Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (12): 2423-2434.doi: 10.3864/j.issn.0578-1752.2020.12.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland

JIAO YaPeng1,QI Peng1,2,3(),WANG XiaoJiao1,4,WU Jun1,2,3,YAO YiMing1,CAI LiQun1,2,3,ZHANG RenZhi1,2,3   

  1. 1 College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070;
    2 Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070;
    3 Gansu Engineering Research Center for Agriculture Water-Saving, Lanzhou 730070;
    4 College of Management, Gansu Agricultural University, Lanzhou 730070
  • Received:2019-09-01 Online:2020-06-16 Published:2020-06-25
  • Contact: Peng QI E-mail:gsauqip@163.com

Abstract:

【Objective】 The changes in enzyme activity conversion and soil organic nitrogen components in different nitrogen application rates were studied, and the relationship between enzyme activity and organic nitrogen component was analyzed. It provided a reference for rationally formulating fertilization amount and fertilization plan in the dry farming area of the Loess Plateau. 【Method】 Based on the different nitrogen (N) application rates (0 (CK), 52.5 (N1), 105 (N2), 157.5 (N3), and 210 (N4) kg N·hm-2) in Mazichuan village, Lijiabao town, Dingxi city, Loess Plateau, a long-term positioning test was set up on a spring wheat field. Bremner’s method was used to determine the content of organic nitrogen in the 0-40 cm soil layer after harvest, and the activities of four nitrogen-related enzymes were also measured. 【Result】 The order of distribution of soil organic nitrogen components was: amino acid nitrogen>acidolyzable ammonia nitrogen>unknown-acidolyzable nitrogen>amino sugar nitrogen. With the increase of N application rate, soil organic carbon, total nitrogen, total acid nitrogen, amino acid nitrogen, acidolyzable ammonium, urease activity and protease activity increased first and then decreased. Except for total nitrogen, all other components reached the maximum value under N2, and the total nitrogen content reached the maximum value under N3. Different soil layers in the same treatment decreased with the increasing soil depths. The results of redundancy analysis indicated that total nitrogen content and protease activity were the key factors affecting the distribution and transformation of organic nitrogen components in the Loess Plateau of Longzhong. C:N ratio was negatively correlated with all organic nitrogen components, while protease, organic carbon and urease were positively correlated with amino acid nitrogen. 【Conclusion】 In general, N2 treatment had the highest nitrogen supply potential, and the total nitrogen was the key factor affecting the transformation of organic nitrogen components in spring wheat in this area. The changes of soil organic nitrogen composition under different nitrogen application rates were obvious, which changed nitrogen in the conversion enzyme activity.

Key words: nitrogen application rate, spring wheat, organic nitrogen component, enzyme activity, redundancy analysis, Loess Plateau

Fig. 1

Influence of soil organic N forms content under different nitrogen rates Different lower case letters with the same soil layer indicate significant difference among different treatment at the 0.05 level. The same as below"

Fig. 2

Influence of soil organic N forms under different nitrogen rates"

Table 1

Influence of soil physical-chemical proprieties under different nitrogen level"

