Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2135-2149.doi: 10.3864/j.issn.0578-1752.2022.11.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau

ZHANG ZeMin1(),LÜ ChangHe1,2()   

  1. 1Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/Key Laboratory of Land Surface Pattern and Simulation, Beijing 100101
    2University of the Chinese Academy of Science, Beijing 100049
  • Received:2021-09-14 Accepted:2021-12-02 Online:2022-06-01 Published:2022-06-16
  • Contact: ChangHe LÜ E-mail:zhangzm.16b@igsnrr.ac.cn;luch@igsnrr.ac.cn

Abstract:

【Objective】 The aim of this study was to assess accurately the potential yield of spring wheat and its responses to climate change, which was of great significance to exploit the agricultural resources and to ensure the food security in the Qinghai-Tibet Plateau (QTP). 【Method】 This paper firstly calibrated the WOFOST model based on published research data, and then simulated the photo-temperature potential yield (Yp) of spring wheat at 113 stations in the QTP based on the model and the daily meteorological data during 1958 to 2017. Further, the response of spring wheat potential yield to climate change in three classified accumulated temperature ranges was analyzed by using Theil-Sen Median slope (Sen’s slope), Pearson’s correlation and stepwise multiple linear regression (SMLR) methods. 【Result】 During 1958 to 2017, the annual average potential yield at stations throughout the QTP was between 3.20 and 8.68 t·hm-2. The potential yield was relatively high in regions with the accumulated temperature range of 1 600-3 400℃·d, including the Yijiang Lianghe Region, the Hehuang River Valley and the northern parts of Ganzi, showing a slightly increase trend. In the regions with accumulated temperature below 1 600℃·d and above 3 400℃·d, the potential yield was relatively low and showed a significantly increase and decrease trend, respectively (P<0.01). For the whole QTP, the daily average temperature (Tave), maximum temperature (Tmax) and minimum temperature (Tmin) in the growing season of spring wheat showed significantly increase trends (P<0.01), and the increase rate of Tmin was higher than that of Tave and Tmax, while temperature diurnal range (Td) and solar radiation (Ra) decreased at rates of 0.08℃ and 8.96 MJ·m-2 per decade, respectively. The change trends of climatic factors differed obviously among the three accumulated temperature ranges: with increase of accumulated temperature, the increase rates of Tmax, Tmin and Tave and the decrease rate of Td were reduced, while the decrease rate of Ra was increased. There was a significantly positive correlation between changes of Ra and Yp in the QTP and in the three accumulated temperature ranges (P<0.01), but the influence of Tave and Tmax became weak with the increase of accumulated temperature. Furthermore, the influence of Tmin changed from positive to negative, and both of the positive effects of Td and Ra increased firstly and then decreased. At the stations with accumulated temperature below 1 600℃·d, Tave was the critical factor determining potential yield of spring wheat, and its increase of 1℃ could result in 885.71 kg·hm-2 increase in the Yp (P<0.01). At stations with accumulated temperature range of 1 600-3 400℃·d, Ra played a decisive role, i.e., the potential yield of spring wheat increased by 3.42 kg·hm-2 for increase of 1 MJ·m-2 (P<0.01). At stations with accumulated temperature above 3 400℃·d, the potential yield of spring wheat decreased by 398.65 kg·hm-2 and increased by 3.07 kg·hm-2 when Tmin and Ra increased by 1℃ and 1 MJ·m-2 (P<0.01), respectively. 【Conclusion】 The potential yield of spring wheat and its responses to radiation and temperature changes showed a great difference in different ranges of accumulated temperature. The results revealed the potential yield level of spring wheat and identified its response to climate changes, and thus provided supports to exploit the yield increase potential of spring wheat in different regions of the QTP.

Key words: spring wheat, potential yield, WOFOST, climate warming, Qinghai-Tibet Plateau

Fig. 1

Location of the Qinghai-Tibet Plateau and spatial distribution of meteorological stations"

Table 1

Data set used to validate WOFOST model parameters and simulation results"

