Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (10): 2078-2090.doi: 10.3864/j.issn.0578-1752.2020.10.014

• SPECIAL FOCUS: QUALITY OF AGRICULTURAL PRODUCTS • Previous Articles     Next Articles

Effects of Hot Air-Vacuum Freeze Combined with Drying on Physical Properties and Prebiotic Activities of Brittle Dried Longan

DENG YuanYuan,YANG Jing,WEI ZhenCheng,ZHANG Yan,LIU Guang,ZHANG RuiFen,TANG XiaoJun,WANG JiaJia,LIAO Na,ZHANG MingWei()   

  1. Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610
  • Received:2019-09-20 Accepted:2019-12-26 Online:2020-05-16 Published:2020-05-22
  • Contact: MingWei ZHANG E-mail:zhangmingwei@gdaas.cn

Abstract:

【Objective】 The effects of hot air-vacuum freeze combined with drying (HA-VFCD) on the physical properties and prebiotic activities of high-quality brittle dried longan were investigated in the present study, so as to provide a theoretical basis for the optimal industrialized energy-saving drying mode. 【Method】 In present study, the effect of HA-VFCD on the physicochemical and nutritional characteristics, such as moisture content, water activity, shrinkage rate, water rehydration ratio, total sugar and polysaccharide contents of brittle dried longan, were compared with that of individual hot air drying (HAD) and vacuum freeze drying (VFD) longan samples. The flavor substance changes and the energy consumption were also evaluated by GC-MS and ammeter, respectively. Furthermore, the dried longan was fermented by Lactobacillus plantarum and Lactobacillus acidophilus to investigate the content changes of viable bacteria, total sugar, reducing sugar and short-chain fatty acid, thus evaluating the effect of HA-VFCD on the in vitro prebiotic activities of longan. 【Result】 Longan dried by HA-VFCD showed significantly lower moisture content, water activity and shrinkage rate, but higher rehydration ratio, compared with the HAD counterparts. The content of total sugar, polysaccharide, and the types and amounts of volatile flavor of longan dried by HA-VFCD were lower than those of VFD samples, but higher than that of HAD counterparts. In addition, HA-VFCD process could save 12.16% of drying time and 25.40% of unit energy consumption, compared with VFD process. Both Lactobacillus plantarum and Lactobacillus acidophilus could increase the number of viable bacteria through fermentation of dried longan, which were used the total sugar in dried longan to produce short-chain fatty acids and to reduce the pH of fermentation broth. And the prebiotic activities of dried longan after fermentation were remarkably affected by the drying methods and the strain types of bacteria. After fermentation by the Lactobacillus plantarumfor 48 hours, the viable bacteria number of longan dried by HA-VFCD achieved the highest value of 12.40 lg cfu/mL, which was higher than that of HAD, VFD and fresh longan samples. After fermentation by the Lactobacillus acidophilus for 48 hours, the viable bacteria number of longan dried by HA-VFCD reached 11.84 lg cfu/mL, which was close to that of VFD samples, lower than HAD samples but higher than that of fresh longan. 【Conclusion】 The HA-VFCD process combined both the advantages of HAD and VFD, which could remarkably shorten the drying time, lower the energy consumption, and improve the drying efficiency and quality of dried longan.

Key words: hot air-vacuum freeze combined with drying, longan, dried fruit, quality, prebiotic activity

Table 1

Effect of hot air-vacuum freeze combined with drying on moisture content, moisture activity and shrinkage of longan fruit"

干燥方式 Drying method 水分含量 Water content (%) 水分活度 Water activity 皱缩率 Shrinkage rate (%)
热风干燥Got air drying 14.53±0.59b 0.63±0.01b 76.43±2.13c
真空冷冻干燥Vacuum freeze drying 7.46±0.31a 0.41±0.01a 39.21±1.68a
热风-真空冷冻联合干燥
Hot air-vacuum freeze combined drying
8.02±0.01a 0.42±0.00a 47.25±1.28b

Fig. 1

Effect of hot air-vacuum freeze combined with drying on rehydration ratio of longan fruit Different lowercase letters indicate significant difference in rehydration time of the same drying method (P<0.05); Different capital letters indicate significant difference of rehydration ratio with different drying methods at the same time (P<0.05)"