处理
Treatment
土层
Soil layers (cm)
pH 有机碳
Soil organic C (g·kg-1)
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus (g·kg-1)
C﹕N
CK 0-10 8.24 ± 0.03a 8.31 ± 0.19c 0.84 ± 0.02c 0.93 ± 0.02a 9.63 ± 0.49ab
10-20 8.37 ± 0.02a 8.02 ± 0.06b 0.79 ± 0.04c 0.79 ± 0.01a 10.11 ± 0.27a
20-40 8.41 ± 0.03a 7.36 ± 0.25b 0.71 ± 0.01c 0.63 ± 0.00a 10.20 ± 0.38a
N1 0-10 8.18 ± 0.02b 9.38 ± 0.12b 0.92 ± 0.03b 0.92 ± 0.00ab 9.72 ± 0.28a
10-20 8.27 ± 0.03b 8.67 ± 0.20ab 0.87 ± 0.05bc 0.79 ± 0.01ab 10.23 ± 0.2ab
20-40 8.35 ± 0.02ab 7.99 ± 0.08ab 0.79 ± 0.01b 0.61 ± 0.00b 9.95 ± 0.13ab
N2 0-10 8.18 ± 0.01b 9.45 ± 0.14a 1.06 ± 0.01a 0.88 ± 0.01bc 8.73 ± 0.27bc
10-20 8.23 ± 0.04b 8.74 ± 0.30a 1.00 ± 0.04ab 0.79 ± 0.03bc 9.05 ± 0.25bc
20-40 8.31 ± 0.04bc 8.66 ± 0.14a 0.90 ± 0.02a 0.61 ± 0.01bc 9.23 ± 0.29bc
N3 0-10 8.11 ± 0.01c 9.40 ± 0.06ab 1.09 ± 0.01a 0.85 ± 0.02c 8.71 ± 0.12c
10-20 8.20 ± 0.01b 8.87 ± 0.07a 1.04 ± 0.02a 0.72 ± 0.01c 8.98 ± 0.17c
20-40 8.26 ± 0.04bc 8.03 ± 0.21ab 0.91 ± 0.02a 0.58 ± 0.00c 8.91 ± 0.38c
N4 0-10 8.11 ± 0.00c 9.13 ± 0.14ab 1.04 ± 0.01a 0.96 ± 0.02ab 8.77 ± 0.13c
10-20 8.11 ± 0.02c 9.01 ± 0.17a 0.95 ± 0.05ab 0.81 ± 0.00a 10.22 ± 0.26b
20-40 8.22 ± 0.01c 7.93 ± 0.01b 0.88 ± 0.01a 0.63 ± 0.01a 9.20 ± 0.12c

Fig. 3

Influence of soil enzyme activities under different nitrogen rates"

Fig. 4

Redundancy analysis of soil chemical properties, enzyme activities and soil organic nitrogen forms"

