Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1432-1443.doi: 10.3864/j.issn.0578-1752.2020.07.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Lower Limit of Drip Irrigation on Growth, Yield and Root Distribution of Greenhouse Grapes

Bo LI,Jun SUN,XinGuang WEI,SiYu ZHENG,Dong GE,ShiNing FU   

  1. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866
  • Received:2019-08-29 Accepted:2019-10-30 Online:2020-04-01 Published:2020-04-14

Abstract: 【Objective】 The experiment was carried out to explore the effects of irrigation level on grapes growth and water consumption under a controlled automatic irrigation, so as to provide a basis for grapes water management under an automatic irrigation in a greenhouse.【Method】 With the 3-year-old ‘Muscat Hamburg’ grape as the study object, a combined utilization of data acquisition terminal of CR1000, soil moisture sensor and radiotube, the experiment was carried out and set 8 different irrigation limits (accounting for 50%, 55%, 60%, 65%, 70%, 75%, 80% and 85% of field capacity, respectively), the same upper limit of irrigation being 90% of field capacity, so as to analyze the effects of different irrigation lower limits on biomass, yield and water consumption of ground and underground grapes in a greenhouse.【Result】 The results showed that the length and stem diameter of new shoots, as well as the leaf area index increased significantly with the increase of irrigation lower limits when it was lower than 75% of field capacity. The growth of new shoots was restricted to a certain degree when the lower irrigation limit exceeded 75% of field capacity. The grapes roots were distributed in soil layers of 0-60 cm, and the main distribution area was in 0-30 cm, where the volume and surface area of roots accounted for 75%-89% and 77%-83% of the total, respectively. In the most concentrated root distribution region in soil layer of 0-10 cm and 10-20 cm, there was a tendency to decrease after an increase in root index with the increase of lower irrigation limits; the root index reached the maximum with lower irrigation limit being 75% of field capacity. The root index increased with the increase of irrigation volume when the volume was lower than 6 000 m 3·hm -2, and decreased or increased slowly when the irrigation volume exceeded 7 000 m 3·hm -2. Grapes yield and water utilization efficiency reached the maximum with the lower irrigation limit being 75% of field capacity, which were 32 270.31 kg·hm -2 and 4.85 kg·m -3, respectively.【Conclusion】 Taking the factors such as new shoots growth, root distribution, grapes yield and water utilization into consideration, we could conclude that the optimal range of soil moisture was got when the lower irrigation limit took up 75% to 90% of water capacity under drip irrigation, which could be used as the recommended value of suitable irrigation control index under the planting mode.

Key words: grape, drip irrigation, irrigation lower limit, growth, yield, root morphology

Table 1

Physical and chemical properties of soils (0-60 cm) in the experimental site"

土层
Layer
(cm)
pH 有机质
Organic matter content
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
全钾
Total Kalium
(g·kg-1)
速效磷
Available phosphorous
(mg·kg-1)
速效钾
Available Kalium
(mg·kg-1)
容重
Bulk density
(g·cm-3)
田间持水率
Field capacity
(cm·cm-3)
0-10 7.89 20.94 1.15 1.89 11.42 18.34 132.85 1.39 0.20
10-20 8.01 18.82 0.97 1.78 10.08 16.23 115.75 1.42 0.21
20-30 8.04 17.75 0.78 1.65 9.65 14.23 100.36 1.43 0.22
30-40 8.06 15.63 0.62 1.43 8.73 11.25 95.78 1.45 0.24
40-50 8.08 14.52 0.57 1.09 7.46 8.52 79.36 1.47 0.23
50-60 8.11 13.41 0.53 0.92 6.05 6.32 62.01 1.48 0.24

Table 2

Experimental design layout"

处理
Treatment
土壤含水率下限
(占田间持水率的百分数)
Lower limit of soil moisture
content (Percentage as a
percentage of field holdup) (%)
土壤含水率上限
(占田间持水率的百分数)
Upper limit of soil moisture content (Percentage as a percentage of field holdup) (%)
T1 50 90
T2 55 90
T3 60 90
T4 65 90
T5 70 90
T6 75 90
T7 80 90
T8 85 90

Fig. 1

Changes of soil moisture content during the whole growth period under different treatments a: The soil moisture content monitored by three soil moisture sensors with different buried depths of T4 treatment; b: The soil moisture content of T1-T8 treatment (15 cm)"

Fig. 2

Irrigation content in the whole growth period of different treatments Different lowercase letters indicate significant differences (P<0.05). The same as below"