Table 2

Effect of hot air-vacuum freeze combined drying on volatile flavor substances of longan"

挥发性物质
Volatile flavor substances
热风干燥
Hot air drying
真空冷冻干燥
Vacuum freeze drying
热风-真空冷冻联合干燥
Hot air-vacuum freeze combined with drying
烷烃类Alkane
三氯甲烷Trichloromethane 0.75±0.09 0.25±0.04
十一烷Undecane 0.16±0.01 0.08±0.01
十二烷Dodecane 0.08±0.01 0.52±0.02 0.19±0.13
十三烷Tridecane 0.41±0.11 0.20±0.02
十四烷Tetradecane 0.06±0.01 0.45±0.00 0.21±0.02
八甲基环四硅氧烷Octamethyl cyclotetrasiloxane 0.18±0.11
十甲基环五硅氧烷Decamethyl cyclopentasiloxane 0.44±0.23 1.30±0.30 0.99±0.04
十二甲基环六硅氧烷Dodecymethyl cyclohexasiloxane 1.05±0.11 1.65±0.11 1.03±0.08
十四甲基环七硅氧烷Tetradecyclic heptasiloxane 0.69±0.11 0.86±0.06 0.54±0.01
十六烷基环八硅氧烷Hexadecyl cycloocsiloxane 0.09±0.11 0.09±0.01 0.13±0.01
正十九烷Nonadecane 0.08±0.01
十八甲基环九硅氧烷Octadecymethyl cyclodoxy siloxane 0.21±0.02
烷烃类总量Total alkane 2.65±0.12 6.42±0.37 3.61±0.25
烯烃类Olefin
罗勒烯异构体混合物Mixture of basil isomers 0.10±0.26 15.89±0.86 20.07±4.62
(E)-B-罗勒烯(E)-B-ocimene 0.36±0.04 0.60±0.11
别罗勒烯Alloocimene 0.71±0.19
反式石竹烯Trans carnation 0.13±0.00 0.10±0.03
古巴烯Cuba ene 0.14±0.02
2,6-二甲基-1,3,5,7-辛四烯2,6-dimethyl-1,3,5,7-octatetracene 0.13±001
α–法呢烯α–farnesene 0.16±0.02 0.19±0.02
(6E)-7,11-二甲基-3-亚甲基-1,6,10-十二碳三烯
(6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene
0.28±0.02 0.55±0.07
2,6二乙基吡嗪 2,6-diethylpyrazine 0.55±0.05
2,6-二甲基-6-(4-甲基-3-戊基)双环[3.1.1]七碳-2-烯
2,6-dimethyl-6- (4-methyl-3-pentenyl)-bicyclo [3.1.1]hept-2-ene
0.11±0.03
3,7,11-三甲基-1,3,6,10-十二碳-四烯(E,E)-α-farnesene 0.16±0.11
烯烃类总量Total olefin 0.10±0.26 17.50±0.87 22.62±4.96
醇类Alcohol
(2R,3R)-(-)-2,3-丁二醇(R,R)-2,3-butanediol 0.39±0.07 0.14±0.02
2,3-丁二醇2,3-butanediol 0.72±0.24 0.92±0.05 0.14±0.01
环己醇Cyclohexanol 0.07±0.01
芳樟醇Linalool 2.03±0.34
苯乙醇Phenethyl alcohol 0.37±0.04
醇类总量Total alcohol 1.19±0.32 3.32±0.03 0.13±0.18
酯类Ester
水杨酸甲酯Methyl salicylate 0.12±0.01 1.53±0.09
软脂酸乙酯Ethyl palmitate 0.07±0.00 1.05±0.03 0.07±0.02
月桂酸乙酯Ethyl laurate 2.45±0.07 0.04±0.01
烟酸甲酯Methyl nicotinate 1.13±0.06
苯甲酸乙酯Ethyl benzoate 0.53±0.12
烟酸乙酯Nicotinic acid ethyl ester 0.28±0.13
乙酸乙酯Ethyl acetate 0.12±0.01
(Z)-3,7-二甲基-2,6-辛二烯酸甲酯
2,6-octadienoic acid,3,7-dimethyl-, methyl ester
0.20±0.17
癸酸乙酯Ethyl caprate 0.66±0.06
月桂酸甲酯Methyl laurate 0.32±0.05
十四酸乙酯Ethyl myristate 0.76±0.11
14-甲基十五烷酸甲酯Methyl 14-methylpentadecanoate 0.18±0.03
油酸乙酯Ethyl oleate 0.10±0.01
酯类总量Total ester 0.19±0.01 9.30±0.24 0.11±0.01
醛类Aldehyde
壬醛Nonanal 0.12±0.03 0.52±0.13 0.09±0.02
癸醛Capraldehyde 0.07±0.01
醛类总量Total aldehyde 0.20±0.14 0.52±0.13 0.09±0.02
酸类Acid
壬酸N-nonanoic acid 0.07±0.00
酸类总量Total acids 0.07±0.00

