类型
Wetland type
CO2排放总量
Emissions of CO2 (kg·hm-2)
CH4排放总量
Emissions of CH4 (kg·hm-2)
N2O排放总量
Emissions of N2O (kg·hm-2)
GHGs
稻田Paddy field 9108.4 8.38 0.38 9443.7
湖泊湿地Lake wetland 11722.1 50.04 1.07 13406.8

Table 5

Correlation between enzyme activity and greenhouse gas flux during growth period"

β-葡萄糖苷酶
β-glucosidase
纤维素酶
Cellulase
蔗糖酶
Invertase
几丁质酶
Chitinase
脲酶
Urease
碱性磷酸酶
Alkaline phosphatase
CO2排放通量
CO2 flux
纤维素酶 Cellulase 0.633**
蔗糖酶Invertase 0.433** 0.433**
几丁质酶Chitinase 0.633** 0.500** 0.533**
脲酶Urease 0.667** 0.567** 0.300 0.367*
碱性磷酸酶Alkaline phosphatase 0.433** 0.400* 0.233 0.367* 0.533**
CO2排放通量CO2 flux -0.367* -0.433** -0.333* -0.500** -0.167 -0.200
CH4排放通量CH4 flux -0.683** -0.417* -0.483** -0.483** -0.550** -0.350* 0.317*
[1] 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴. 陆地生态系统地下碳输入与输出过程研究进展. 植物学报, 2017,52(5):652-668.
XIAO C W, YANG F, LIU J Y, ZHOU Y, SU J Q, LIANG Y, PEI Z Q. Advances in input and output processes of below-ground carbon of terrestrial ecosystems. Chinese Bulletin of Botany, 2017,52(5):652-668. (in Chinese)
[2] 宋长春, 宋艳宇, 王宪伟, 郭跃东, 孙丽, 张新厚. 气候变化下湿地生态系统碳、氮循环研究进展. 湿地科学, 2018,16(3):424-431.
SONG C C, SONG Y Y, WANG X W, GUO Y D, SUN L, ZHANG X H. Advance in researches on carbon and nitrogen cycles in wetland ecosystems under climate change. Wetland Science, 2018,16(3):424-431. (in Chinese)
[3] 马安娜, 陆健健. 湿地生态系统碳通量研究进展. 湿地科学, 2008,6(2):116-123.
MA A N, LU J J. The progress of research on carbon flux in wetland ecosystems. Wetland Science, 2008,6(2):116-123. (in Chinese)
[4] 李典友, 潘根兴. 长江中下游地区湿地开垦及土壤有机碳含量变化. 湿地科学, 2009,7(2):187-190.
LI D Y, PAN G X. Cultivation of wetlands and changes of soil organic carbon content in the middle and lower reaches of Yangtze River. Wetland Science, 2009,7(2):187-190. (in Chinese)
[5] 熊汉锋, 黄世宽, 陈治平, 廖勤周, 谭启玲. 梁子湖湿地土壤酶初步研究. 生态环境, 2006,15(6):179-183.
XIONG H F, HUANG S K, CHEN Z P, LIAO Q Z, TAN Q L. Soil enzyme activities of wetland in Liangzi Lake. Ecology and Environment, 2006,15(6):179-183. (in Chinese)
[6] 靳振江, 邰继承, 潘根兴, 李恋卿, 宋祥云, 谢添, 刘晓雨, 王丹. 荆江地区湿地与稻田有机碳、微生物多样性及土壤酶活性的比较. 中国农业科学, 2012,45(18):3773-3781.
JIN Z J, TAI J C, PAN G X, LI L Q, SONG X Y, XIE T, LIU X Y, WANG D. Comparison of soil organic carbon, microbial diversity and enzyme activity of wetlands and rice paddies in Jingjiang Area of Hubei, China. Scientia Agricultura Sinica, 2012,45(18):3773-3781. (in Chinese)
[7] HUANG L, HU W, TAO J, LIU Y, KONG Z, WU L. Soil bacterial community structure and extracellular enzyme activities under different land use types in a long-term reclaimed wetland. Journal of Soils and Sediments, 2019,19(5):2543-2557.
doi: 10.1007/s11368-019-02262-1
[8] 何小青, 许信旺, 方宇媛, 毛敏, 石小磊, 郑聚锋. 淡水湿地不同围垦土壤非耕季节呼吸速率差异. 水土保持通报, 2014,34(1):118-122.
HE X Q, XU X W, FANG Y Y, MAO M, SHI X L, ZHENG J F. Difference of soil respiration rate in freshwater wetland with different reclamation methods during non-cropping season. Bulletin of Soil and Water Conservation, 2014,34(1):118-122. (in Chinese)
[9] 张容娟, 布乃顺, 崔军, 方长明. 土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响. 生态学报, 2010,30(24):6698-6706.
ZHANG R J, BU N S, CUI J, FANG C M. Effects of land use on soil organic carbon and soil respiration in soils reclaimed from wetland in the Chongming Island. Acta Ecologica Sinica, 2010,30(24):6698-6706. (in Chinese)
[10] 任文玲, 侯颖, 杨淑慧, 仲启铖, 王开运. 崇明岛新围垦区不同土地利用条件下的土壤呼吸研究. 生态环境学报, 2011,20(1):97-101.