气象台站
Meteorological site
海拔
Altitude
(m)
播种期
Sowing date (M-D)
出苗期
Emergence date (M-D)
生育期
Growing duration (d)
种植密度
Sowing density
灌溉期
Irrigation date
施肥
Fertilization
试验站产量
Experimental yield (kg·hm-2)
年份
Year
参考文献
Reference
西宁
Xining
3205 03-16—
04-03
04-10—
04-16
114—
125
每亩35万粒
3.5×105 seeds per mu
全生育期灌溉4次
Irrigate 4 times during the whole growth period
春播时每公顷施有机肥30 m3,磷酸二铵150 kg,尿素112.5 kg,苗期施尿素112.5 kg
Apply 30 cubic meters of organic fertilizer, 150 kg diammonium phosphate, 112.5 kg urea per hectare when spring sowing, and 112.5 kg urea at seedling stage
6944 - 8750 1998 [37]
白朗
Bailang
3836 04-15 04-26—
04-27
127—
139
每亩约31万粒
3.1×105 seeds per mu
播前灌足底熵水,5月30日和6月14日各灌水一次
Irrigate sufficiently before sowing, and twice on 30th May and 14th June
播前每亩底肥17.5 kg二铵,追肥2.5 kg二铵
Apply 17.5 kg diammonium per mu as base fertilizer before sowing, and topdressing 2.5 kg diammonium per mu
5330 - 8416 2005 [38]
互助
Huzhu
2480 03-26—
04-10
04-14 149—
158
每亩约25万粒; 每亩15-20 kg
2.5×105 seeds per mu; 15-20 kg per mu
4月26日灌溉一次+后期雨水
Irrigate on 26th April and depend on rainfall in the later stages
全生育期每亩施尿素10 kg,磷酸二铵12.5 kg
Apply 10 kg urea and 12.5 kg diammonium phosphate per mu during the whole growth period
5670 - 8025 1999, 2003-
2007, 2012-
2014
[39-41]
大通
Datong
2450 03-20—
03-31
04-10 127—
139
每亩约25万粒
2.5×105 seeds per mu
5565 - 7471 2003- 2007 [41]
格尔木
Geermu
2780 03-10—
04-05
04-17—
05-07
127 2000- 2005 [42]
昌都
Changdu
3400 04-13—
04-15
04.25—
05-01
128 1978 [43]
诺木洪
Nuomuhong
2790 03-08—
03-28
04-18—
04-23
151 1978 [43]
拉萨
Lhasa
3658 03-20—
04-10
04-17—
04-27
128—
138
每亩约22万粒
2.2×105 seeds per mu
全生育期灌溉3次
Irrigate 3 times during the whole growth period
播前每亩施磷酸二铵12.5 kg,有机肥12.5 kg,尿素5 kg做底肥,追肥5 kg尿素1次
Apply 12.5 kg diammonium phosphate, 12.5 kg organic fertilizer and 5 kg urea as base fertilizer before sowing, and topdressing 5 kg urea per acre.
5878 - 7465 1978, 2017- 2018 [43-45]
平安
Pingan
2125 03-10—
04-10
每亩17 - 24 kg
17 - 24 kg per mu
二叶至三叶期间浇头水,分蘖、抽穗、灌浆和麦黄期分别浇一次水
Irrigate once during the two- to three- leaf period, and irrigate 4 times at tillering, heading, grain-filling and wheat yellowing stages
全生育期每亩施用3000-4000 kg农家肥,3.0-4.0 kg P2O5
Apply 3000-4000 kg farmyard manure and 3.0-4.0 kg P2O5 per mu during the whole growth period
6798 - 7946 2004- 2006 [46]

Table 2

Meteorological stations located in different accumulated temperature ranges in the Qinghai-Tibet Plateau"

