Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4070-4083.doi: 10.3864/j.issn.0578-1752.2021.19.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties

WANG JinFeng1(),WANG ZhuangZhuang1(),GU FengXu1,MOU HaiMeng1,WANG Yu1,DUAN JianZhao1,FENG Wei1,2,WANG YongHua1,2(),GUO TianCai1,2()   

  1. 1College of Agronomy, Henan Agricultural University/National Engineering Research Centre for Wheat, Zhengzhou 450046
    2Collaborative Innovation Centre of Henan Grain Crops, Zhengzhou 450046
  • Received:2020-11-25 Accepted:2021-02-07 Online:2021-10-01 Published:2021-10-12
  • Contact: YongHua WANG,TianCai GUO E-mail:wangjf16@163.com;15737315382@163.com;wangyonghua88@126.com;gtcwheat@henau.edu.cn

Abstract:

【Objective】A field study was conducted to investigate the effects of nitrogen fertilizer, plant density and its interaction on carbon metabolism, nitrogen metabolism and grain yield of winter wheat in moist clayey soil of southeastern Henan province, and to clarify the appropriate nitrogen-density treatment for winter wheat in this area, so as to provide the technical support for optimizing high yield and high efficiency cultivation of winter wheat in this area. 【Method】The treatments included two varieties (Xinhua 818 with medium tiller ability and high heading rate and Bainong 207 with high tiller ability and medium heading rate), three nitrogen rates (N0, 0; N240, 240 kg·hm-2; N360, 360 kg·hm-2) and three plant densities (M1, 225×104 plant/hm2; M2, 375×104 plant/hm2; M3, 525×104 plant/hm2) during two consecutive winter wheat growing seasons from 2018 to 2020 in moist clayey soil of southeastern Henan province. The differences of carbon metabolism (soluble sugar content; SPS activity; SS activity), nitrogen metabolism (soluble protein content; NR activity; GS activity) and yield under three-factor treatments were analyzed. 【Result】Variety, nitrogen fertilizer and density and their interactions significantly affected the carbon and nitrogen metabolism of winter wheat, and nitrogen fertilizer was the main effect that affected the yield and its components of the two winter wheat varieties. The effects of nitrogen application amount and planting density on carbon and nitrogen metabolism of the two winter wheat varieties in different growth stages were different. On the whole, the advantage of nitrogen-density regulation on carbon metabolism of the two winter wheat was mainly in the late filling stage, while the advantage on nitrogen metabolism was mainly in the middle stage of filling, during which the average increase of carbon and nitrogen metabolism indexes under M2N240 was 358.28% compared with the minimum treatment. The balance of carbon and nitrogen metabolism had a greater impact on the yield formation of winter wheat varieties with different tiller heading rates, especially in the late growth stage, which was the main physiological reason that the yield of Xinhua 818 was higher than that of Bainong 207 as a whole. In the winter wheat growing season from 2018 to 2020, the yield under treatment of M2N240 was the highest. Compared with the M1N0 treatment with the lowest yield, the average yield increases in two years under M2N240 were 96.49%. 【Conclusion】Considering the effects of variety, nitrogen fertilizer, density and their interactions on the balance of carbon-nitrogen metabolism and yield of winter wheat, the advantages of nitrogen application and planting density on the carbon-nitrogen metabolism of two winter wheat varieties were mainly reflected in the middle and late stages of filling. The M2N240 combination treatment could be used as a suitable nitrogen-density cultivation mode for winter wheat in the moist clayey soil area of southeast Henan province.

Key words: winter wheat, nitrogen application rate, plant density, carbon and nitrogen metabolism, yield

Fig. 1

Dynamics of precipitation and temperature during winter wheat growing season in 2018-2020"

Table 1

Soil properties before sowing"

年份
Year
品种
Variety
土层
Soil layers
(cm)
有机质
Organic matter (g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮
Alkaline N (mg·kg-1)
速效钾
Available K (mg·kg-1)
有效磷
Available P (mg·kg-1)
pH
2018-2019 鑫华麦818
Xinhua 818
0-20 17.82 1.27 102.97 263.67 4.17 8.19
20-40 9.44 0.86 78.64 192.44 2.99 8.31
百农207
Bainong 207
0-20 16.54 1.21 102.47 299.47 3.90 8.12
20-40 13.98 1.13 88.04 246.16 3.34 8.21
2019-2020 鑫华麦818
Xinhua 818
0-20 17.60 1.17 94.38 157.92 6.49 8.16
20-40 7.97 0.75 74.39 112.95 3.50 8.24
百农207
Bainong 207
0-20 17.78 1.16 96.52 211.90 6.13 8.07
20-40 8.54 0.89 76.96 156.68 3.77 8.16