REN W L, HOU Y, YANG S H, ZHONG Q C, WANG K Y. Research on soil respiration of different use-lands in new reclaimed soils in the Chongming Island. Ecology and Environmental Sciences, 2011,20(1):97-101. (in Chinese)
[11] 王圣燕, 陈圆, 徐勇峰, 韩建刚, 李萍萍. 洪泽湖湿地重金属含量与N2O释放特征及关系. 福建农林大学学报(自然科学版), 2018,47(2):236-242.
WANG S Y, CHEN Y, XU Y F, HAN J G, LI P P. Relationship between heavy metal contents and N2O emission in sediments from Hung-tse Lake wetland. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018,47(2):236-242. (in Chinese)
[12] 靳振江, 曾鸿鹄, 李强, 程亚平, 汤华峰, 李敏, 黄炳富. 起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较. 环境科学, 2016,37(1):335-341.
JIN Z J, ZENG H H, LI Q, CHENG Y P, TANG H F, LI M, HUANG B F. Comparisons of microbial numbers, biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland. Environmental Science, 2016,37(1):335-341. (in Chinese)
[13] 贾远航, 靳振江, 袁武, 程跃扬, 邱江梅, 梁锦桃, 潘复静, 刘德深. 会仙岩溶湿地、稻田与旱地土壤细菌群落结构特征比较. 环境科学, 2019,40(7):3313-3323.
JIA Y H, JIN Z J, YUAN W, CHENG Y Y, QIU J M, LIANG J T, PAN F J, LIU D S. Comparison of soil bacterial community structure between paddy fields and dry land in the Huixian karst wetland, China. Environmental Science, 2019,40(7):3313-3323. (in Chinese)
[14] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Methods of Soil Agricultural Chemical Analysis. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[15] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme and Its Research Method. Beijing: China Agricultural Press, 1986. (in Chinese)
[16] ZHANG X X, FAN C H, MA Y C, LIU Y L, LI L, ZHOU Q S, XIONG Z Q. Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China. Nutrient Cycling in Agroecosystems, 2014,100(3):301-313.
[17] HUANG Y, ZHANG W, SUN W J, ZHENG X H. Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 2007,17(3):692-701.
doi: 10.1890/05-1792 pmid: 17494389
[18] KIMURA M, MURASE J, LU Y H. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biology and Biochemistry, 2004,36(9):1399-1416.
[19] MANDAL B, MAJUMDER B, ADHYA T, BANDYOPADHYAY P, GANGOPADHYAY A, SARKAR D, KUNDU M, CHOUDHURY S, HAZRA G, KUNDU S, SAMANTARAY R, MISRA A. Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Global Change Biology, 2008,14(9):2139-2151.
[20] ZHANG L M, YU D S, SHI X Z, WEINDORF D, ZHAO L M, DING W X, WANG H J, PAN J J, LI C S. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1: 50,000 soil database with DNDC model. Atmospheric Environment, 2009,43(17):2737-2746.
[21] 熊正琴, 张晓旭. 氮肥高效施用在低碳农业中的关键作用. 植物营养与肥料学报, 2017,23(6):1433-1440.
XIONG Z Q, ZHANG X X. Key role of efficient nitrogen application in low carbon agriculture. Journal of Plant Nutrition and Fertilizer, 2017,23(6):1433-1440. (in Chinese)
[22] 严金龙. 湿地、稻田土壤酶分布与活性及生态功能指示[D]. 南京: 南京农业大学, 2011.
YAN J L. Distribution, activity and ecological indicator function of enzymes in wetland and paddy soils[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[23] 陈贵, 赵国华, 张红梅, 沈亚强, 汪峰, 程旺大. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响. 中国土壤与肥料, 2017(1):92-97.
CHEN G, ZHAO G H, ZHANG H M, SHEN Y Q, WANG F, CHENG W D. Effect of long-term organic fertilizers application on rice yield, nitrogen and phosphorus use efficiency. Soil and Fertilizer Sciences in China, 2017(1):92-97. (in Chinese)
[24] 柳开楼, 李亚贞, 秦江涛, 夏桂龙, 刘金花, 胡惠文, 周利军, 叶会财, 徐小林. 中亚热带稻田不同耕作栽培和施肥模式对土壤肥力的影响. 土壤, 2015,47(2):310-317.
LIU K L, LI Y Z, QIN J T, XIA G L, LIU J H, HU H W, ZHOU L J, YE H C, XU X L. Effects of different tillage, straw returning and transplanting methods on paddy soil fertility in middle subtropical region. Soils, 2015,47(2):310-317. (in Chinese)
[25] CHEN H, LUO P, WEN L, YANG L, WANG K, LI D. Determinants of soil extracellular enzyme activity in a karst region, southwest China. European Journal of Soil Biology, 2017,80:69-76.