[1] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 2007(2):205-218.
LÜ C Q, TIAN H Q, HUANG Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology, 2007(2):205-218. (in Chinese)
[2] 高涵, 肖礼, 牛丹, 倪银霞, 黄懿梅. 宁南山区退耕还林还草对土壤氮素组成及其转化酶活的影响. 环境科学, 2019,40(8):3825-3832.
GAO H, XIAO L, NIU D, NI Y X, HUANG Y M. Effects of converting farmland into forest and grassland on soil nitrogen component and conversion enzyme activity at mountain area of Southern Ningxia. Environmental Science, 2019,40(8):3825-3832. (in Chinese)
[3] 贾倩, 廖世鹏, 卜容燕, 张萌, 任涛, 李小坤, 丛日环, 鲁剑巍. 不同轮作模式下氮肥用量对土壤有机氮组分的影响. 土壤学报, 2017,54(6):1547-1558.
JIA Q, LIAO S P, BU R Y, ZHANG M, REN T, LI X K, CONG R H, LU J W. Effects of nitrogen application rate on fractionation of soil organic nitrogen relative to crop rotation mode. Acta Pedologica Sinica, 2017,54(6):1547-1558.
[4] THOMAS B W, WHALEN J K, SHARIFI M, CHANTIGNY M, ZEBARTH B J. Labile organic matter fractions as early-season nitrogen supply indicators in manure-amended soils. Journal of Plant Nutrition and Soil Science, 2016,179:94-103.
doi: 10.1002/jpln.v179.1
[5] SHAHID M, NAYAK A K, PUREE C, TRIPATHI R, LAL B, GAUTAM P. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil and Tillage Research, 2017,170:136-146.
doi: 10.1016/j.still.2017.03.008
[6] SCHULTEN H R, SCHNITZER M. The chemistry of soil organic nitrogen: A review. Biology and Fertility of Soils, 1998,26:1-15.
doi: 10.1007/s003740050335
[7] BREMNER J M. Organic forms of nitrogen//BLACK C A. Methods of Soil Analysis. Madison, Wisconsin, USA: American Society of Agronomy Incorporation, 1965: 1148-1178.
[8] 张丽敏, 徐明岗, 娄翼来, 王小利, 段建军, 李渝, 蒋太明, 段英华. 长期有机无机肥配施增强黄壤性水稻土有机氮的物理保护作用. 植物营养与肥料学报, 2015,21(6):1481-1486.
doi: 10.11674/zwyf.2015.0613
ZHANG L M, XU M G, LOU Y L, WANG X L, DUAN J J, LI Y, JIANG T M, DUAN Y H. Combined application of chemical and organic fertilizers long-term increase physical protection of nitrogen in yellow paddy soil. Journal of Plant Nutrition and Fertilizer, 2015,21(6):1481-1486. (in Chinese)
doi: 10.11674/zwyf.2015.0613
[9] LÜ H J, HE H, ZHAO J, ZHAO J, ZHANG W, XIE H, HU G Q. Dynamics of fertilizer-derived organic nitrogen fractions in an arable soil during a growing season. Plant and Soil, 2013,373(1/2):595-607.
doi: 10.1007/s11104-013-1824-8
[10] WERDIN-PFISTERER N R, KIELLAND K, BOONE R D. Soil amino acid composition across a boreal forest successional sequence. Soil Biology & Biochemistry, 2009,41(6):1210-1220.
doi: 10.1016/j.soilbio.2009.03.001
[11] 巨晓棠, 刘学军, 张福锁. 长期施肥对土壤有机氮组成的影响. 中国农业科学, 2004(1):87-91.
JU X T, LIU X J, ZHANG F S. Effects of long-term fertilization on soil organic nitrogen fractions. Scientia Agricultura Sinica, 2004(1):87-91. (in Chinese)
[12] DICK W A. Influence of long-term tillage and crop rotation combination on soil enzyme activities. Soil Science Society of America Journal, 1984,48:569-574.
doi: 10.2136/sssaj1984.03615995004800030020x
[13] 姜小凤, 王淑英, 丁宁平, 樊廷录, 张平良, 郭建国, 李倩, 苏敏. 施肥方式对旱地土壤酶活性和养分含量的影响. 核农学报, 2010,24(1):136-141.
JIANG X F, WANG S P, DING N P, FAN T L, ZHANG P L, GUO J G, LI Q, SU M. Effect of different fertilization on soil enzyme activity and nutrients. Journal of Nuclear Agricultural Sciences, 2010,24(1):136-141. (in Chinese)
