Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4088-4099.doi: 10.3864/j.issn.0578-1752.2019.22.013

• GERMPLASM RESOURCES • Previous Articles     Next Articles

Population Structure and Association Analysis of Main Agronomic Traits of Shanxi Core Collection in Foxtail Millet

WANG HaiGang,WEN QiFen,MU ZhiXin(),QIAO ZhiJun()   

  1. Institute of Crop Germplasm Resources of Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031
  • Received:2019-04-22 Accepted:2019-06-20 Online:2019-11-16 Published:2019-11-16
  • Contact: ZhiXin MU,ZhiJun QIAO E-mail:muzx2008@sina.com;nkypzs@126.com

Abstract:

【Objective】The objective of this study is to detect the SSR markers associated with agronomic trait and analyze genetic diversity and genetic structure of foxtail millet landrace in Shanxi province. The results will be helpful for hybridization combination of parent materials and molecular marker assisted breeding.【Method】96 SSR markers on 9 chromosomes were genome-wide screened for polymorphism in core collection of 595 accessions. PowerMarker 3.25 software was used to estimate the polymorphism information of population. Population structure was analyzed using STRUCTURE 2.3.4 software. Then the data were associated with 96 SSR markers by GLM (general linear model, Q) and MLM (mixed linear model, Q+K).【Result】Totally 828 alleles were found with 96 SSR markers and 8.6 alleles were revealed with each marker in average ranged from 2-26. The gene diversity was from 0.005 to 0.941, averagely 0.610. The polymorphism information content (PIC) value ranged from 0.005 to 0.938 with the mean of 0.577. Heterozygosity per locus on average was 0.016, ranging from 0 to 0.050. All the 595 accessions were divided into three subgroups by analysis of population genetic structure. There was linkage disequilibrium (LD) among linked loci and unlinked loci pairs, and 1 955 out of 4 560 loci pairs (42.9%) had significant LD (P < 0.01) with average D′ value of 0.23. A total of 12 locus found by GLM method significantly at the level of P<0.01 which explained 2.34%-13.94% of the phenotypic variance and the mean value was 6.33%. CAAS2050 (R 2=13.94%) and B153(R 2=11.36%) kept the max value. Meanwhile, 9 loci were found by MLM method significantly at the level of P<0.01 which explained 2.80%-9.22% of the phenotypic variance and the mean value was 5.16%. P89(R 2=9.22%) and P3*(R 2=8.28%) kept the max value. A total of 7 loci were detected in common by GLM and MLM. 【Conclusion】Genetic diversity and population structure of 595 accessions were analyzed through SSR markers. In the two association analysis models, 12 markers were associated with nine traits including stem node number, plant height, peduncle length, diameter of main stem, panicle length, panicle diameter, primary branch number per panicle, spikelet number per primary branch, protein content by GLM. Nine markers were associated with eight traits including stem node number, peduncle length, leaf width, diameter of main stem, panicle diameter, primary branch number per panicle, spikelet number per primary branch, 1000-grain weight by MLM.

Key words: foxtail millet, Shanxi, landrace, SSR, genetic diversity, linkage disequilibrium, association analysis

Table 1

Genetic diversity at 96 SSR markers"