Table 3

Grape shoot growth length, shoot thickness and leaf area index"

处理
Treatment
新梢长度Shoot growth length 新梢粗度 Shoot growth thickness 叶面积指数 Leaf area index
生长初期
Initial stage (cm)
生长中期
Middle stage (cm)
生长后期
Later stage (cm)
生长初期
Initial stage (mm)
生长中期
Middle stage (mm)
生长后期
Later stage (mm)
生长初期
Initial stage
生长中期
Middle stage
生长后期
Later stage
T1 22.33±1.45a 71.67±1.67b 164.00±0.58b 5.85±0.39a 8.77±0.45ab 9.23±0.79d 0.36±0.004a 1.21±0.03b 3.37±0.02b
T2 22.88±1.05a 74.00±2.31b 167.33±1.45ab 5.77±0.26a 8.40±0.58ab 9.65±0.05bcd 0.37±0.02a 1.26±0.04b 3.46±0.04ab
T3 22.67±1.20a 85.00±7.64ab 170.5±4.41ab 6.25±0.18a 8.28±0.31b 10.66±0.44abc 0.37±0.004a 1.48±0.15b 3.56±0.12ab
T4 26.33±0.33a 84.75±3.82ab 173.62±2.42ab 5.77±0.27a 8.90±0.23ab 11.24±0.19a 0.41±0.05a 1.54±0.04ab 3.64±0.07ab
T5 27.42±2.56a 89.00±1.53ab 175.67±5.58ab 6.05±0.34a 8.55±0.39ab 11.72±0.56a 0.42±0.009a 1.55±0.03ab 3.71±0.16ab
T6 26.67±0.89a 104.00±10.21a 178.67±1.56a 6.30±0.31a 9.42±0.63ab 11.60±0.23a 0.42±0.007a 1.88±0.22a 3.79±0.05a
T7 24.83±0.44a 77.33±8.45b 177.00±1.22a 6.55±0.35a 9.62±0.37ab 10.92±0.18ab 0.38±0.02a 1.33±0.17b 3.74±0.04a
T8 24.33±2.03a 73.33±1.67b 175.50±2.40ab 6.05±0.15a 9.75±0.42a 10.94±0.46ab 0.37±0.004a 1.24±0.03b 3.70±0.07ab

Fig. 3

Influence of different irrigation limits on root morphology of grape"

Fig. 4

Relationship between irrigation content and root growth"

Table 4

Grape shape index, yield and water use efficiency under different irrigation treatments"

处理
Treatment
果实纵径
Longitudinal diameter
(mm)
果实横径
Transverse diameter
(mm)
果形指数
Fruit shape
index
产量
Yield
(kg·hm-2)
耗水量
Water consumption
(m3·hm-2)
水分利用效率
Water use efficiency
(kg·m-3)
T1 24.34±0.71ab 20.93±1.08a 1.17±0.06ab 12599.47±222.62d 4858.2±170.21e 2.59±0.05cd
T2 24.19±0.35ab 19.49±0.61ab 1.24±0.02ab 12612.00±852.83d 5212.82±182.63e 2.42±0.16d
T3 25.09±1.07a 20.92±0.75a 1.2±0.03ab 18496.58±713.74c 5758.7±201.75d 3.21±0.12b
T4 24.00±0.49ab 19.29±0.31ab 1.25±0.04ab 26848.90±935.29b 5944.12±208.25d 4.52±0.16a
T5 23.49±0.70ab 19.12±0.17ab 1.23±0.05ab 30911.16±577.40a 6396.89±224.11c 4.83±09a
T6 23.47±0.73ab 20.08±13.2ab 1.18±0.10ab 32270.31±894.97a 6658.8±233.29bc 4.85±0.13a
T7 22.79±0.19b 17.88±0.27b 1.28±0.05a 19745.63±836.50c 6914.46±242.25ab 2.86±0.12bc
T8 22.44±0.47b 19.69±0.72ab 1.14±0.02b 18861.05±468.28c 7288.1±255.34a 2.59±0.06cd

Table 5

Ranking among different indicators"