积温区间
Accumulated temperature range
气象台站
Meteorological station
<1 600℃·d 色达、刚察、杂多、若尔盖、乌鞘岭、红原、玛曲、聂拉木、索县、理塘、门源、海晏、同德、班玛、兴海、定日、碌曲、类乌齐、狮泉河、祁连
Seda, Gangcha, Zaduo, Ruoergai, Wushaoling, Hongyuan, Maqu, Nielamu, Suoxian, Litang, Menyuan, Haiyan, Tongde, Banma, Xinghai, Dingri, Luqu, Leiwuqi, Shiquanhe, Qilian
1 600-3 400℃·d 合作、丁青、芒康、玉树、比如、阿坝、夏河、稻城、贵南、化隆、临潭、德钦、江孜、囊谦、壤塘、左贡、茶卡、普兰、湟源、隆子、互助、都兰、香格里拉、湟中、南木林、大通、大柴旦、茫崖、甘孜、松潘、洛隆、墨竹工卡、德格、卓尼、共和、炉霍、拉孜、日喀则、乌兰、塔什库尔干、康定、肃南、尼木、新龙、岷县、德令哈、冷湖、同仁、和政、九龙、小灶火、白玉、林芝、米林、昌都、道孚、拉萨、迭部、马尔康、西宁、泽当、诺木洪、波密、格尔木、贡嘎、康乐、黑水、加查、平安、贵德、乐都、肃北、乡城、尖扎、乌恰、民和、循化
Hezuo, Dingqing, Mangkang, Yushu, Biru, Aba, Xiahe, Daocheng, Guinan, Hualong, Lintan, Deqin, Jiangzi, Nangqian, Rangtang, Zuogong, Chaka, Pulan, Huangyuan, Longzi, Huzhu, Dulan, Shangri-La, Huangzhong, Nanmulin, Datong, Dachaidan, Mangya, Ganzi, Songpan, Luolong, Mozhugongka, Dege, Zhuoni, Gonghe, Luhuo, Lazi, Rikaze, Wulan, Tashikuergan, Kangding, Sunan, Nimu, Xinlong, Minxian, Delingha, Lenghu, Tongren, Hezheng, Jiulong, Xiaozhaohuo, Baiyu, Linzhi, Milin, Changdu, Daofu, Lhasa, Diebu, Maerkang, Xining, Zedang, Nuomuhong, Bomi, Golmud, Gongga, Kangle, Heishui, Jiacha, Pingan, Guide, Ledu, Subei, Xiangcheng, Jianzha, Wuqia, Minhe, Xunhua
>3 400℃·d 兰坪、雅江、盐源、宕昌、维西、木里、丽江、八宿、察隅、剑川、小金、宁蒗、金川、巴塘、洱源、舟曲
Lanping, Yajiang, Yanyuan, Dangchang, Weixi, Muli, Lijiang, Basu, Chayu, Jianchuan, Xiaojin, Ninglang, Jinchuan, Batang, Eryuan, Zhouqu

Table 3

Main crop parameters of WOFOST model for simulating spring wheat in the Qinghai-Tibet Plateau"

参数 Parameter 含义Meaning 单位 Unit 参数值 Value
TBASEM 出苗时的最低下限温度 Lower threshold temperature for emergence 0
AMAXTB 最大CO2同化速率 Maximum leaf CO2 assimilation kg CO2 ·hm-2·h-1 35.83
SPAN 叶片在 35℃时的生命期 Life span of leaves growing at 35℃ d 31.3
RGRLAI 叶面积指数最大相对增长率 Maximum relative increase in LAI hm2·hm-2·d-1 0.00817
PERDL 水分胁迫下的叶片最大死亡速率 Maximum relative death rate of leaves due to water stress kg·(kg·d)-1 0.030
RML 维持呼吸对同化物的消耗速率
Relative maintenance respiration rate
叶 Leaves kg CH2O·(kg·d)-1 0.030
RMO 籽粒 Storage organs 0.010
RMR 根Roots 0.015
RMS 茎 Stems 0.015
Q10 温度每变化10℃呼吸速率的相对变化 Relative change in respiration rate per 10℃ change 2.0

Fig. 2

Comparison of simulated spring wheat growing duration and photo-temperature potential yield with observed data"

Fig. 3

Change trends in photo-temperature potential yield of spring wheat in the Qinghai-Tibet Plateau and different accumulated temperature ranges during 1958 to 2017"

Fig. 4

Annual average photo-temperature potential yields of spring wheat at stations in the Qinghai-Tibet Plateau"

Fig. 5

Statistical analysis of spring wheat photo-temperature potential yield and its change rate in different accumulated temperature ranges and the Qinghai-Tibet Plateau. The upper, middle and lower lines in the box indicate the upper quartile, median and lower quartile values of wheat potential yield and its change rate at all stations in each accumulated temperature range, respectively. The – above and below box indicates the maximum and minimum values, × above and below box indicates the 1% and 99% values, and □ represents the mean value at all stations"

Table 4

Annual averages and change rates of average temperature and solar radiation in the growing season in different accumulated temperature ranges and the Qinghai-Tibet Plateau"

气候因子
Climatic factor
积温区间 Accumulated temperature range
<1600℃·d 1600-3400℃·d >3400℃·d 青藏高原The QTP
平均温度Average temperature 平均值 Average (℃) 9.255 13.199 17.564 13.111
最高温度 Maximum temperature 16.131 20.323 23.995 20.081
最低温度Minimum temperature 3.698 7.550 12.929 7.609
日较差 Diurnal range 12.425 12.778 11.057 12.470
太阳辐射 Solar radiation 平均值Average (MJ·m-2) 3217.581 3139.613 2855.819 3159.795
平均温度Average temperature 变化率SLOPE (℃·(10a)-1) 0.299*** 0.228*** 0.174*** 0.236*
最高温度 Maximum temperature 0.270*** 0.251*** 0.189*** 0.247***
最低温度Minimum temperature 0.402*** 0.319*** 0.256*** 0.327***
日较差 Diurnal range -0.121*** -0.075** -0.042 -0.075***
太阳辐射 Solar radiation 变化率SLOPE (MJ·m-2·(10a)-1) -6.624 -4.876 -9.262 -5.266