标记
Marker
染色体
Chromosome
基因型数
Genotype No.
等位基因数
Allele No.
基因多样性指数
Gene diversity
多态性信息含量
PIC
杂合度
Heterozygosity
In1-1 Chr.1 3 2 0.4955 0.3727 0.0183
In1-3 Chr.1 5 4 0.1810 0.1663 0.0200
In1-7 Chr.1 7 4 0.3955 0.3521 0.0267
In1-9 Chr.1 3 2 0.1113 0.1051 0.0083
CAAS1054 Chr.1 34 19 0.9051 0.8976 0.0283
P3* Chr.1 27 15 0.8264 0.8072 0.0233
P88 Chr.1 27 14 0.8852 0.8756 0.0233
B153 Chr.1 13 10 0.7789 0.7477 0.0050
P58 Chr.1 14 8 0.7565 0.7184 0.0333
B218 Chr.1 18 9 0.8303 0.8084 0.0250
CAAS2006 Chr.2 11 5 0.7162 0.6675 0.0167
CAAS2010 Chr.2 13 6 0.6777 0.6269 0.0250
In2138 Chr.2 3 2 0.4867 0.3682 0.0267
In2184 Chr.2 4 4 0.1995 0.1815 0.0000
b242 Chr.2 10 9 0.7997 0.7730 0.0017
CAAS2050 Chr.2 11 6 0.6971 0.6435 0.0300
CAAS2030 Chr.2 6 4 0.5026 0.4165 0.0283
In2-11 Chr.2 3 2 0.0535 0.0521 0.0017
B169 Chr.2 23 18 0.9235 0.9182 0.0083
B249 Chr.2 24 22 0.9286 0.9241 0.0033
MPGD13 Chr.2 8 5 0.5607 0.4671 0.0067
b101 Chr.3 22 11 0.8607 0.8449 0.0233
B163 Chr.3 10 7 0.7193 0.6760 0.0067
B186 Chr.3 37 17 0.9182 0.9123 0.0383
P61* Chr.3 6 4 0.6897 0.6299 0.0100
B225 Chr.3 26 16 0.8963 0.8869 0.0233
P98 Chr.3 9 6 0.5330 0.4808 0.0267
MPGD32 Chr.3 9 6 0.4217 0.3865 0.0150
MPGD44 Chr.3 8 6 0.4247 0.3914 0.0100
B224 Chr.3 47 25 0.9411 0.9379 0.0383
P78 Chr.3 14 9 0.7941 0.7657 0.0150
In4-3 Chr.4 5 4 0.4948 0.3796 0.0317
CAAS4019 Chr.4 7 5 0.4388 0.4096 0.0083
CAAS4033 Chr.4 14 8 0.8181 0.7936 0.0200
IN4-6 Chr.4 3 2 0.2608 0.2268 0.0117
IN4-7 Chr.4 6 4 0.2004 0.1909 0.0117
B109 Chr.4 38 26 0.8654 0.8533 0.0267
P2 Chr.4 28 18 0.9045 0.8970 0.0183
B247* Chr.4 22 14 0.8866 0.8762 0.0167
P100** Chr.4 8 7 0.5368 0.4883 0.0017
P89 Chr.4 24 17 0.8428 0.8246 0.0267
CAAS5048 Chr5 9 6 0.7318 0.6894 0.0050
In5-7 Chr.5 2 2 0.0099 0.0099 0.0000
In5-8 Chr.5 3 2 0.4382 0.3422 0.0283
CAAS5032 Chr.5 26 12 0.8911 0.8810 0.0300
b111 Chr.5 17 12 0.8842 0.8729 0.0100
P17X* Chr.5 12 6 0.5827 0.5436 0.0200