Table 3

The content of total sugar and polysaccharide in longan by hot air-vacuum freezing combined with drying"

干燥方式Drying method 总糖Total sugar (mg?g-1 DW) 多糖Polysaccharide (mg?g-1 DW)
新鲜龙眼Fresh logan 1.72±0.15a 1.55±0.15a
热风干燥Hot air drying 1.86±0.09a 1.52±0.09a
真空冷冻干燥Vacuum freeze drying 3.15±0.17c 2.76±0.18c
热风-真空冷冻联合干燥Hot air-vacuum freeze combined drying 2.23±0.12b 1.96±0.13b

Table 4

Effects of hot air - vacuum freezing combined drying on energy consumption and drying time of longan fruit"

干燥方式
Drying method
干燥2.4 kg龙眼时间Drying time of 2.4 kg longan (h) 单位能耗Unit energy consumption (mj?kg-1)
热风干燥阶段Hot air drying period 真空冷冻阶段Vacuum freeze drying period 总耗时
Total time
热风干燥阶段Hot air drying period 真空冷冻阶段Vacuum freeze drying period 总单位能耗、Total unit energy consumption
热风干燥Hot air drying 20.00 20.00 7.90 7.90
真空冷冻干燥Vacuum freeze drying 74.00 74.00 108.09 108.09
热风-真空冷冻联合干燥
Hot air-vacuum freeze combined with drying
3.00 62.00 65.00 4.68 75.96 80.64

Fig. 2

The change of the number of viable bacteria during the fermentation of dried longan fruit by hot air-vacuum freeze combined with drying Different lowercase letters indicate significant difference among different drying methods at the same fermentation time (P<0.05). The same as below"

Fig. 3

The change of the total sugar during the fermentation of dried longan fruit by hot air-vacuum freeze combined with drying Different lowercase letters indicate significant difference of different fermentation time of the same drying method (P<0.05); * indicate significant difference between other drying methods and hot air-vacuum freeze combined drying at the same fermentation time (P<0.05). The same as below"

Fig. 4

The change of the reducing sugars during the fermentation of dried longan fruit by hot air-vacuum freeze combined with drying"

Table 5

The change of contents of short-chain fatty acids in longan fruits fermented by Lactobacillus plantarum for 48 h by hot air-vacuum freeze combined drying (μmol?mL-1)"

干燥方式
Drying method
乙酸
Acetic acid
丙酸
Propionic acid
异丁酸
Isobutyric acid
正丁酸
N-butyric acid
异戊酸
Isovaleric acid
正戊酸
Pentanoic acid
新鲜龙眼Fresh logan 125.92±4.38a 2.68±0.19a 0.68±0.03ab 2.65±0.09a 4.80±2.51a 0.28±0.03a
热风干燥Hot air drying 163.34±7.82c 5.61±1.02b 0.78±0.16b 6.26±0.41c 6.98±0.57ab 0.42±0.02b
真空冷冻干燥Vacuum freeze drying 157.89±2.32bc 4.65±0.52b 0.53±0.03a 4.38±0.66b 12.14±0.98b 0.41±0.01ab
热风-真空冷冻联合干燥
Hot air-vacuum freeze combined drying
148.92±4.63b 5.90±0.75b 0.84±0.07b 3.26±0.24a 8.65±4.66ab 0.42±0.12b