Table 2

Analysis of variance of carbon metabolism, nitrogen metabolism and yield components in winter wheat under variety, plant density and N rate"

指标
Item
时期
Time
2018―2019 2019―2020 年份
Year
品种
V
密度
D
氮肥
N
品种×
密度
V×D
品种×
氮肥
V×N
密度×
氮肥
D× N
品种×密
度×氮肥
V×D× N
品种
V
密度
D
氮肥
N
品种×
密度
V×D
品种×
氮肥
V×N
密度×
氮肥
D× N
品种×密
度×氮肥
V×D× N
可溶性糖含量
Soluble sugar content
-X *** *** *** *** *** *** *** *** *** *** *** *** *** *** NS
0 *** *** *** *** *** *** *** *** *** *** *** *** *** *** NS
10 *** *** *** *** *** *** *** *** *** *** *** *** *** *** NS
20 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
30 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
SPS 酶活性
SPS activity
-X *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
0 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
10 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
20 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
30 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
SS 酶活性
SS activity
-X *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
0 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
10 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
20 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
30 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
可溶性蛋白质含量
Soluble protein content
-X *** NS *** *** *** *** *** *** ** *** *** *** ** *** **
0 *** *** *** *** *** NS NS *** *** *** *** *** *** *** ***
10 *** *** *** ** *** NS NS *** *** *** *** *** NS *** ***
20 *** *** *** * *** ** *** *** *** *** *** *** *** *** NS
30 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
NR 酶活性
NR activity
-X *** *** *** *** *** *** *** *** *** *** *** *** *** *** NS
0 *** *** *** *** *** *** *** *** *** *** *** *** *** *** NS
10 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
20 *** *** *** *** *** *** *** *** *** *** *** NS *** *** **
30 *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
GS 酶活性
GS activity
-X *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
0 ** *** *** *** *** ** *** *** *** *** *** *** *** *** ***
10 NS *** *** *** *** *** * *** *** *** *** NS *** *** ***
20 *** *** *** *** NS *** *** *** *** *** *** *** ** *** ***
30 *** *** *** *** *** *** *** * *** *** *** *** *** *** NS
穗数
Spike number
*** *** *** NS NS NS NS *** *** *** NS ** *** NS ***
穗粒数
Grain per spike
*** *** *** *** *** *** *** *** *** *** *** * *** * ***
千粒重 1000-grain weight *** NS *** * *** * NS *** *** *** *** NS NS NS NS
产量Yield *** * *** NS *** ** NS *** NS *** NS *** *** NS ***

Fig. 2

Effects of nitrogen fertilizer and density on carbon metabolism in two winter wheat varieties Different lowercase letters indicate significant differences between different treatments under the same stage (P<0.05). The same as below"

Fig. 3

Effects of nitrogen fertilizer and density on nitrogen metabolism in two winter wheat varieties"

Table 3

Effects of nitrogen and density on yield and yield components in two winter wheat varieties"