B223 Chr.5 32 19 0.9141 0.9078 0.0317
B237 Chr.5 19 8 0.8512 0.8329 0.0267
B117 Chr.5 11 7 0.5355 0.4950 0.0233
MPGA51 Chr.5 5 4 0.2576 0.2367 0.0017
MPGD4 Chr.5 4 3 0.3705 0.3400 0.0117
In6-2 Chr.6 3 2 0.2733 0.2360 0.0133
CAAS6023 Chr.6 7 5 0.2109 0.1972 0.0067
In6-9 Chr.6 3 2 0.4986 0.3743 0.0400
In6-11 Chr.6 4 3 0.3183 0.2697 0.0017
CAAS6018 Chr.6 10 8 0.7108 0.6608 0.0117
CAAS6007 Chr.6 17 10 0.7759 0.7517 0.0183
B159 Chr.6 23 11 0.8445 0.8263 0.0233
P32 Chr.6 8 6 0.3231 0.2957 0.0050
P12X Chr.6 18 12 0.8195 0.8004 0.0183
B250 Chr.6 35 20 0.8997 0.8917 0.0267
MPGA50 Chr.6 8 5 0.6601 0.6232 0.0150
In7-1 Chr.7 3 2 0.0050 0.0050 0.0017
CAAS7021 Chr.7 7 5 0.4033 0.3782 0.0050
SIMS14450 Chr.7 6 5 0.2846 0.2612 0.0117
CAAS7036 Chr.7 3 2 0.1569 0.1446 0.0150
In7-13 Chr.7 3 2 0.4911 0.3705 0.0500
P45 Chr.7 5 5 0.5788 0.4933 0.0000
B142 Chr.7 16 12 0.8185 0.7957 0.0100
B123 Chr.7 14 11 0.6491 0.6170 0.0083
P29 Chr.7 21 13 0.8830 0.8713 0.0150
B200 Chr.7 9 5 0.5637 0.5071 0.0083
B180 Chr.7 10 7 0.7220 0.6758 0.0067
SI 227 Chr.7 12 10 0.8304 0.8084 0.0050
In8-1 Chr.8 7 4 0.6511 0.5845 0.0183
P6 Chr.8 5 5 0.3672 0.3143 0.0000
CAAS8015 Chr.8 10 7 0.7853 0.7523 0.0100
CAAS8011 Chr.8 19 8 0.8140 0.7888 0.0250
B185 Chr.8 32 22 0.9234 0.9181 0.0183
B258 Chr.8 39 21 0.9211 0.9157 0.0300
J2(GTDZ7-1) Chr.8 2 2 0.0099 0.0099 0.0000
P14 Chr.8 25 W 0.7974 0.7791 0.0150
B128 Chr.8 25 22 0.9309 0.9267 0.0050
b246 Chr.9 23 12 0.8797 0.8676 0.0333
CAAS9036 Chr.9 24 15 0.8811 0.8703 0.0183
b166 Chr.9 20 9 0.8320 0.8107 0.0267
CAAS9081 Chr.9 17 8 0.8058 0.7790 0.0250
CAAS9082 Chr.9 12 8 0.7926 0.7633 0.0083
CAAS9058 Chr.9 7 6 0.1620 0.1555 0.0100
P20* Chr.9 15 11 0.7462 0.7074 0.0100
P41 Chr.9 11 9 0.7927 0.7623 0.0033
SIMS 298 Chr.9 4 3 0.4286 0.3423 0.0150
B145 Chr.9 9 6 0.5104 0.4788 0.0133
B212 Chr.9 3 3 0.0394 0.0390 0.0000
SI 110 Chr.9 5 5 0.1118 0.1093 0.0000
平均值 Mean 13 8.6 0.6097 0.5773 0.0159