Table 5

Pearson’s correlation coefficient between spring wheat photo-temperature potential yield and climatic factors in Qinghai-Tibet Plateau and different accumulated temperature ranges"

积温区间Accumulated temperature range ΔTave ΔTmax ΔTmin ΔTd ΔRa
<1600℃·d 0.784*** 0.770*** 0.609*** 0.162* 0. 120*
1600 - 3400℃·d 0.234** 0.351** -0.200** 0.387** 0.470***
>3400℃·d 0.008 0.154* -0.332** 0.371** 0.467***
青藏高原 The QTP 0.359** 0.383** -0.111* 0.421*** 0.510***

Table 6

Stepwise linear regression equation between spring wheat photo-temperature potential yield and climatic factors in Qinghai-Tibet Plateau and different accumulated temperature ranges"

积温区间
Accumulated temperature range
逐步多元回归方程
Stepwise multiple linear regression
F Sig. R2 RMSE
<1600℃·d ΔYp = 885.71×ΔTave + 1.03 92.744 0.000 0.784 344.273
1600 - 3400℃·d ΔYp = 3.42×ΔRa - 2.615 16.490 0.000 0.470 333.672
>3400℃·d ΔYp = -398.65×ΔTmax + 3.07×ΔRa - 5.46 18.157 0.000 0.624 298.625
青藏高原The QTP ΔYp = 2.64×ΔRa + 3.38 24.401 0.000 0.601 255.021
[1] IPCC. Climate Change 2013:The Physical Science Basis. Cambridge & New York: Cambridge University Press, 2013.
[2] PIAO S L, CIAIS P, HUANG Y, SHEN Z H, PENG S S, LI J S, ZHOU L P, LIU H Y, MA Y C, DING Y H, FRIEDLINGSTEIN P, LIU C Z, TAN K, YU Y Q, ZHANG T Y, FANG J Y. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467(7311): 43-51.
doi: 10.1038/nature09364
[3] ZHANG Y L, HU Z J, QI W, WU X, BAI W Q, LI L H, DING M J, LIU L S, WANG Z F, ZHENG D. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. Journal of Geographical Sciences, 2016, 26(1): 27-44.
doi: 10.1007/s11442-016-1252-9
[4] LI C Y, TANG Y, LUO H, DI B F, ZHANG L Y. Local farmers’ perceptions of climate change and local adaptive strategies: A case study from the Middle Yarlung Zangbo River Valley, Tibet, China. Environmental Management, 2013, 52(4): 894-906.
doi: 10.1007/s00267-013-0139-0
[5] YOU Q L, FRAEDRICH K, REN G Y, PEPIN N, KANG S C. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. International Journal of Climatology, 2013, 33(6): 1337-1347.
doi: 10.1002/joc.3512
[6] 段健, 徐勇, 孙晓一. 青藏高原粮食生产、消费及安全风险格局变化. 自然资源学报, 2019, 34(4): 673-688.
doi: 10.31497/zrzyxb.20190401
DUAN J, XU Y, SUN X Y. Spatial patterns and their changes of grain production, grain consumption and grain security in the Tibetan Plateau. Journal of Natural Resources, 2019, 34(4): 673-688. (in Chinese)
doi: 10.31497/zrzyxb.20190401
[7] SHI W J, LU C H, SHI X L, CUI J Y. Patterns and trends in grain self-sufficiency on the Tibetan Plateau during 1985-2016. Journal of Geographical Sciences, 2020, 30(10): 1590-1602.
doi: 10.1007/s11442-020-1801-0
[8] 强小林, 迟德钊, 冯继林. 青藏高原区域青稞生产与发展现状. 西藏科技, 2008(3): 11-17.
QIANG X L, CHI D Z, FENG J L. Development status and production of highland barley in the Qinghai-Tibet Plateau. Tibet Science and Technology, 2008(3): 11-17. (in Chinese)
[9] 赵雪雁, 王伟军, 万文玉, 李花. 近50年气候变化对青藏高原青稞气候生产潜力的影响. 中国生态农业学报, 2015, 23(10): 1329-1338.
ZHAO X Y, WANG W J, WAN W Y, LI H. Influence of climate change on potential productivity of naked barley in the Tibetan Plateau in the past 50 years. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1329-1338. (in Chinese)
[10] 弓开元, 何亮, 邬定荣, 吕昌河, 李俊, 周文彬, 杜军, 于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应. 中国农业科学, 2020, 53(4): 720-733.