[14] 王树起, 韩晓增, 乔云发, 王守宇, 李晓慧. 不同土地利用和施肥方式对土壤酶活性及相关肥力因子的影响. 植物营养与肥料学报, 2009,15(6):1311-1316.
doi: 10.11674/zwyf.2009.0610
WANG S Q, HAN X Z, QIAO Y F, WANG S Y, LI X H. Effects of land uses and fertilization systems on soil enzyme activities and nutrients. Plant Nutrition and Fertilizer Science, 2009,15(6):1311-1316. (in Chinese)
doi: 10.11674/zwyf.2009.0610
[15] 杨万勤, 钟章成, 陶建平, 何维明. 缙云山森林土壤酶活性与植物多样性的关系. 林业科学, 2001(4):124-128.
doi: 10.11707/j.1001-7488.20010420
YANG W Q, ZHONG Z C, TAO J P, HE W M. Study on relationship between soil enzymic activities and plant species diversity in forest ecosystem. Scientia Silvae Sinicae, 2001(4):124-128. (in Chinese)
doi: 10.11707/j.1001-7488.20010420
[16] 丁效东, 闫慧峰, 张士荣, 陈伟贤, 郭俊杰, 魏彬, 王军. 有机肥C/N优化下氮肥运筹对烟株根际无机氮和酶活性的影响. 中国烟草科学, 2016,37(1):26-31.
DING X D, YAN H F, ZHANG S R, CHEN W X, GUO J J, WEI B, WANG J. The effect of nitrogen management on Nmin and enzyme activities in rhizosphere soil of flue-cured tobacco under the optimization of C/N with organic fertilizer. Chinese Tobacco Science, 2016,37(1):26-31. (in Chinese)
[17] 李世清, 李生秀, 邵明安, 郭大勇. 半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响. 中国农业科学, 2004,37(6):859-864.
LI S Q, LI S X, SHAO M A, GUO D Y. Effects of long-term application of fertilizers on soil organic nitrogen components and microbial biomass nitrogen in semiarid farmland ecological system. Scientia Agricultura Sinica, 2004,37(6):859-864. (in Chinese)
[18] 吴汉卿, 杜世宇, 高娜, 张玉玲, 邹洪涛, 张玉龙, 虞娜. 水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响. 水土保持学报, 2017,31(6):212-219.
WU H Q, DU S Y, GAO N, ZHANG Y L, ZOU H T, ZHANG Y L, YU N. Effects of water and nitrogen regulation on soil organic nitrogen fractions, total nitrogen and mineral nitrogen in greenhouse soil. Journal of Soil and Water Conservation, 2017,31(6):212-219. (in Chinese)
[19] TIAN J, WEI K, CONDRON L M, CHEN Z H, XU Z W, FENG J, CHEN L J. Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogen-mineralizing enzymes in semi-arid steppe and abandoned cropland. Plant and Soil, 2017,417(1/2):217-229.
doi: 10.1007/s11104-017-3253-6
[20] 姬景红, 张玉龙, 黄毅, 虞娜, 张玉玲. 灌溉方法对保护地土壤有机氮组分及剖面分布的影响. 水土保持学报, 2007(6):99-104.
JI J H, ZHANG Y L, HUANG Y, YU N, ZHANG Y L. Effect of different irrigation methods on forms and profile distribution of soil organic nitrogen in protected field. Journal of Soil and Water Conservation, 2007(6):99-104. (in Chinese)
[21] STEVENSON F J. Nitrogen in agricultural soils. Madisone Wisconsin: American Society of Agronomy, 1982.
[22] 吴汉卿, 杜世宇, 王丹阳, 薛飞, 张玉玲, 邹洪涛, 张玉龙, 虞娜. 设施土壤有机氮组分及番茄产量对水氮调控的响应. 植物营养与肥料学报, 2019,25(5):805-813.
WU H Q, DU S Y, WANG D Y, XUE F, ZHANG Y L, ZOU H T, ZHANG Y L, YU N. Response of soil organic nitrogen fractions and tomato yield to irrigation and nitrogen fertilization in greenhouse. Journal of Plant Nutrition and Fertilizers, 2019,25(5):805-813. (in Chinese)
[23] 党亚爱, 王国栋, 李世清. 黄土高原典型土壤有机氮组分剖面分布的变化特征. 中国农业科学, 2011,44(24):5021-5030.
doi: 10.3864/j.issn.0578-1752.2011.24.007
DANG Y A, WANG G D, LI S Q. The changing characteristics of profile distribution of soil organic nitrogen component of the typical soil types on the Loess Plateau. Scientia Agricultura Sinica, 2011,44(24):5021-5030. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.24.007