Fig. 1

lnP(D) and ΔK based on population structure analysis for 595 foxtail millet landrace A: Line chart of K and ln P(D); B: Magnitude of ΔK as a function of K"

Fig. 2

Population structure of 595 foxtail millet landrace"

Fig. 3

Dendrogram of inter-city group of the 595 core collection based on SSR marker"

Fig. 4

Distribution of LD among SSR locus on 9 chromosomes"

Table 2

Number of LD pairs in different D' value ranges"

D' 值范围 D' value ranges LD成对点数 Number of LD pairs
0—0.2 946
0.2—0.4 870
0.4—0.6 103
0.6—0.8 29
0.8—1 7

Table3

Association analysis by the GLM and MLM (P<0.01)"

性状
Trait
位点
SSR loci
染色体
Chromosome
GLM MLM
2017 2018 2017 2018
R2 P R2 P R2 P R2 P
节数SN P58 Chr.1 0.0572 6.42E-08 0.0597 1.73E-07
B142 Chr.7 0.052 6.39E-05
株高PH P58 Chr.1 0.0541 1.06E-07 0.0547 2.19E-07
颈长PL CAAS6023 Chr.6 0.0558 3E-09 0.0517 1.77E-08 0.0298 8.8E-05
叶宽LW In6-2 Chr.6 0.0444 4.34E-05
茎粗DMS P3* Chr.1 0.0774 1.04E-05 0.0977 4.95E-08 0.0828 3.73E-06
In6-2 Chr.6 0.0458 2.91E-05 0.0498 8.95E-06 0.0445 5.1E-05
P58 Chr.1 0.0522 3.73E-05
P89 Chr.4 0.0922 1.3E-06
B142 Chr.7 0.0628 6.19E-05
穗长PL B153 Chr.1 0.0605 7.03E-07 0.0517 7.02E-06
CAAS7036 Chr.7 0.0234 3.08E-05 0.0306 1.16E-06
穗粗PD B142 Chr.7 0.068 1.37E-05 0.0646 5.05E-05
B117 Chr.5 0.0457 6.4E-05
码数PBNP CAAS2050 Chr.2 0.0514 3.48E-06 0.1394 3.59E-18 0.053 1.61E-06
In2-11 Chr.2 0.028 1.82E-05
In6-2 Chr.6 0.0258 5.04E-05 0.0277 3.55E-05
B142 Chr.7 0.0583 9.36E-05 0.0772 1.14E-06
码粒数SNPB B117 Chr.5 0.0559 4.73E-06 0.0439 9.4E-05 0.046 6.78E-05
千粒重GW CAAS6023 Chr.6 0.0375 5.05E-05
蛋白含量PC B153 Chr.1 0.1136 1.12E-12 0.1081 4.84E-11
In1-7 Chr.1 0.0512 3.08E-07 0.0425 1.09E-05
P14 Chr.8 0.0901 3.77E-07 0.1108 7.03E-09
[1] 贾冠清, 刁现民 . 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017,29(3):292-301.
JIA G Q, DIAO X M . Current status and perspectives of researches on foxtail millet (Setaria italica(L.) P. Beauv.): A potential model of plant functional genomics studies. Chinese Bulletin of Life Sciences, 2017,29(3):292-301. (in Chinese)
[2] 王海岗, 秦慧彬, 田翔, 吕建珍, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 温淇汾, 穆志新, 乔治军 . 山西谷子地方品种表型多样性分析. 中国农学通报, 2018,34(32):19-24.
WANG H G, QIN H B, TIAN X, LÜ J Z, CHEN L, WANG J J, CAO X N, LIU S C, WANG L, WEN Q F, MU Z X, QIAO Z J . Phenotypic diversity of local foxtail millet varieties in Shanxi. Chinese Agricultural Science Bulletin, 2018,34(32):19-24. (in Chinese)
[3] 王荣焕, 王天宇, 黎裕 . 关联分析在作物种质资源分子评价中的应用. 植物遗传资源学报, 2007,8(3):366-372.
WANG R H, WANG T Y, LI Y . Application of association analysis in molecular evaluation of crop germplasm resources. Journal of Plant Genetic Resources, 2007,8(3):366-372. (in Chinese)
[4] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生 . 植物数量性状关联分析研究进展. 作物学报, 2007,33(4):523-530.
YANG X H, YAN J B, ZHENG Y P, YU J M, LI J S . Reviews of association analysis for quantitative traits in plants. Acta Agronomica Sinica, 2007,33(4):523-530. (in Chinese)
[5] 冯建英, 温阳俊, 张瑾, 章元明 . 植物关联分析方法的研究进展. 作物学报, 2016,42(7):945-956.