品种
Variety
处理
Treatment
2018―2019 2019―2020
穗数
Spike number
(104·hm-2)
穗粒数
Grain per
spike
千粒重
1000 grain weight (g)
产量
Yield
(kg·hm-2)
穗数
Spike number
(104·hm-2)
穗粒数
Grain per
spike
千粒重
1000 grain weight (g)
产量
Yield
(kg·hm-2)
A M1N0 555.84c 36.44bc 51.37ab 8293.81c 370.29e 32.01d 51.70a 4504.86d
M1N240 632.50ab 41.22a 48.76de 8726.52abc 548.36abc 36.74b 51.06ab 8439.39bc
M1N360 596.67bc 39.71a 47.99e 8864.79ab 515.69d 35.42c 50.21ab 9283.47a
M2N0 613.06ab 29.19e 51.23ab 8457.85bc 514.19d 14.52h 49.89ab 4581.60d
M2N240 633.61ab 39.55a 49.11cde 9074.18a 561.19ab 42.90a 48.97abc 9109.38ab
M2N360 620.84ab 34.24cd 49.90bcd 8725.23abc 540.19bcd 29.04e 48.46bc 7986.07c
M3N0 626.67ab 32.58d 51.54a 8482.79bc 532.03cd 19.03g 48.49bc 5077.76d
M3N240 657.50a 36.54b 50.65abc 8859.89ab 573.25a 29.26e 46.34cd 8666.20abc
M3N360 657.50a 34.89bc 49.39cde 8463.66bc 552.36abc 27.17f 44.90d 7944.19c
B M1N0 502.22c 40.41c 47.60a 6717.02e 306.27d 41.90ab 49.11a 2626.90d
M1N240 541.95abc 43.80b 44.22b 8109.46c 526.28ab 42.70ab 46.02bc 7934.59b
M1N360 517.50bc 40.14c 41.51c 8226.00abc 513.78b 42.70ab 41.94e 9195.11a
M2N0 510.00bc 34.36d 48.35a 7177.87d 440.02c 18.70c 46.96ab 2826.41d
M2N240 585.28a 46.57a 41.33c 8603.76a 538.78ab 45.80a 44.89bcd 9095.41a
M2N360 539.17abc 46.41a 41.94c 8322.05abc 521.28ab 42.50ab 43.06de 7661.80bc
M3N0 526.67bc 30.48e 47.72a 7410.25d 517.53ab 22.40c 46.85ab 3412.01d
M3N240 588.61a 42.06bc 42.61c 8513.11ab 550.03a 39.30ab 45.95bc 8632.98ab
M3N360 561.67ab 39.72c 41.13c 8147.44bc 546.28ab 38.30b 43.86cde 6904.84c

Table 4

Correlation coefficients of carbon metabolism and nitrogen metabolism with yield components"

指标
Item
品种Variety 时期Time 可溶性糖含量
Soluble sugar content
SPS酶活性
SPS activity
SS酶活性
SS activity
可溶性蛋白质含量
Soluble protein content
NR酶活性
NR activity
GS酶活性
GS activity
穗数
Spike number
A -X -0.34* 0.31* 0.45** 0.46** 0.26 0.48**
0 0.57** 0.51** 0.48** 0.59** 0.40** 0.67**
10 0.76** 0.75** 0.77** 0.70** -0.15 0.60**
20 -0.01 0.58** 0.56** 0.20 0.15 0.60**
30 0.73** 0.74** 0.75** 0.79** -0.03 0.40**
B -X -0.24 0.11 0.20 0.83** 0.40** 0.73**
0 -0.60** -0.21 0.01 0.68** 0.45** 0.69**
10 -0.47** 0.02 0.14 0.73** 0.10 0.67**
20 -0.58** 0.08 -0.02 0.76** 0.21 0.47**
30 0.31* 0.43** 0.45** 0.59** 0.11 0.30*
穗粒数
Grain per spike
A -X -0.09 0.36** 0.36** 0.19 0.04 0.22
0 0.07 0.27* 0.35* 0.04 0.10 0.42**
10 0.15 0.39** 0.40** 0.33* -0.08 0.28*
20 0.04 0.07 0.00 0.01 -0.05 0.36**
30 0.50** 0.41** 0.42** 0.45** -0.24 -0.01
B -X 0.16 0.14 0.14 0.05 -0.03 0.05
0 0.03 0.08 0.09 0.14 -0.04 0.02
10 -0.08 0.05 0.06 0.21 -0.09 0.04
20 -0.14 0.00 -0.02 -0.03 -0.24 -0.01
30 -0.03 0.06 0.06 0.22 -0.26 0.10
千粒重
1000 grain weight
A -X 0.04 0.39** 0.40** -0.19 -0.22 -0.14
0 -0.10 0.30* 0.35** -0.31* -0.25 0.05
10 -0.36** 0.04 0.10 -0.16 -0.30* 0.09
20 -0.27* -0.26 -0.25 -0.36** -0.21 0.00
30 0.18 0.20 0.18 0.07 -0.48** -0.12
B -X 0.62** 0.30* 0.18 -0.56** -0.32* -0.46**
0 0.70** 0.54** 0.30* -0.59** -0.28* -0.44**
10 0.85** 0.34* 0.16 -0.63** -0.33* -0.47**
20 0.68** 0.31* 0.39** -0.60** -0.19 -0.48**
30 -0.40** -0.44** -0.44** -0.56** -0.14 -0.22