GONG K Y, HE L, WU D R, LÜ C H, LI J, ZHOU W B, DU J, YU Q. Spatial-temporal variations of photo-temperature potential productivity and yield gap of highland barley and its response to climate change in the cold regions of the Tibetan Plateau. Scientia Agricultura Sinica, 2020, 53(4): 720-733. (in Chinese)
[11] SMITH W N, GRANT B B, CAMPBELL C A, McConkey B G, DESJARDINS R L, KROEBEL R, MALHI S S. Crop residue removal effects on soil carbon: Measured and inter-model comparisons. Agriculture Ecosystems & Environment, 2012, 161: 27-38.
doi: 10.1016/j.agee.2012.07.024
[12] HU S, MO X G. Interpreting spatial heterogeneity of crop yield with a process model and remote sensing. Ecological Modelling, 2011, 222(14): 2530-2541.
doi: 10.1016/j.ecolmodel.2010.11.011
[13] ZHANG J, HU K L, LI K J, ZHENG C L, LI B G. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil & Tillage Research, 2017, 165: 302-314.
[14] HAN J, JIA Z, WU W, LI C S, HAN Q F, ZHANG J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Research, 2014, 155: 202-212.
doi: 10.1016/j.fcr.2013.09.004
[15] CHURKINA G, RUNNING S W, SCHLOSS A L. Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Global Change Biology, 1999, 51: 46-55.
[16] SALO T J, PALOSUO T, KERSEBAUM K C, NENDEL C, ANGULO C, EWERT F, BINDI M, CALANCA P, KLEIN T, MORIONDO M, FERRISE R, OLESEN J E, PATIL R H, RUGET F, TAKAC J, HLAVINKA P, TRNKA M, ROTTTER R P. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science, 2016, 154(7): 1218-1240.
[17] WU D R, YU Q, LU C H, HENGSDIJK H. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy, 2006, 24(3): 226-235.
doi: 10.1016/j.eja.2005.06.001
[18] BOOGAARD H, WOLF J, SUPIT I, NIEMEYER S, VAN ITTERSUM M. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research, 2013, 143(SI): 130-142.
[19] WANG T, LU C H, YU B H. Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region. Journal of Geographical Sciences, 2011, 21(4): 677-688.
doi: 10.1007/s11442-011-0872-3
[20] TANG Y, WAN S, HE J, ZHAO X. Foreword to the special issue: Looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology, 2009, 2(4): 169-171.
doi: 10.1093/jpe/rtp026
[21] 张镱锂, 刘林山, 王兆锋, 摆万奇, 丁明军, 王秀红, 阎建忠, 许尔琪, 吴雪, 张炳华, 刘琼欢, 赵志龙, 刘峰贵, 郑度. 青藏高原土地利用与覆被变化的时空特征. 科学通报, 2019, 64(27): 2865-2875.
ZHANG Y L, LIU L S, WANG Z F, BAI W Q, DING M J, WANG X H, YAN J Z, XU E Q, WU X, ZHANG B H, LIU Q H, ZHAO Z L, LIU F G, ZHENG D. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 2019, 64(27): 2865-2875. (in Chinese)
[22] DOORENBOS J, PRUITT W O. Guidelines for Predicting Crop Water Requirements. Rome, Italy: Food and Agriculture Organization of the United Nations, 1977.
[23] 李军, 邵明安, 张兴昌. 黄土高原地区EPIC模型数据库组建. 西北农林科技大学学报, 2004, 32(8): 21-26.
LI J, SHAO M A, ZHANG X C. Database construction for the EPIC model on the Loess Plateau region. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(8): 21-26. (in Chinese)
[24] 刘敏, 孙杰, 杨宏青, 袁业畅. 湖北省不同地形条件下风随高度变化研究. 气象, 2010, 36(4): 63-67.
LIU M, SUN J, YANG H Q, YUAN Y C. The study on wind speed change with height under different terrain conditions in Hubei province. Meteorological Monthly, 2010, 36(4): 63-67. (in Chinese)
[25] DAI Y J, SHANGGUAN W, DUAN Q Y, LIU B Y, FU S H, NIU G Y. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. Journal of Hydrometeorology, 2013, 14(3): 869-887.
doi: 10.1175/JHM-D-12-0149.1
[26] 联合国粮农组织(FAO). 青藏高原土壤质地数据集(2010). 国家青藏高原科学数据中心, 2019.
Food and Agriculture Organization of the United Nations (FAO). Dataset of soil texture on the Qinghai-Tibet Plateau (2010). National Tibetan Plateau Data Center, 2019. (in Chinese)