指标 Index 较优处理排序Better processing rank
生长指标Growth index T6、T7、T5、T8、T4、T3
根系指标Root index T6
产量Yield T6、T5
水分利用效率Water use efficiency T6、T5、T4
[1] 刘春 . 东北地区生态农业发展研究[D]. 长春: 吉林大学, 2014.
LIU C . The research on ecological agriculture development in northeast of China[D]. Changchun: Jilin University, 2014. (in Chinese)
[2] 赵晓彤, 须晖, 李天来, 王蕊 . 东北地区日光温室冬季能量分配模型的建立. 沈阳农业大学学报, 2019,50(1):43-50.
ZHAO X T, XU H, LI T L, WANG R . Establishment of winter energy distribution model for solar greenhouse in northeast China. Journal of Shenyang Agricultural University, 2019,50(1):43-50. (in Chinese)
[3] 刘威生 . 辽宁省及类似气候区是我国设施果树优势区. 北方果树, 2017(5):1-2.
LIU W S . Liaoning province and its similar climatic zones are the dominant producing areas for protected fruit trees in China. Northern Fruits, 2017(5):1-2. (in Chinese)
[4] DOGAN A, ERLER F, ERKAN M, ATES A, SABANCI H S, POLAT E . Microbial-based production system: A novel approach for plant growth and pest and disease management in greenhouse-grown peppers (Capsicum annuum L). Journal of Agricultural Science & Technology, 2016,18(2):371-386.
[5] 房玉林, 孙伟, 万力, 惠竹梅, 刘旭, 张振文 . 调亏灌溉对酿酒葡萄生长及果实品质的影响. 中国农业科学, 2013,46(13):2730-2738.
FANG Y L, SUN W, WAN L, HUI Z M, LIU X, ZHANG Z W . Effects of regulated deficit irrigation (RDI) on wine grape growth and fruit quality. Scientia Agricultura Sinica, 2013,46(13):2730-2738. (in Chinese)
[6] 张芮, 成自勇, 李毅, 杨阿利 . 小管出流亏缺灌溉对设施延后栽培葡萄产量与品质的影响. 农业工程学报, 2012,28(20):108-113.
ZHANG R, CHENG Z Y, LI Y, YANG A L . Effects of small tube flow deficit irrigation on yield and quality of greenhouse grape under delayed cultivation. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(20):108-113. (in Chinese)
[7] 李雅善 . 滴灌葡萄不同灌水处理对其耗水规律及品质和产量的影响[D]. 杨陵: 西北农林科技大学, 2014.
LI Y S . Effects of different irrigation treatments on the law of water consumption, fruit quality and yield of grapevine under drip irrigation model[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[8] 梁鹏 . 部分根域干燥栽培条件下葡萄树体生长及根域土壤水分调控研究[D]. 上海: 上海交通大学, 2009.
LIANG P . Effect of partial root-zone drying on the growth of grapevine and the regulation of water statue[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
[9] ZENG C Z, BIE Z L, YUAN B Z . Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse. Agricultural Water Management, 2009,96(4):595-602.
[10] 马文云, 孙西欢, 马娟娟, 郭向红, 孟玮 . 蓄水坑灌不同灌水上下限对苹果树叶片蒸腾日变化的影响. 节水灌溉, 2019(5):51-56.
MA W Y, SUN X H, MA J J, GUO X H, MENG W . Effects of different irrigation upper and lower limits on the diurnal variation of transpiration of apple tree leaves under water storage pit irrigation. Water Saving Irrigation, 2019(5):51-56. (in Chinese)
[11] 胡兰, 翟国亮, 邓忠, 蔡九茂, 张文正, 高剑民 . 灌溉方式和灌水下限对温室青茄生长、耗水特性及产量的影响. 灌溉排水学报, 2019,38(2):16-22.
HU L, ZHAI G L, DENG Z, CAI J M, ZHANG W Z, GAO J M . Effects of critical soil moistures for different drip irrigations on growth water consumption and yield of greenhouse green eggplant. Journal of Irrigation and Drainage, 2019,38(2):16-22. (in Chinese)
[12] 窦超银, 孟维忠, 陈伟, 延玮辰 . 辽宁地区秋冬茬大棚黄瓜滴灌水肥一体化试验研究. 灌溉排水学报, 2018,37(8):22-26.
DOU C Y, MENG W Z, CHEN W, YAN W C . Fertigation of autumn-winter greenhouse cucumber in East Liaoning province. Journal of Irrigation and Drainage, 2018,37(8):22-26. (in Chinese)
[13] 张晓霞, 张芮, 成自勇, 何钊全, 高阳, 戴文渊, 刘静霞, 陈娜娜, 马奇梅 . 不同覆盖方式和灌水量对设施延后栽培葡萄生长特性和产量品质的影响. 干旱地区农业研究, 2016,34(3):102-107.