Table 5

Correlation coefficients of carbon metabolism and nitrogen metabolism with grain yield"

品种
Variety
时期
Time
可溶性糖含量
Soluble sugar content
SPS酶活性
SPS activity
SS酶活性
SS activity
可溶性蛋白质含量
Soluble protein content
NR酶活性
NR activity
GS酶活性
GS activity
A -X -0.68** -0.04 0.14 0.78** 0.60** 0.46**
0 0.02 0.21 0.22 0.63** 0.72** 0.71**
10 0.50** 0.49** 0.50** 0.69** 0.28* 0.63**
20 0.35** 0.56** 0.49** 0.45** 0.45** 0.69**
30 0.54** 0.53** 0.55** 0.62** 0.33* 0.30*
B -X -0.55** -0.03 0.05 0.78** 0.50** 0.68**
0 -0.67** -0.35* -0.10 0.68** 0.59** 0.63**
10 -0.51** 0.02 0.14 0.59** 0.36** 0.60**
20 -0.59** 0.02 -0.07 0.74** 0.40** 0.57**
30 0.41** 0.44** 0.44** 0.53** 0.36** 0.29*
[1] 宋建民, 田纪春, 赵世杰. 小麦光合碳、氮代谢平衡调节酶研究进展. 麦类作物, 1997, 17(6):52-55.
SONG J M, TIAN J C, ZHAO S J. Research progress of carbon and nitrogen metabolism balance regulating enzymes in wheat photosynthesis. Tritical Crops, 1997, 17(6):52-55. (in Chinese)
[2] 谢祝捷, 姜东, 戴廷波, 曹卫星. 植物的糖信号及其对碳氮代谢基因的调控. 植物生理学通讯, 2002, 38(4):399-405.
XIE Z J, JIANG D, DAI Y B, CAO W X. Sugar signal and its regulation on C/N metabolism gene in plant. Plant Physiology Journal, 2002, 38(4):399-405. (in Chinese)
[3] 胡承霖, 姚孝友. 不同穗型小麦品种生长发育特性和产量形成的研究. 安徽农业科学, 1991(3):207-213.
HU C L, YAO X Y. Study on the growth and development characteristics and yield formation of different panicle wheat varieties. Journal of Anhui Agricultural Sciences, 1991(3):207-213. (in Chinese)
[4] 朱云集, 郭天财, 王晨阳, 崔金梅, 夏国军, 刘万代, 王永华. 两种穗型冬小麦品种产量形成特点及超高产关键栽培技术研究. 麦类作物学报, 2006, 26(6):82-86.
ZHU Y J, GUO T C, WANG C Y, CUI J M, XIA G J, LIU W D, WANG Y H. Study on yield formation of winter wheat cultivars with different spike types and their key cultivation techniques for super- high yield. Journal of Triticeae Crops, 2006, 26(6):82-86. (in Chinese)
[5] 张迪, 韩晓增. 长期不同植被覆盖和施肥管理对黑土活性有机碳的影响. 中国农业科学, 2010, 43(13):2715-2723.
ZHANG D, HAN X Z. Changes of black soil labile organic carbon pool under different vegetation and fertilization managements. Scientia Agricultura Sinica, 2010, 43(13):2715-2723. (in Chinese)
[6] 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化. 土壤学报, 2006, 43(5):723-729.
XU M G, YU R, WANG B R. Changes of active organic matter and carbon pool management index in red soil under long-term different fertilization. Acta Pedologica Sinica, 2006, 43(5):723-729. (in Chinese)
[7] 李青军, 张炎, 胡伟, 孟凤轩, 冯广平, 胡国智, 刘新兰. 氮素运筹对玉米干物质积累,氮素吸收分配及产量的影响. 植物营养与肥料学报, 2011, 17(3):755-760.
LI Q J, ZHANG Y, HU W, MENG F X, FENG G P, HU G Z, LIU X L. Effects of nitrogen management on maize dry matter accumulation, nitrogen uptake and distribution and maize yield. Plant Nutrition and Fertilizer Science, 2011, 17(3):755-760. (in Chinese)
[8] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3):447-455.
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3):447-455. (in Chinese)
[9] 王贺正, 徐国伟, 吴金芝, 张均, 陈明灿, 付国占, 李友军. 不同氮素水平对豫麦49-198籽粒灌浆及淀粉合成相关酶活性的调控效应. 植物营养与肥料学报, 2013, 19(2):288-296.