[27] FISCHER G, NACHTERGAELE F, PRIELER S. Global agro- ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008.
[28] 钟强. 青藏高原太阳总辐射的计算方法的讨论. 高原气象, 1986, 5(3): 197-210.
ZHONG Q. Discussions in the climatological methods of calculating the global solar radiation over the Qinghai-Xizang Plateau Area. Plateau Meteorology, 1986, 5(3): 197-210. (in Chinese)
[29] 李为虎, 杨永红, 达瓦. 西藏拉萨Angstrom-Prescott系数选取研究. 安徽农业科学, 2009, 37(12): 5335-5339.
LI W H, WANG Y H, DA W. Study on selection of Angstrom- Prescott indexes of Lhasa in Tibet. Journal of Anhui Agriculture Science, 2009, 37(12) :5335-5339. (in Chinese)
[30] BOOGAARD H L, DIEPEN C A V, ROTTER R P, CABRERA J M C A, LAAR H H V. User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5. Wageningen: SC-DLO (Technical document/DLO Winand Staring Centre 52), 1998: 127.
[31] POHLERT T. Use of empirical global radiation models for maize growth simulation. Agricultural and Forest Meteorology, 2004, 126(1-2): 47-58.
doi: 10.1016/j.agrformet.2004.05.003
[32] KALRA N, CHAKRABORTY D, KUMAR P R, JOLLY M, SHARMA P K. An approach to bridging yield gaps, combining response to water and other resource inputs for wheat in northern India, using research trials and farmers’ fields data. Agricultural Water Management, 2007, 93(1-2): 54-64.
doi: 10.1016/j.agwat.2007.06.004
[33] 金善宝. 中国小麦生态. 北京: 科学出版社, 1991: 173-223.
JIN S B. Research of Wheat Ecology in China. Beijing: Science Press, 1991: 173-223. (in Chinese)
[34] 王兰, 魏迎春, 王菊花, 范春捆, 梁艳华, 王建银. 西藏春小麦育种材料主要农艺性状与产量的相关、通径分析. 西藏农业科技, 2016, 38(3): 18-21.
WANG L, WEI Y C, WANG J H, FAN C K, LIANG Y H, WANG J Y. The correlation and path analysis on the yield and main agronomic traits of spring wheat breeding material in Tibet. Tibet Journal of Agricultural Sciences, 2016, 38(3):18-21. (in Chinese)
[35] 郑度. 中国生态地理区域系统研究. 北京: 商务印书馆, 2008: 6-31.
ZHENG D. Study of China’s Eco-Geographical Region System. Beijing: The Commercial Press, 2008. (in Chinese)
[36] 陈洁, 刘玉洁, 潘韬, 吴绍洪, 谭清华, 葛全胜, 刘燕华. 1961-2010年中国降水时空变化特征及对地表干湿状况影响. 自然资源学报, 2019, 34(11): 2440-2453.
doi: 10.31497/zrzyxb.20191115
CHEN J, LIU Y J, PAN T, WU S H, TAN Q H, GE Q S, LIU Y H. Spatiotemporal variation of precipitation in China and its impact on surface dry-wet conditions during 1961-2010. Journal of Natural Resources, 2019, 34(11): 2440-2453. (in Chinese)
doi: 10.31497/zrzyxb.20191115
[37] 胡冬梅. 北方春小麦品种在西宁生态地区产量比较. 青海科技, 1999, 6(3): 9-10.
HU D M. Comparison of output among different varieties of spring wheat from north China planted in Xining area. Qinghai Science and Technology, 1999, 6(3): 9-10. (in Chinese)
[38] 尹中江, 刘启勇, 魏迎春, 冬梅, 桑布. 白朗县白雪试验站春小麦品比试验——西藏种植业成果转化子项目. 西藏农业科技, 2008, 30(2): 11-15.
YIN Z J, LIU Q Y, WEI Y C, DONG M, SANG B. Spring wheat variety comparison test at Baixue experimental station in Bailang county-subproject of transformation of Tibetan planting industry achievements. Tibet Agricultural Science and Technology, 2008, 30(2): 11-15. (in Chinese)
[39] 王发忠. 杂交春小麦区域试验初报. 青海农技推广, 2000(4): 46-47.
WANG F Z. Preliminary report on regional experiment of hybrid spring wheat. Qinghai Agro-Technology Extension, 2000(4): 46-47. (in Chinese)
[40] 陈志国, 杨倩, 袁飞敏, 宋继昌, 张林春. 抗旱高产旱地春小麦新品种——青麦5号. 麦类作物学报, 2017, 37(8): 1139.
CHEN Z G, YANG Q, YUAN F M. SONG J C, ZHANG L C. A new spring wheat variety Qingmai-5 with drought resistance and high yield in dryland. Journal of Triticeae Crops, 2017, 37(8): 1139. (in Chinese)