[24] XU Y C, SHEN Q R, RAN W. Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization. Chemosphere, 2003,50(6):739-745.
doi: 10.1016/S0045-6535(02)00214-X
[25] 付智丹, 周丽, 陈平, 杜青, 庞婷, 杨文钰, 雍太文. 施氮量对玉米/大豆套作系统土壤微生物数量及土壤酶活性的影响. 中国生态农业学报, 2017,25(10):1463-1474.
FU Z D, ZHOU L, CHEN P, DU Q, PANG T, YANG W Y, YONG T W. Effects of nitrogen application rate on soil microbial quantity and soil enzymes activities in maize/soybean intercropping systems. Chinese Journal of Eco-Agriculture, 2017,25(10):1463-1474. (in Chinese)
[26] 李珣, 吕小红. 施氮处理对不同株型水稻品种土壤全氮含量及相关酶活性的影响. 江苏农业科学, 2017,45(23):55-58.
LI X, LÜ X H. Effects of nitrogen application on soil total nitrogen content and related enzyme activities in different plant type rice varieties. Jiangsu Agricultural Sciences, 2017,45(23):55-58. (in Chinese)
[27] 闫钟清, 齐玉春, 彭琴, 董云社, 郭树芳, 贺云龙, 王丽芹, 李兆林. 降水和氮沉降增加对草地土壤酶活性的影响. 生态学报, 2017,37(9):3019-3027.
doi: 10.5846/stxb201601260184
YAN Z Q, QI Y C, PENG Q, DONG Y S, GUO S F, HE Y L, WANG L Q, LI Z L. Effects of increased precipitation and nitrogen deposition on soil enzyme activities. Acta Ecologica Sinica, 2017,37(9):3019-3027. (in Chinese)
doi: 10.5846/stxb201601260184
[28] 肖新, 李英峰, 韩贻涛, 陈世勇, 史亚东, 俞浩, 汪建飞. 尿素施用量对道地药材滁菊土壤微生物活性的影响. 水土保持学报, 2011,25(5):99-102.
XIAO X, LI Y F, HAN Y T, CHEN S Y, SHI Y D, YU H, WANG J F. Effects of urea fertilizer application on soil microbial activity of Chuzhou Chrysanthemum morifolium Ramat. Journal of Soil and Water Conservation, 2011,25(5):99-102. (in Chinese)
[29] 鲍士旦. 土壤农业化学分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agrochemical Analysis. Beijing: China Agricultural Press, 2000. (in Chinese)
[30] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzyme And Research Method. Beijing: China Agricultural Press, 1986. (in Chinese)
[31] 隋跃宇, 陈一民, 焦晓光, 张锦源. 土壤蛋白酶的测定方法: CN105784695A[P]. 2016-07-20 [2019-07-21].
SUI Y Y, CHEN Y M, JIAO X G, ZHANG G J. Determination method of soil protease: CN105784695A[P]. 2016-07-20 [2019-07-21]. (in Chinese)
[32] 彭令发, 郝明德, 来璐. 长期施肥对土壤有机氮影响研究Ⅰ氮肥及其配施下土壤有机氮组分变化. 水土保持研究, 2003,10(1):53-54.
PEN L F, HAO M D, LAI L. Studies of long-term fertilization on soil organic n componentsⅠ. The variation of soil organic N components of N fertilizer and its mixture. Research of Soil and Water Conservation, 2003,10(1):53-54. (in Chinese)
[33] ROVIRA P, RAMÓN V. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 2002,107(1/2):140-141.
[34] 沈其荣, 史瑞和. 不同土壤有机氮的化学组分及其有效性的研究. 土壤通报, 1990(2):54-57.
SHEN Q R, SHI R H. Study on chemical composition and availability of organic nitrogen in different soils. Chinese Journal of Soil Science, 1990(2):54-57. (in Chinese)
[35] KELLEY K R, STEVENSON F J. Forms and nature of organic N in soil. Fertilizer Research, 1995,42(1/3):1-11.
doi: 10.1007/BF00750495
[36] 吴汉卿, 张玉龙, 张玉玲, 邹洪涛, 虞娜. 土壤有机氮组分研究进展. 土壤通报, 2018,49(5):1240-1246.
WU H Q, ZHANG Y L, ZHANG Y L, ZOU H T, YU N. Soil organic nitrogen fractions: A review. Chinese Journal of Soil Science, 2018,49(5):1240-1246. (in Chinese)
[37] 王媛, 周建斌, 梁斌, 刘东娜. 不同栽培模式和施氮量对小麦-玉米轮作体系土壤供氮特性的影响. 植物营养与肥料学报, 2010,16(6):1351-1357.
doi: 10.11674/zwyf.2010.0608
WANG Y, ZHOU J B, LIANG B, LIU D N. Effects of different cultivation patterns and nitrogen fertilization on soil nitrogen supply of in the wheat-maize rotation system. Plant Nutrition and Fertilizer Science, 2010,16(6):1351-1357. (in Chinese)