WANG H Z, XU G W, WU J Z, ZHANG J, CHEN M C, FU G Z, LI Y J. Regulating effect of nitrogen fertilization on grain filling and activities of enzymes involved in starch synthesis of Yumai 49-198. Plant Nutrition and Fertilizer Science, 2013, 19(2):288-296. (in Chinese)
[10] 孟维伟, 王东, 于振文. 施氮量对小麦氮代谢相关酶活性和子粒蛋白质品质的影响. 植物营养与肥料学报, 2012, 18(1):10-17.
MENG W W, WANG D, YU Z W. Effects of nitrogen fertilization on activities of nitrogen metabolism related enzymes and grain protein quality of wheat. Plant Nutrition and Fertilizer Science, 2012, 18(1):10-17. (in Chinese)
[11] 王贺正, 张均, 吴金芝, 徐国伟, 陈明灿, 付国占, 李友军. 不同氮素水平对小麦旗叶生理特性和产量的影响. 草业学报, 2013, 22(4):69-75.
WANG H Z, ZHANG J, WU J Z, XU G W, CHEN M C, FU G Z, LI Y J. Effects of different nitrogen levels on physiological characteristics and yield of flag leaves in wheat. Acta Prataculturae Sinica, 2013, 22(4):69-75. (in Chinese)
[12] 张伟, 李鲁华, 吕新. 不同施氮量对滴灌春小麦根系时空分布、氮素利用率及产量的影响. 西北农业学报, 2016, 25(2):195-202.
ZHANG W, LI L H, LÜ X. Effects of different nitrogen application rates on spatiotemporal distribution of root system, nitrogen use efficiency and yield of spring wheat with drip irrigation. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(2):195-202. (in Chinese)
[13] 刘璐, 王朝辉, 刁超朋, 王森, 李莎莎. 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系. 植物营养与肥料学报, 2018, 24(3):599-608.
LIU L, WANG Z H, DIAO C P, WANG S, LI S S. Grain yields of diferent wheat cultivars and their relations to dry matter and NPK requirements in dryland. Journal of Plant Nutrition and Fertilizers, 2018, 24(3):599-608. (in Chinese)
[14] 葛君, 姜晓君. 施氮量对小麦旗叶光合特性、SPAD值、籽粒产量及碳氮代谢的影响. 天津农业科学, 2019, 25(3):1-4.
GE J, JIANG X J. Effects of nitrogen application on photosynthetic characteristics, spad value, grain yield and carbon and nitrogen metabolism of flag leaves in wheat. Tianjin Agricultural Sciences, 2019, 25(3):1-4. (in Chinese)
[15] 马登科, 殷俐娜, 刘溢健, 杨文稼, 邓西平, 王仕稳. 施氮量对黄土高原旱地冬小麦产量和水分利用效率影响的整合分析. 中国农业科学, 2020, 53(3):486-499.
MA D K, YIN L N, LIU Y J, YANG W J, DENG X P, WANG S W. A meta-analysis of the effects of nitrogen application rates on yield and water use efficiency of winter wheat in dryland of loess plateau. Scientia Agricultura Sinica, 2020, 53(3):486-499. (in Chinese)
[16] YANG D Q, CAI T, LUO Y L, WANG Z L. Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat. PeerJ, 2019, 7:6484-6509.
[17] POSTMA J A, HECHT V L, HIKOSAKA K, NORD E A, PONS T L, POORTER H. Dividing the pie: A quantitative review on plant density responses. Plant Cell and Environment, 2020, 44(4):1072-1094.
doi: 10.1111/pce.v44.4
[18] 马冬云, 郭天财, 查菲娜, 王晨阳, 朱云集, 王永华. 种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响. 作物学报, 2007, 33(3):514-517.
MA D Y, GUO T C, CHA F N, WANG C Y, ZHU Y J, WANG Y H. Effects of planting density on activities of nitrogen metabolism enzymes in flag leaves and grain protein content in winter wheat with two spike types. Acta Agronomica Sinica, 2007, 33(3):514-517. (in Chinese)