[41] 常磊. 西北旱地春小麦农艺指标变异及稳定性分析. 兰州: 甘肃农业大学, 2008.
CHANG L. The agronomic traits difference and the analysis on stability of spring wheat in rainfed region of Northwest China. Lanzhou: Gansu Agricultural University, 2008. (in Chinese)
[42] 王力. 青藏高原东北部农作物与牧草物候特征及其对气候变化的响应. 兰州: 兰州大学, 2018.
WANG L, The responses of phenological characteristic of crop and herbage to climate change in the Northeastern Tibetan Plateau. Lanzhou: Lanzhou University, 2018. (in Chinese)
[43] 曹永华. 青藏高原小麦高产生态气候特征的分析. 农业气象, 1982(2): 23-27.
CAO Y H. Analysis on ecoclimatic characteristics of high yield wheat in the Qinghai-Tibet Plateau. Agricultural Meteorology, 1982(2): 23-27. (in Chinese)
[44] 张永鹏, 梁艳华, 王菊花, 魏迎春, 范瑞英. 2017-2018年度春小麦全区区域(拉萨点)试验初报. 西藏农业科技, 2019, 41(S1): 81-83.
ZHANG Y P, LIANG Y H, WANG J H, WEI Y C, FAN R Y. Regional experimental study of spring wheat in the 2017-2018. Tibet Agricultural Science and Technology, 2019, 41(S1): 81-83. (in Chinese)
[45] 路季梅, 俞炳杲. 西藏高原麦类作物产量形成的特点. 中国农业科学, 1978(4): 25-34.
LU J M, YU B G. The characteristics of production formation of wheat crops in the Tibet Plateau. Scientia Agricultura Sinica, 1978(4): 25-34. (in Chinese)
[46] 张怀刚, 陈志国, 刘宝龙, 李毅, 张梅妞, 相文德, 张煜, 李全新, 张波, 赵会君. 高产抗病春小麦新品种—高原142. 麦类作物学报, 2008, 28(2): 355.
ZHANG H G, CHEN Z G, LIU B L, LI Y, ZHANG M N, XIANG W D, ZHANG Y, LI Q X, ZHANG B, ZHAO H J. A new spring wheat variety with high yield and disease resistance-Plateau 142. Journal of Triticeae Crops, 2008, 28(2): 355. (in Chinese)
[47] SEN P K. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934
[48] ZHANG Z M, LU C H. Identification of maize yield trend patterns in the North China Plain. International Journal of Plant Production, 2021, 15(1): 125-137.
doi: 10.1007/s42106-020-00121-5
[49] LOBELL D B, ASNER G P. Climate and management contributions to recent trends in US agricultural yields. Science, 2003, 299(5609): 1032.
[50] CHEN Y, ZHANG Z, TAO F, WANG P, WEI X. Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China. Field Crops Research, 2017, 206: 11-20.
doi: 10.1016/j.fcr.2017.02.012
[51] LIU Z J, YANG X G, LIN X M, HUBBARD K G, LV S, WANG J. Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China. Science of the Total Environment, 2016, 541: 756-764.
doi: 10.1016/j.scitotenv.2015.08.145
[52] TAO F L, YOKOZAWA M, XU Y L, HAYASHI Y, ZHANG Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138: 82-92.
doi: 10.1016/j.agrformet.2006.03.014
[53] 吴绍洪, 尹云鹤, 郑度, 杨勤业. 青藏高原近30年气候变化趋势. 地理学报, 2005, 60(1): 3-11.
WU S H, YIN Y H, ZHENG D, YANG Q Y. Climate changes in the Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005, 60(1):3-11. (in Chinese)
[54] 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题. 科学通报, 2000, 45(1): 98-106.
YAO C D, LIU X D, WANG N L. The amplitude of climate change in Qinghai-Tibet Plateau. Chinese Science Bulletin, 2000, 45(1): 98-106. (in Chinese)
[55] 范兰, 吕昌河, 陈朝. 作物产量差及其形成原因综述. 自然资源学报, 2011, 26(12): 2155-2166.
FAN L, LÜ C H, CHEN Z. A review on crop yield gaps and the causes. Journal of Natural Resources, 2011, 26(12): 2155-2166. (in Chinese)
[56] 杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014, 47(14): 2731-2741.
YANG X G, LIU Z J. Advances in research on crop yield gaps. Chinese Agricultural Sciences, 2014, 47(14): 2731-2741. (in Chinese)
[57] 姜丽霞, 吕佳佳, 王晾晾, 杨晓强, 李帅. 黑龙江省气温日较差的变化趋势及其与作物产量的关系. 中国农业气象 2013, 34(2): 179-185.