Table 6

The change of contents of short-chain fatty acids in longan fruits fermented by Lactobacillus acidophilus for 48 h by hot air-vacuum freeze combined drying (μmol?mL-1)"

干燥方式
Drying method
乙酸
Acetic acid
丙酸
Propionic acid
异丁酸
Isobutyric acid
正丁酸
N-butyric acid
异戊酸
Isovaleric acid
正戊酸
Pentanoic acid
新鲜龙眼Fresh logan 138.18±31.16a 4.41±0.75a 0.74±0.33a 3.38±1.48ab 8.02±0.06ab 0.42±0.04a
热风干燥Hot air drying 179.08±14.05a 5.47±0.33a 0.85±0.03a 4.64±0.43b 7.60±0.26a 0.60±0.03a
真空冷冻干燥Vacuum freeze drying 145.61±24.34a 5.47±0.68a 1.41±0.07a 3.37±0.26ab 7.19±0.24a 0.49±0.09a
热风-真空冷冻联合干燥
Hot air-vacuum freeze combined drying
177.03±27.10a 11.35±2.12b 1.80±0.34b 2.95±0.39a 9.27±1.31b 0.68±0.38a
[1] WU Y L, YI G J, ZHOU B R, ZENG J W, HUANG Y H . The advancement of research on litchi and longan germplasm resources in China. Scientia Horticulturae, 2007,114(3):143-150.
[2] 齐文娥, 陈厚彬, 彭朵芬, 晏发发 . 中国龙眼产业发展现状、问题与对策建议. 广东农业科学, 2016,43(8):169-174.
QI W E, CHEN H B, PENG D F, YAN F F . Present situation, problems and suggestions of the development of Chinese longan industry. Guangdong Agricultural Sciences, 2016,43(8):169-174. (in Chinese)
[3] 白亚娟, 刘磊, 张瑞芬, 邓媛元, 黄菲, 张名位 . 龙眼果肉提取物改善东莨菪碱诱导小鼠学习记忆功能. 中国农业科学, 2016,49(21):4203-4213.
BAI Y J, LIU L, ZHANG R F, DENG Y Y, HUANG F, ZHANG M W . Longan pulp extracts ameliorate scopolamine-induced learning and memory of impairment mice. Scientia Agricultura Sinica, 2016,49(21):4203-4213. (in Chinese)
[4] RONG Y, YANG R L, YANG Y Z, WEN Y Z, LIU S X, LI C F, HU Z Y, CHENG X R, LI W . Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydrate Polymers, 2019,213:247-256.
[5] YANG K M, CHIANG P Y . Effects of smoking process on the aroma characteristics and sensory qualities of dried longan. Food Chemistry, 2019,287:133-138.
[6] APINYAVISIT K, NATHAKARANAKULE A, MITTAL G S, SOPONRONNARIT S . Heat and mass transfer properties of longan shrinking from a spherical to an irregular shape during drying. Biosystems Engineering, 2018,169:11-21.
doi: 10.1016/j.biosystemseng.2018.01.007
[7] 陈彦林 . 不同干制方式龙眼果肉主要活性物质的比较[D]. 武汉: 华中农业大学, 2014.
CHEN Y L . Comparison of different drying methods on main active substances in longan (Dimocarpus longan Lour.) pulp[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[8] 苏东晓, 张名位, 廖森泰, 侯方丽, 张瑞芬, 唐小俊, 魏振承, 张雁, 池建伟, 邓媛元 . 龙眼果肉水溶性提取物对正常小鼠免疫调节作用的影响. 中国农业科学, 2010,43(9):1919-1925.
SU D X, ZHANG M W, LIAO S T, HOU F L, ZHANG R F, TANG X J, WEI Z C, ZHANG Y, CHI J W, DENG Y Y . Effects of water soluble extracts from longan on immune regulation in normal mice. Scientia Agricultura Sinica, 2010,43(9):1919-1925. (in Chinese)
[9] LI X, WANG L, WANG Y, XIONG Z H . Effect of drying method on physicochemical properties and antioxidant activities of Hohenbuehelia serotina polysaccharides. Process Biochemistry, 2016,51(8):1100-1108.
[10] 韩苗苗, 姚娟, 易阳, 黄菲, 王丽梅 . 龙眼果肉干燥过程中多糖的理化特征与活性变化规律. 食品科学, 2017,38(21):67-73.
HAN M M, YAO J, YI Y, HUANG F, WANG L M . Changes of polysaccharides in longan pulp during drying: Physicochemical properties and biological activities. Food Science, 2017,38(21):67-73. (in Chinese)