[19] GAO Y J, LI Y, ZHANG J C, LIU W G, DANG Z P, CAO W X, QIANG Q. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutrient Cycling in Agroecosystems, 2009, 85(2):109-121.
doi: 10.1007/s10705-009-9252-0
[20] LI D X, ZHANG D, WANG H G, LI H R, FANG Q, LI H Y, LI R Q. Planting density maintains high wheat yield under limiting irrigation in North China Plain. International Journal of Plant Production, 2019, 14(9):107-117.
doi: 10.1007/s42106-019-00071-7
[21] 李宁, 翟志席, 李建民, 段留生, 李召虎. 播种期和密度对不同穗型小麦品种荧光动力学参数及产量的影响. 华北农学报, 2009, 24(12):199-204.
LI N, ZHAI Z X, LI J M, DUAN L S, LI Z H. Effect of sowing date and planting density on fluorescence induction kinetic parameters and yield in different spike type cultivars. Acta Agriculturae Boreali-Sinica, 2009, 24(12):199-204. (in Chinese)
[22] 骆兰平, 于振文, 王东, 张永丽, 石玉. 土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响. 作物学报, 2011, 37(6):1049-1059.
LUO L P, YU Z W, WANG D, ZHANG Y L, SHI Y. Effects of planting density and soil moisture on flag leaf photosynthetic characteristics and dry matter accumulation and distribution in wheat. Acta Agronomica Sinica, 2011, 37(6):1049-1059. (in Chinese)
[23] FISCHER R A, RAMOS O H M, MONASTERIO I O, SAYRE K D. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Research, 2019, 232:95-105.
doi: 10.1016/j.fcr.2018.12.011
[24] DOEHLERT D C, KUO T M, FELKER F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiology, 1988, 86(4):1013-1019.
doi: 10.1104/pp.86.4.1013
[25] 王小纯, 熊淑萍, 马新明, 张娟娟, 王志强. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25(4):802-807.
WANG X C, XIONG S P, MA X M, ZHANG J J, WANG Z Q. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars. Acta Ecologica Sinica, 2005, 25(4):802-807. (in Chinese)
[26] 武丽, 张西仲, 唐兴贵, 罗倩茜, 李余湘, 左业华, 叶文玲. 钼胁迫对烟草含钼酶和碳氮代谢关键酶的影响. 核农学报, 2015, 29(12):2385-2393.
WU L, ZHANG X Z, TANG X G, LUO Q X, LI Y X, ZUO Y H, YE W L. Effect of molybdenum stress on molybdenum-containing enzymes and key enzymes of carbon and nitrogen metabolism in tobacco. Journal of Nuclear Agricultural Sciences, 2015, 29(12):2385-2393. (in Chinese)
[27] XIONG F S, GAO Y Z, ZHAN Y C, LI G F. Relationship between leaf sucrose and starch content and their degradative enzymes activities in crop plants. Acta Agronomica Sinica, 1994, 20(1):52-58.
[28] CHAMPIGNY M L. Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynthesis Research, 1995, 46(1-2):117-127.
doi: 10.1007/BF00020422
[29] 李永庚, 蒋高明, 杨景成. 温度对小麦碳氮代谢、产量及品质影响. 植物生态学报, 2003, 27(2):164-169.
doi: 10.17521/cjpe.2003.0025
LI Y G, JIANG G M, YANG J C. Effects of temperature on carbon and nitrogen metabolism, yield and quality of wheat. Acta Phytoecologica Sinica, 2003, 27(2):164-169. (in Chinese)
doi: 10.17521/cjpe.2003.0025
[30] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27(5):658-664.
LI Y G, YU Z W, JIANG D, YU S L. Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agronomica Sinica, 2001, 27(5):658-664. (in Chinese)
[31] 李双, 司转运, 申孝军, 高阳, 段爱旺. 水氮供应对灌浆期冬小麦籽粒淀粉合成相关酶活性及产量的影响. 麦类作物学报, 2018, 38(4):460-468.