JIANG L X, LÜ J J, WANG L L, YANG X Q, LI S. Variation of diurnal temperature range and its relationship with crop yield in Heilongjiang province. Chinese Journal of Agrometeorology, 2013, 34(2): 179-185. (in Chinese)
[58] BRAGANZA K, KAROLY D J, ARBLASTER J M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters, 2004, 31(13): 1-4.
[59] 秦大河. 气候变化科学与人类可持续发展. 地理科学进展, 2014, 33(7): 874-883.
doi: 10.11820/dlkxjz.2014.07.002
QIN D H. Climate change science and sustainable development. Progress in Geography, 2014, 33(7):874-883.. (in Chinese)
doi: 10.11820/dlkxjz.2014.07.002
[1] BiJiao MA,ZhiWen GOU,Wen YIN,AiZhong YU,ZhiLong FAN,FaLong HU,Cai ZHAO,Qiang CHAI. Effects of Multiple Cropping Green Manure After Wheat Harvest and Nitrogen Application Levels on Wheat Photosynthetic Performance and Yield in Arid Irrigated Areas [J]. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515.
[2] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[3] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[4] JIAN TianCai,WU HongLiang,KANG JianHong,LI Xin,LIU GenHong,CHEN Zhuo,GAO Di. Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(15): 3355-3368.
[5] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[6] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[7] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
[8] WANG XiNa,YU JinMing,TAN JunLi,ZHANG JiaQun,WEI ZhaoQing,WANG ZhaoHui. Requirement of Nitrogen, Phosphorus and Potassium and Potential of Reducing Fertilizer Application of Spring Wheat in Yellow River Irrigation Area of Ningxia [J]. Scientia Agricultura Sinica, 2020, 53(23): 4891-4903.
[9] XIANG JiShan,LIU PengPeng,SANG Wei,CUI FengJuan,HAN XinNian,NIE YingBin,KONG DeZhen,ZOU Bo,XU HongJun,MU PeiYuan. Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles [J]. Scientia Agricultura Sinica, 2020, 53(19): 3857-3866.
[10] JIAO YaPeng,QI Peng,WANG XiaoJiao,WU Jun,YAO YiMing,CAI LiQun,ZHANG RenZhi. Effects of Different Nitrogen Application Rates on Soil Organic Nitrogen Components and Enzyme Activities in Farmland [J]. Scientia Agricultura Sinica, 2020, 53(12): 2423-2434.
[11] YIN Wen,CHAI Qiang,HU FaLong,FAN ZhiLong,FAN Hong,YU AiZhong,ZHAO Cai. Characteristics of Soil Water Utilization in Spring Wheat Field with Different Straw Retention Approaches in Dry Inland Irrigation Areas [J]. Scientia Agricultura Sinica, 2019, 52(7): 1247-1259.
[12] FANG HuiTing,MENG JiHua,CHENG ZhiQiang. Spatio-Temporal Variability of Soil Available Nutrients Based on Remote Sensing and Crop Model [J]. Scientia Agricultura Sinica, 2019, 52(3): 478-490.
[13] LI Jian, FENG XianHong, CAI YiLin. Coefficient of Parentage Analysis Among Naked Barley Varieties in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2019, 52(16): 2758-2767.
[14] FAN ZhiLong, ZHAO Cai, LIU Chang, YU AiZhong, YIN Wen, HU FaLong, CHAI Qiang. Enhanced Effect of Two Years Plastic Film Mulching with Reduced Tillage on Grain Yield Formation of Wheat Rotation Under Reduced Irrigation and N Application [J]. Scientia Agricultura Sinica, 2018, 51(19): 3651-3662.
[15] WANG JianLin, ZHONG ZhiMing, FENG XiBo, FU Gang, HOU WeiHai, WANG GaiHua, Da-cizhuoga. Spatial Distribution Regulation of Protein Content of Naked Barley Varieties and Its Relationships with Environmental Factors in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2017, 50(6): 969-977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!