ZHANG X X, ZHANG R, CHENG Z Y, HE Z Q, GAO Y, DAI W Y, LIU J X, CHEN N N, MA Q M . Effects of water amount and mulching methods on growth characteristics and quality of grape with facility-delayed cultivation. Agricultural Research in the Arid Areas, 2016,34(3):102-107. (in Chinese)
[14] 赵建国, 马英杰 . 吐鲁番地区不同灌水量和毛管间距对葡萄生长和产量的影响. 节水灌溉, 2014(5):25-28, 37.
ZHAO J G, MA Y J . Effect of different irrigation water quantity and drip tape interval on growth and yield of grapes in Turpan. Water Saving Irrigation, 2014(5):25-28, 37. (in Chinese)
[15] 漆栋良, 胡田田, 吴雪, 牛晓丽 . 适宜灌水施氮方式利于玉米根系生长提高产量. 农业工程学报, 2015,31(11):144-149.
QI D L, HU T T, WU X, NIU X L . Rational irrigation and nitrogen supply methods improving root growth and yield of maize. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(11):144-149. (in Chinese)
[16] 赵岽, 王铁良, 山口智冶, 白义奎 . 辽沈Ⅳ型日光温室墙体保温性能试验研究. 节能技术, 2005,23(5):309-310, 429.
ZHAO D, WANG T L, SHANKOU Z Z, BAI Y K . Experimental research on wall’s heat preservation effect of solar greenhouse type Liaoshen IV. Energy Conservation Technology, 2005,23(5):309-310, 429. (in Chinese)
[17] 刘增进, 李宝萍, 李远华, 崔远来 . 冬小麦水分利用效率与最优灌溉制度的研究. 农业工程学报, 2004,20(4):58-63.
LIU Z J, LI B P, LI Y H, CUI Y L . Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2004,20(4):58-63. (in Chinese)
[18] 卫新东, 汪星, 汪有科, 周玉红, 缪凌 . 黄土丘陵区红枣经济林根系分布与土壤水分关系研究. 农业机械学报, 2015,46(4):88-97.
WEI X D, WANG X, WANG Y K, ZHOU Y H, MIAO L . Root distribution and soil water dynamics of jujube plantations in Loess Hilly Regions. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(4):88-97. (in Chinese)
[19] 孙三民, 安巧霞, 杨培岭, 陆小波, 顾凯凯 . 间接地下滴灌灌溉深度对枣树根系和水分的影响. 农业机械学报, 2016,47(8):81-90.
SUN S M, AN Q X, YANG P L, LU X B, GU K K . Effect of irrigation depth on root distribution and water use efficiency of jujube under indirect subsurface drip irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(8):81-90. (in Chinese)
[20] 邹海洋, 张富仓, 吴立峰, 向友珍, 范军亮, 李志军, 李思恩 . 基于不同水肥组合的春玉米相对根长密度分布模型. 农业工程学报, 2018,34(4):133-142.
ZOU H Y, ZHANG F C, WU L F, XIANG Y Z, FAN J L, LI Z J, LI S E . Normalized root length density distribution model for spring maize under different water and fertilizer combination. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(4):133-142. (in Chinese)
[21] 齐广平, 张恩和 . 膜下滴灌条件下不同灌溉量对番茄根系分布和产量的影响. 中国沙漠, 2009,29(3):463-467.
QI G P, ZHANG E H . Effect of drip irrigation quota on root distribution and yield of tomato under film mulch. Journal of Desert Research, 2009,29(3):463-467. (in Chinese)
[22] YANG J C, ZHANG H, ZHANG J H . Root morphology and physiology in relation to the yield formation of rice. Journal of Integrative Agriculture, 2012,11(6):920-926.
[23] ZHANG H, XUE Y, WANG Z, YANG J, ZHANG J . Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Research, 2009,113(1):31-40.
[24] 王凯, 宋文彩, 罗宇晨, 房玉林 . 玛纳斯地区不同树龄赤霞珠葡萄根系分布的研究. 西北农林科技大学学报(自然科学版), 2015,43(10):138-144.
WANG K, SONG W C, LUO Y C, FANG Y L . Distribution of Cabernet sauvignon grape roots in Manas region. Journal of Northwest A & F University (Natural Science Edition), 2015,43(10):138-144. (in Chinese)
[25] 毛娟, 陈佰鸿, 曹建东, 王利军, 王海, 王延秀 . 不同滴灌方式对荒漠区‘赤霞珠’葡萄根系分布的影响. 应用生态学报, 2013,24(11):3084-3090.
MAO J, CHEN B H, CAO J D, WANG L J, WANG H, WANG Y X . Effects of different drip irrigation modes on root distribution of wine grape ‘Cabernet Sauvignon’ in desert area of Northwest China. Chinese Journal of Applied Ecology, 2013,24(11):3084-3090. (in Chinese)
[26] 周青云, 王仰仁, 孙书洪 . 根系分区交替滴灌条件下葡萄根系分布特征及生长动态. 农业机械学报, 2011,42(9):59-63.