FENG J Y, WEN Y J, ZHANG J, ZHANG Y M . Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016,42(7):945-956. (in Chinese)
[6] 赵宏亮, 陈凯, 张强, 徐正进, 徐建龙, 黎志康 . 基于连锁不平衡水稻源库相关性状的关联分析. 核农学报, 2015,29(4) : 674-684.
ZHAO H L, CHEN K, ZHANG Q, XU Z J, XU J L, LI Z K . Association analysis on source sink-related traits in rice based on linkage disequilibrium. Journal of Nuclear Agricultural Sciences, 2015,29(4):674-684. (in Chinese)
[7] 孙晓棠, 卢冬冬, 欧阳林娟, 胡丽芳, 边建民, 彭小松, 陈小荣, 傅军如, 贺晓鹏, 贺浩华, 朱昌兰 . 水稻纹枯病抗性关联分析及抗性等位变异发掘. 作物学报, 2014,40(5):779-787.
SUN X T, LU D D, OUYANG L J, HU L F, BIAN J M, PENG X S, CHEN X R, FU J R, HE X P, HE H H, ZHU C L . Association mapping and resistant alleles analysis for sheath blight resistance in rice. Acta Agronomica Sinica, 2014,40(5):779-787. (in Chinese)
[8] 魏添梅, 昌小平, 闵东红, 景蕊莲 . 小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘. 作物学报, 2010,36(6):895-904.
WEI T M, CHANG X P, MIN D H, JING R L . Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agronomica Sinica, 2010,36(6):895-904. (in Chinese).
[9] 张冬玲, 张洪娜, 郝晨阳, 王兰芬, 李甜, 张学勇 . 花后冠层温度对小麦产量的影响及几个关联SSR位点的效应分析. 作物学报, 2015,41(4):548-556.
ZHANG D L, ZHANG H N, HAO C Y, WANG L F, LI T, ZHANG X Y . Influence of canopy temperature (ct) during grain-filling period on yield and effects of several ct-associated SSR loci. Acta Agronomica Sinica, 2015,41(4):548-556. (in Chinese)
[10] 朱玉磊, 王升星, 赵良侠, 张德新, 胡建帮, 曹雪连, 杨亚杰, 常成, 马传喜, 张海萍 . 以关联分析发掘小麦整穗发芽抗性基因分子标记. 作物学报, 2014,40(10):1725-1732.
ZHU Y L, WANG S X, ZHAO L X, ZHANG D X, HU J B, CAO X L, YANG Y J, CHANG C, MA C X, ZHANG H P . Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agronomica Sinica, 2014,40(10):1725-1732. (in Chinese)
[11] 杨胜先, 牛远, 李梦, 魏世平, 刘晓芬, 吕海燕, 章元明 . 栽培大豆农艺性状的关联分析及优异等位变异挖掘. 中国农业科学, 2014,47(20):3941-3952.
YANG S X, NIU Y, LI M, WEI S P, LIU X F, LÜ H Y, ZHANG Y M . Association mapping of agronomic traits in soybean ( Glycine max L. Merr.) and mining of novel alleles. Scientia Agricultura Sinica, 2014,47(20):3941-3952. (in Chinese)
[12] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒 . 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I.群体结构及关联标记. 作物学报, 2008,34(7):1169-1178.
WEN Z X, ZHAO T J, ZHENG Y Z, LIU S H, WANG C E, WANG F, GAI J Y . Association analysis of agronomic and quality traits with SSR markers in glycine max and glycine soja in China: I. Population structure and associated markers. Acta Agronomica Sinica, 2008,34(7):1169-1178. (in Chinese)
[13] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒 . 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析: Ⅱ.优异等位变异的发掘. 作物学报, 2008,34(8):1339-1349.
WEN Z X, ZHAO T J, ZHENG Y Z, LIU S H, WANG C E, WANG F, GAI J Y . Association analysis of agronomic and quality traits with SSR markers in glycine max and glycine soja in china: ii. exploration of elite alleles. Acta Agronomica Sinica, 2008,34(8):1339-1349. (in Chinese)
[14] 范虎, 文自翔, 王春娥, 王芳, 邢光南, 赵团结, 盖钧镒 . 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成. 作物学报, 2013,39(5):775-788.