[11] YI Y, ZHANG M W, LIAO S T, ZHANG R F, DENG Y Y, WEI Z C, TANG X J, ZHANG Y . Structural features and immunomodulatory activities of polysaccharides of longan pulp. Carbohydrate Polymers, 2012,87(1):636-643.
[12] 王亚鸽, 支龙飞, 张益涵, 蒙源, 钟钦权, 杨志伟 . 龙眼真空冻干与热风干燥品质比较研究. 轻工科技, 2012,28(5):24-25.
WANG Y G, ZHI L F, ZHANG Y H, MENG Y, ZHONG Q Q, YANG Z W . Comparative study on quality of longan vacuum freeze-drying and hot air-drying. Light Industry Science and Technology, 2012,28(5):24-25. (in Chinese)
[13] CHUNTHAWORN S, ACHARIYAVIRIYA S, ACHARIYAVIRIYA A, NAMSANGUAN K . Color kinetics of longan flesh drying at high temperature. Procedia Engineering, 2012,32:104-111.
[14] NATHAKARANAKULE A, JAIBOON P, SOPONRONNARIT S . Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 2010, 100(4):662-668.
[15] 庄培荣 . 龙眼肉微波真空干燥技术的研究[D]. 福州: 福建农林大学, 2011.
ZHUANG P R . Studies on the microwave vacuum drying of arillus longan[D]. Fuzhou: Fujian Agricultural and Forestry University, 2011. (in Chinese)
[16] 田玉庭, 陈洁, 李淑婷, 庄培荣, 庄玮婧, 郑宝东 . 不同干燥方法对龙眼果肉品质特性的影响. 西北农林科技大学学报(自然科学版), 2012,40(8):161-165.
TIAN Y T, CHEN J, LI S T, ZHUANG P R, ZHUANG W J, ZHENG B D . Effect of different drying methods on the quality of longan (Dimocarpus longan Lour.) pulp. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2012,40(8):161-165. (in Chinese)
[17] RAJKUMAR G, SHANMUGAM S, GALVAO M D S, DUTRA-SANDES R D, LEITE-NETA M T S, NARAIN N, MUJUMDAR A S . Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT-Fodd Scienceand Technology, 2017,80:501-509.
[18] SZYCHOWSKI P J, LECH K, SENDRA-NADAL E, HEMNANDEZ F, FIGIEL A, WOJDYLO A, CARBONELL-BARRACHINA Á A . Biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chemistry, 2018,255:157-164.
[19] WOJDYLO A, FIGIEL A, LEGUA P, LECH K, CARBONELL- BARRACHINA Á A, HEMNANDEZ F . Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chemistry, 2016,207:170-179.
[20] NATHAKARANAKULE A, JAIBOON P, SOPONRONNARIT S . Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 2010,99(4):662-668.
[21] HUANG F, LIU H J, ZHANG R F, DONG L H, LIU L, MA Y X, JIA X C, WANG G J, ZHANG M W . Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydrate Polymers, 2019b,206:344-351.
[22] KONG F L, ZHANG M W, KUANG R B, YU S J, CHI J W, WEI Z C . Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi ( Litchi chinensis Sonn.). Carbohydrate Polymers, 2010,81(3):612-616.
doi: 10.1016/j.carbpol.2010.03.021
[23] ZHANG Y, GAO B, ZHANG M W, SHI J, XU Y J . Headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of the volatile components of longan ( Dimocarpus longan Lour.). European Food Research and Technology, 2009,229(3):457-465.
doi: 10.1007/s00217-009-1076-2
[24] 俞憬 . 龙眼果干乳酸菌发酵工艺优化及肠道菌群调节作用的研究[D]. 广州: 广东药科大学, 2018.
YU J . Study on process optimization of longan pulps fermented by lactobacillus and regulation of intestinal flora[D]. Guangzhou: Guangdong Pharmaceutical University, 2018. (in Chinese)
[25] WANG H, ZHANG M, MUJUMDAR A S . Comparison of three new drying methods for drying characteristics and quality of shiitake mushroom ( Lentinus edodes). Drying Technology, 2014,32(15):1791-1802.
[26] 张群, 刘伟, 袁洪燕 . 不同温度热风干燥对蓝莓果干品质的影响. 湖南农业科学, 2018(6):79-83.