doi: 10.11674/zwyf.2010.0608
[38] ZHANG X, WULF A. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology & Biochemistry, 1996,28(9):1201-1206.
doi: 10.1016/0038-0717(96)00117-4
[39] 王克鹏, 张仁陟, 索东让. 长期施肥对河西灌漠土有机氮组分及剖面分布的影响. 土壤通报, 2009,40(5):1092-1097.
WANG K P, ZHANG R Z, SUO R D. Effects of long-term fertilization on forms and profile distribution of soil organic nitrogen in irrigated desert soil. Chinese Journal of Soil Science, 2009,40(5):1092-1097. (in Chinese)
[40] 李萌, 王昌全, 李冰, 杨娟, 李喜喜, 游来勇, 李一丁. 猪粪替代氮肥对稻麦轮作条件下土壤有机氮组分的影响. 土壤, 2016,48(3):449-454.
LI M, WANG C Q, LI B, YANG J, LI X X, YOU L Y, LI Y D. Effects of pig manure replacing nitrogen fertilizer on soil organic nitrogen components under rice-wheat rotation. Soils, 2016,48(3):449-454. (in Chinese)
[41] 孙波, 赵其国, 张桃林, 俞慎. 土壤质量与持续环境—Ⅲ.土壤质量评价的生物学指标. 土壤, 1997(5):225-234.
SUN B, ZHAO Q G, ZHANG T L, YU S. Soil quality and sustainable environment-III. Biological indicators of soil quality assessment. Soils, 1997(5):225-234. (in Chinese)
[42] 郭天财, 宋晓, 马冬云, 王永华, 谢迎新, 岳艳军, 查菲娜. 施氮量对冬小麦根际土壤酶活性的影响. 应用生态学报, 2008(1):110-114.
pmid: 12722451
GUO T C, SONG X, MA D Y, WANG Y H, XIE Y X, YUE Y J, ZHA F N. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere. Chinese Journal of Applied Ecology, 2008(1):110-114. (in Chinese)
pmid: 12722451
[43] 曾艳, 周柳强, 黄美福, 黄金生, 韦运兰, 谢如林, 谭宏伟. 不同施氮量对桑园红壤耕层酶活性的影响. 生态学报, 2014,34(18):5306-5310.
doi: 10.5846/stxb201405110956
ZENG Y, ZHOU L Q, HUANG M F, HUANG J S, WEI Y L, XIE R L, TAN H W. Effects of nitrogen fertilization on enzyme activities in surface layer of red soil under mulberry cultivation. Acta Ecologica Sinica, 2014,34(18):5306-5310. (in Chinese)
doi: 10.5846/stxb201405110956
[44] 袁玲, 杨邦俊, 郑兰君, 刘学成. 长期施肥对土壤酶活性和氮磷养分的影响. 植物营养与肥料学报, 1997(4):300-306.
doi: 10.11674/zwyf.1997.0403
YUAN L, YANG B J, ZHENG L J, LIU X C. Effects of long-term fertilization on soil enzyme activities and nitrogen and phosphorus nutrients. Plant Nutrition and Fertilizer Science, 1997(4):300-306. (in Chinese)
doi: 10.11674/zwyf.1997.0403
[45] 徐福利, 梁银丽, 张成娥, 杜社妮, 陈志杰. 施肥对日光温室黄瓜生长和土壤生物学特性的影响. 应用生态学报, 2004(7):1227-1230.
XU F L, LIANG Y L, ZHANG C E, DU S N, CHEN Z J. Effect of fertilization on cucumber growth and soil biological characteristics in sunlight greenhouse. Chinese Journal of Applied Ecology, 2004(7):1227-1230. (in Chinese)
[46] CARREIRO M, SINSABAUGH R, REPERT D, PARKHURST D. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 2000,81:2359-2365.
doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
[47] 薛冬, 姚槐应, 何振立, 黄昌勇. 红壤酶活性与肥力的关系. 应用生态学报, 2005(8):1455-1458.
XUE D, YAO H Y, HE Z L, HUANG C Y. Relationships between red soil enzyme activity and fertility. Chinese Journal of Applied Ecology, 2005(8):1455-1458. (in Chinese)
[48] AON M A, CABELLO M N, SARENA D E, COLANERI A C, FRANCO M G, BURGOS J L, CORTASSA S. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Applied Soil Ecology, 2001,18:239-254.
doi: 10.1016/S0929-1393(01)00153-6
[49] BARTON L, SCHIPPER L A, SMITH C T, MCALY C D A. Denitrification enzyme activity is limited by soil aeration in a wastewater-irrigated forest soil. Biology and Fertility of Soils, 2000,32(5):385-389.
doi: 10.1007/s003740000267