LI S, SI Z Y, SHEN X J, GAO Y, DUAN A W. Effect of different water and nitrogen levels on starch synthesis enzyme activity in wheat grains during grain filling stage and wheat yield. Journal of Triticeae Crops, 2018, 38(4):460-468. (in Chinese)
[32] 王东, 于振文, 李延奇, 史桂萍. 施氮量对济麦20旗叶光合特性和蔗糖合成及籽粒产量的影响. 作物学报, 2007, 33(6):903-908.
WANG D, YU Z W, LI Y Q, SHI G P. Effects of nitrogen fertilizer rate on photosynthetic character, sucrose synthesis in flag leaves and grain yield of strong gluten wheat Jimai 20. Acta Agronomica Sinica, 2007, 33(6):903-908. (in Chinese)
[33] 许大全. 光合作用及有关过程对长期高CO2浓度的响应. 植物生理学通讯, 1994, 30(2):81-87.
XU D Q. Response of photosynthesis and related processes to long-term high CO2 concentration. Plant Physiology Communications, 1994, 30(2):81-87. (in Chinese)
[34] 张元帅, 冯伟, 张海艳, 齐双丽, 衡亚蓉, 郭彬彬, 李晓, 王永华, 郭天财. 遮阴和施氮对冬小麦旗叶光合特性及产量的影响. 中国生态农业学报, 2016, 24(9):1177-1184.
ZHANG Y S, FENG W, ZHANG H Y, QI S L, HENG Y R, GUO B B, LI X, WANG Y H, GUO T C. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat. Chinese Journal of Eco-Agriculture, 2016, 24(9):1177-1184. (in Chinese)
[35] 杜少勇, 熊淑萍, 赵鹏, 马新明, 张英武, 蔺世召, 张心玲, 刘红君. 豫北高地力条件下施氮量对冬小麦花后氮代谢特征及产量的影响. 麦类作物学报, 2011, 31(5):882-886.
DU S Y, XIONG S P, ZHAO P, MA X M, ZHANG Y W, LIN S Z, ZHANG X L, LIU H J. Effect of nitrogen fertilizer on characteristic of nitrogen metabolism and yield after anthesis of wheat in the high fertility soil of north henan. Journal of Triticeae Crops, 2011, 31(5):882-886. (in Chinese)
[36] 姜丽娜, 刘佩, 齐冰玉, 徐光武, 张利霞, 马建辉, 李春喜. 不同施氮量及种植密度对小麦开花期氮素积累转运的影响. 中国生态农业学报, 2016, 24(2):131-141.
JIANG L N, LIU P, QI B Y, XU G W, ZHANG L X, MA J H, LI C X. Effects of different nitrogen application amounts and seedling densities on nitrogen accumulation and transport in winter wheat at anthesis stage. Chinese Journal of Eco-Agriculture, 2016, 24(2):131-141. (in Chinese)
[37] 蒿宝珍, 姜丽娜, 方保停, 张英华, 张菡, 李春喜, 王志敏. 限水灌溉冬小麦冠层氮分布与转运特征及其对供氮的响应. 生态学报, 2011, 31(17):4941-4951.
HAO B Z, JIANG L N, FANG B T, ZHANG Y H, ZHANG H, LI C X, WANG Z M. Effect of different nitrogen supply on the temporal and spatial distribution and remobilization of canopy nitrogen in winter wheat under limited irrigation condition. Acta Ecologica Sinica, 2011, 31(17):4941-4951. (in Chinese)
[38] 沈学善, 李金才, 屈会娟, 魏凤珍, 王成雨. 种植密度对晚播冬小麦氮素同化积累分配及利用效率的影响. 中国农业大学学报, 2009, 14(4):41-46.
SHEN X S, LI J C, QU H J, WEI F Z, WANG C Y. Effects of planting density on assimilation, accumulation, distribution and use efficiency of nitrogen in late sowing winter wheat. Journal of China Agricultural University, 2009, 14(4):41-46. (in Chinese)
[39] LIU Y, LIAO Y C, LIU W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. The Crop Journal, 2021,(2):412-426.
[40] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23(11):2031-2039.
LI S Q, SHAO M A, LI Z Y, WU W M, ZHANG X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(11):2031-2039. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!