ZHANG Q, LIU W, YUAN H Y . Effects of hot-air-drying at different temperatures on blueberry quality. Hunan Agricultural Sciences, 2018(6):79-83. (in Chinese)
[27] CHANG C Y, CHANG C H, YU T H . The effect of drying treatment on the flavor and quality of longan fruit. Development of Food Science, 1998,40:353-367.
[28] 胡文舜, 蒋际谋, 黄爱萍, 郑少泉 . ‘晚香’龙眼果实香气成分的3种萃取头GC-MS效果分析. 福建农业学报, 2015,30(12):1497-1154.
HU W S, JIANG J M, HUANG A P, ZHENG S Q . GC-MS analysis on aromatics of ‘Wanxiang’ longans using different extraction fiber. Fujian Journal of Agricultural Sciences, 2015,30(12):1497-1154. (in Chinese)
[29] 邓媛元, 张雁, 汤琴, 张瑞芬, 魏振承, 马永轩, 张名位, 张惠娜 . 干燥方式对苦瓜茶感官品质及挥发性物质的影响. 中国食品学报, 2019,19(2):173-184.
DENG Y Y, ZHANG Y, TANG Q, ZHANG R F, WEI Z C, MA Y X, ZHANG M W, ZHANG H N . Effect of drying methods on the sensory characteristicsand volatile compounds of Momordica charantia tea. Journal of Chinese Institute of Food Science and Technology, 2019,19(2):173-184. (in Chinese)
[30] RAJKUMAR G, SHANMUGAM S, GALVAO M D S, DUTRA-SANDES R D, LEITE-NETA M T S, NARAIN N, MUJUMDAR A S . Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT-Fod Science and Technology, 2017,80:501-509.
[31] YANG B, PRASAD K N, XIE H H, LIN S, JIANG Y M . Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chemistry, 2011,126(2):590-594.
[32] AKBARI-ALAVIJEH S, SOLEIMANIAN-ZAD S, SHEIKH-ZEINODDIN M, HASHMI S . Pistachio hull water-soluble polysaccharides as a novel prebiotic agent. International Journal of Biological Macromolecules, 2018,107:808-816.
[33] HU J H, NIE S P, LI C, XIE M Y . In vitro fermentation of polysaccharide from the seeds of Plantago asiatica L. by human fecal microbiota. Food Hydrocolloid, 2013,33(2):384-392.
[34] AHMADI S, SHEIKH-ZEINODDIN M, SOLEIMANIAN-ZAD S, ALIHOSSEINI F, YADAV H . Effects of different drying methods on the physicochemical properties and antioxidant activities of isolated acorn polysaccharides. LWT-Food Science and Technology, 2019,100:1-9.
doi: 10.1016/j.lwt.2018.10.027
[35] LOVEGROVE A, EDWARDS C H, NONI I D, PATEL H, El S N, GRASSBY T . Role of polysaccharides in food, digestion and health. Critical Reviews in Food Science and Nutrition, 2017,57(2):237-253.
[36] WANG X, HUANG M, YANG F, SUN H J, ZHOU X X, GUO Y, WANG X L, ZHANG M L . Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro. Carbohydrate Polymers, 2015,125(1):232-240.
doi: 10.1016/j.carbpol.2015.02.040
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[3] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[6] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[7] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[8] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[9] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[10] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[11] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[12] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[13] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[14] YU WeiBao,LI Nan,KOU YiHong,CAO XinYou,SI JiSheng,HAN ShouWei,LI HaoSheng,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[15] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!