[50] 陈哲, 袁红朝, 吴金水, 魏文学. 长期施肥制度对稻田土壤反硝化细菌群落活性和结构的影响. 生态学报, 2009,29(11):5923-5929.
CHEN Z, YUAN H C, WU J S, WEI W X. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Acta Ecologica Sinica, 2009,29(11):5923-5929. (in Chinese)
[51] DECKARD E L, BUSCH R H. Nitrate reductase assays as a prediction test for crosses and lines in spring wheat. Crop Science, 1978,18(2):289-293.
doi: 10.2135/cropsci1978.0011183X001800020024x
[52] 黄懿梅, 安韶山, 曲东, 赵伟峰. 黄土丘陵区植被恢复过程中土壤酶活性的响应与演变. 水土保持学报, 2007(1):152-155.
HUANG Y M, AN S S, QU D, ZHAO W F. Responses and evolution of soil enzymatic activities during process of vegetation recovering. Journal of Soil and Water Conservation, 2007(1):152-155. (in Chinese)
[53] 邹军, 喻理飞, 李媛媛. 退化喀斯特植被恢复过程中土壤酶活性特征研究. 生态环境学报, 2010,19(4):894-898.
ZOU J, YU L F, LI Y Y. Study on soil enzyme activity characteristics during succession of degraded karst vegetation. Ecology and Environmental Sciences, 2010,19(4):894-898. (in Chinese)
[54] 邢肖毅, 黄懿梅, 黄海波, 安韶山, 刘栋. 黄土丘陵区子午岭不同植物群落下土壤氮素及相关酶活性的特征. 生态学报, 2012,32(5):1403-1411.
doi: 10.5846/stxb201101090035
XING X Y, HUANG Y M, HUANG H B, AN S S, LIU D. Soil nitrogen and enzymes involved in nitrogen metabolism under different vegetation in Ziwuling mountain in the Loess Plateau, China. Acta Ecologica Sinica, 2012,32(5):1403-1411. (in Chinese)
doi: 10.5846/stxb201101090035
[55] 王常慧, 邢雪荣, 韩兴国. 草地生态系统中土壤氮素矿化影响因素的研究进展. 应用生态学报, 2004(11):2184-2188.
WANG C H, XING X R, HAN X G. Advances in study of factors affecting soil N mineralization in grassland ecosystems. Chinese Journal of Applied Ecology, 2004(11):2184-2188. (in Chinese)
[56] 谢泽宇, 罗珠珠, 李玲玲, 蔡立群, 张仁陟, 牛伊宁, 赵靖静. 黄土高原不同粮草种植模式土壤碳氮及土壤酶活性. 草业科学, 2017,34(11):2191-2199.
XIE Z Y, LUO Z Z, LI L L, CAI L Q, ZHANG R Z, NIU Y N, ZHAO J J. Soil carbon and nitrogen and soil enzyme activities of different forage planting models on the Loess Plateau. Pratacultural Science, 2017,34(11):2191-2199. (in Chinese)
[57] ROS G H, HANEGRAAF M C, HOFFLAND E, RIEMSDIJK W H V. Predicting soil N mineralization: Relevance of organic matter fractions and soil properties. Soil Biology & Biochemistry, 2011,43(8):1714-1722.
doi: 10.1016/j.soilbio.2011.04.017
[58] PRESCOTT C E, VESTERDAL H N C. Nitrogen turnover in forest floors of coastal douglas-fir at sites differing in soil nitrogen capital. Ecology, 2000,81(7):1878-1886.
doi: 10.1890/0012-9658(2000)081[1878:NTIFFO]2.0.CO;2
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[3] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[4] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[5] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[6] BiJiao MA,ZhiWen GOU,Wen YIN,AiZhong YU,ZhiLong FAN,FaLong HU,Cai ZHAO,Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[7] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[8] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[9] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[10] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[11] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[12] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[13] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[14] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[15] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!