[26] LIU Z, RONG Q, ZHOU W, LIANG G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. Plos One, 2017,12(3):e0172767.
doi: 10.1371/journal.pone.0172767 pmid: 28263999
[27] DONG W Y, ZHANG X Y, DAI X Q, FU X L, YANG F T, LIU X Y, SUN X M, WEN X F, SCHAEFFER S. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 2014,84:140-147.
[28] 万忠梅, 宋长春. 土壤酶活性对生态环境的响应研究进展. 土壤通报, 2009,40(4):951-956.
WAN Z M, SONG C C. Advance on response of soil enzyme activity to ecological environment. Chinese Journal of Soil Science, 2009,40(4):951-956. (in Chinese)
[29] 李香兰, 徐华, 曹金留, 蔡祖聪, 八木一行. 水分管理对水稻生长期CH4排放的影响. 土壤, 2007,39(2):238-242.
LI X L, XU H, CAO J L, CAI Z C, KAZUYUKI Y. Effect of water management on CH4 emission during rice-growing season. Soils, 2007,39(2):238-242. (in Chinese)
[30] TARIQ A, JENSEN L S, SANDER B O, TOURDONNET S D, AMBUS P L, THANH P H, TRINH M V, NEERGAARD A D. Paddy soil drainage influences residue carbon contribution to methane emissions. Journal of Environmental Management, 2018,225:168-176.
doi: 10.1016/j.jenvman.2018.07.080 pmid: 30119009
[31] 李香兰, 徐华, 蔡祖聪, 八木一行. 水稻生长后期水分管理对CH4和N2O排放的影响. 生态环境学报, 2009,18(1):332-336.
LI X L, XU H, CAI Z C, KAZUYUKI Y. Effect of water management of late stage of rice growth on methane and nitrous oxide emissions. Ecology and Environmental Sciences, 2009,18(1):332-336. (in Chinese)
[32] 贾仲君, 蔡祖聪. 水稻植株对稻田甲烷排放的影响. 应用生态学报, 2003,14(11):2049-2053.
pmid: 14997675
JIA Z J, CAI Z C. Effects of rice plants on methane emission from paddy fields. Chinese Journal of Applied Ecology, 2003,14(11):2049-2053. (in Chinese)
pmid: 14997675
[33] 阎丽娜, 李霞. 水稻对稻田甲烷排放的影响. 中国农学通报, 2008,24(10):471-476.
YAN L N, LI X. Effects of rice on methane emission from paddy fields. Chinese Agricultural Science Bulletin, 2008,24(10):471-476. (in Chinese)
[34] 陈槐, 周舜, 吴宁, 王艳芬, 罗鹏, 石福孙. 湿地甲烷的产生、氧化及排放通量研究进展. 应用与环境生物学报, 2006,12(5):726-733.
CHEN H, ZHOU S, WU N, WANG Y F, LUO P, SHI F S. Advance in studies on production, oxidation and emission flux of methane from wetlands. Chinese Journal of Applied and Environmental Biology, 2006,12(5):726-733. (in Chinese)
[35] 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展. 中国生态农业学报, 2018,26(2):175-181.
JIANG Y, GUAN D H, ZHANG W J. The effect of rice plant traits on methane emissions from paddy fields: a review. Chinese Journal of Eco-Agriculture, 2018,26(2):175-181. (in Chinese)
[36] ZHANG H, LIU H, HOU D, ZHOU Y, LIU M, WANG Z, LIU L, GU J, YANG J. The effect of integrative crop management on root growth and methane emission of paddy rice. The Crop Journal, 2019,7(4):444-457.
doi: 10.1016/j.cj.2018.12.011
[37] SIX J, CONANT R T, PAUL E A, PAUSTIAN K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002,241(2):155-176.
doi: 10.1023/A:1016125726789
[38] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, MARIOS D, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质. 地球科学进展, 2019,34(5):451-470.
PAN G X, DING Y J, CHEN S T, SUN J L, FENG X, ZHANG C, MARIOS D, ZHENG J F, ZHANG X H, CHENG K, LIU X Y, BIAN R J, LI L Q. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage. Advances in Earth Science, 2019,34(5):451-470. (in Chinese)
[39] 潘根兴, 陆海飞, 李恋卿, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 郑金伟. 土壤碳固定与生物活性:面向可持续土壤管理的新前沿. 地球科学进展, 2015,30(8):940-951.
PAN G X, LU H F, LI L Q, ZHENG J F, ZHANG X H, CHENG K, LIU X Y, BIAN R J, ZHENG J W. Soil carbon sequestration with bioactivity: a new emerging frontier for sustainable soil management. Advances in Earth Science, 2015,30(8):940-951. (in Chinese)
[40] CHI J, ZHANG W, WANG L, PUTNIS C V. Direct observations of the occlusion of soil organic matter within calcite. Environmental Science & Technology, Environmental Science & Technology, 2019,53(14):8097-8104.
doi: 10.1021/acs.est.8b06807 pmid: 31241316
[1] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[4] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[5] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[6] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[7] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[8] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[9] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[10] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[11] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[12] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[13] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[14] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[15] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!