ZHOU Q Y, WANG Y R, SUN S H . Distribution characteristic and growing dynamic of grape vine roots under alternate partial root zone drip irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(9):59-63. (in Chinese)
[27] 于坤, 郁松林, 刘怀锋, 王文静, 白泽晨, 孙军利 . 不同根区交替滴灌方式对赤霞珠葡萄幼苗根冠生长的影响. 农业工程学报, 2015,31(4):113-120.
YU K, YU S L, LIU H F, WANG W J, BAI Z C, SUN J L . Effects of alternate partial root-zone drip irrigation on growth of root and shoot of Cabernet Sauvignon grape seedlings. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(4):113-120. (in Chinese)
[28] 李铭, 郑强卿, 郭绍杰, 苏学德, 张建新, 吴鹏 . 干旱区戈壁地灌溉量对‘克瑞森’无核葡萄根系及果实品质的影响. 北方园艺, 2012(5):28-31.
LI M, ZHENG Q Q, GUO S J, SU X D, ZHANG J X, WU P . Effect of irrigation volume on root system and fruit quality of ‘Crimson’ seedless under drip irrigation in arid desert Gobi area.Northern Horticulture, 2012(5):28-31. (in Chinese)
[29] 杜太生, 康绍忠, 闫博远, 王锋, 李志军 . 干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究. 农业工程学报, 2007,23(11):52-58.
DU T S, KANG S Z, YAN B Y, WANG F, LI Z J . Experimental research of high-quality efficient irrigation on grape in the oasis region. Transactions of the Chinese Society of Agricultural Engineering, 2007,23(11):52-58. (in Chinese)
[30] HUANG B R, FRY J D . Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Science, 1998,38(4):1017-1022.
[31] 殷飞, 黄金林, 胡宇祥, 李瑞明 . 不同灌水量对大棚葡萄生长、品质和水分利用效率的影响. 灌溉排水学报, 2016,35(5):85-88.
YIN F, HUANG J L, HU Y X, LI R M . Influences of different irrigation water amounts on growth, quality and water use efficiency of grape in greenhouse. Journal of Irrigation and Drainage, 2016,35(5):85-88. (in Chinese)
[32] 李泽霞, 成自勇, 张芮, 纪学伟, 李敏, 高阳 . 不同灌水上限对酿酒葡萄生长、产量及品质的影响. 灌溉排水学报, 2015,34(6):83-85.
LI Z X, CHENG Z Y, ZHANG R, JI X W, LI M, GAO Y . Effect of different irrigation water upper limits on the growth, yield and quality of wine grape. Journal of Irrigation and Drainage, 2015,34(6):83-85. (in Chinese)
[33] 唐龙, 曹红霞, 李宏礼, 李天星, 明刚 . 不同氮肥追施量下滴灌水量对苹果产量和品质的影响. 干旱地区农业研究, 2017,35(6):10-18.
TANG L, CAO H X, LI H L, LI T X, MING G . Influence of drip irrigation levels to yield and quality of apple under different amount of nitrogen. Agricultural Research in the Arid Areas, 2017,35(6):10-18. (in Chinese)
[34] 史星雲, 李强, 张军, 金娜, 王鑫, 王多文, 牟德生, 徐珊珊 . 滴灌条件下水肥耦合对酿酒葡萄生长发育及果实品质的影响. 西北农业学报, 2019,28(2):225-236.
SHI X Y, LI Q, ZHANG J, JIN N, WANG X, WANG D W, MOU D S, XU S S . Effects of water and fertilizer coupling on growth and quality of wine grape under drip irrigation. Acta Agriculturae Boreali-occidentalis Sinica, 2019,28(2):225-236. (in Chinese)
[35] 崔德芹, 黄金林, 李恩彪 . 灌水上限对大棚滴灌葡萄土壤水分和产量品质的影响. 北方园艺, 2016(20):40-43.
CUI D Q, HUANG J L, LI E B . Influences of different water control limit on soil moisture yield and quality of grape in greenhouse. Northern Horticulture, 2016(20):40-43. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[4] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[5] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[6] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[7] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[8] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[9] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[10] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[11] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[12] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[13] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[14] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[15] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!