FAN H, WEN Z X, WANG C E, WANG F, XING G N, ZHAO T J, GAI J Y . Association analysis between agronomic-processing traits and SSR markers and genetic dissection of specific accessions in Chinese wild soybean population. Acta Agronomica Sinica, 2013,39(5):775-788. (in Chinese)
[15] 孙慧敏, 张军, 赵团结, 盖钧镒 . 亚洲地区中、外大豆品种幼苗期耐淹性与SSR标记的关联分析. 作物学报, 2010,36(10):1615-1623.
SUN H M, ZHANG J, ZHAO T J, GAI J Y . Association analysis between submergence tolerance and SSR markers in domestic and foreign soybean cultivars in Asia. Acta Agronomica Sinica, 2010,36(10):1615-1623. (in Chinese)
[16] 聂新辉, 尤春源, 鲍健, 李晓方, 惠慧, 刘洪亮, 秦江鸿, 林忠旭 . 基于关联分析的新陆早棉花品种农艺和纤维品质性状优异等位基因挖掘. 中国农业科学, 2015,48(15):2891-2910.
NIE X H, YOU C Y, BAO J, LI X F, HUI H, LIU H L, QIN J H, LIN Z X . Exploration of elite alleles of agronomic and fiber quality traits in Xinluzao cotton varieties by association analysis. Scientia Agricultura Sinica, 2015,48(15):2891-2910. (in Chinese)
[17] 刘其宝, 李黎贝, 张驰, 宿俊吉, 魏恒玲, 王寒涛, 喻树迅 . 陆地棉叶片叶绿素含量与SSR标记的关联分析及优异等位变异的挖掘. 中国农业科学, 2017,50(18):3439-3449.
LIU Q B, LI L B, ZHANG C, SU J J, WEI H L, WANG H T, YU S X . Association analysis of leaf chlorophyll content with SSR markers and exploration of superior alleles in upland cotton. Scientia Agricultura Sinica, 2017,50(18):3439-3449. (in Chinese)
[18] 王娟, 董承光, 刘丽, 孔宪辉, 王旭文, 余渝 . 棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘. 作物学报, 2010,36(10):1615-1623.
WANG J, DONG C G, LIU L, KONG X H, WANG X W, YU Y . Association analysis and exploration of elite alleles of mechanical harvest-related traits with SSR markers in upland cotton cultivars ( Gossypium hirsutum L.). Acta Agronomica Sinica, 2010,36(10):1615-1623. (in Chinese)
[19] 赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊 . 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2013,46(2):233-242.
LAI Y, WANG P X, FAN G Q, SI E J, WANG J, YANG K, MENG Y X, LI B C, MA X L, SHANG X W, WANG H J . Genetic diversity and association analysis using SSR markers in barley. Scientia Agricultura Sinica, 2013,46(2):233-242. (in Chinese)
[20] 姜晓东, 郭刚刚, 张京 . 中国大麦地方品种的遗传多样性及α-淀粉酶活性的全基因组关联分析. 中国农业科学, 2013,46(4):668-677.
JIANG X D, GUO G G, ZHANG J . Analysis on the genetic diversity in Chinese barley landrace and genomic wide association of α-amylase activity genes. Scientia Agricultura Sinica, 2013,46(4):668-677. (in Chinese)
[21] 赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊 . 大麦遗传多样性及连锁不平衡分析. 作物学报, 2013,39(12):2154-2161.
LAI Y, WANG P X, FAN G Q, SI E J, WANG J, YANG K, MENG Y X, LI B C, MA X L, SHANG X W, WANG H J . Genetic diversity and linkage disequilibrium analysis in barley. Acta Agronomica Sinica, 2013,39(12):2154-2161. (in Chinese)
[22] WANG C F, JIA G Q, ZHI H, NIU Z G, CHAI Y, LI W, WANG Y F, LI H Q, LU P, ZHAO B H, DIAO X M . Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. Genes Genomes Genetics, 2012,7(2):769-777.
[23] JIA G Q, LIU X T, SCHNABLE J C, NIU Z G, WANG C F, LI Y H, WANG S J, WANG S Y, LIU J R, GUO E H, ZHI H, DIAO X M . Microsatellite variations of elite Setaria varieties released during last six decades in China. PLoS ONE, 10(5):e0125688.
[24] VETRIVENTHAN M, UPADHYAYA HARI D, ANANDAKUMAR C R, SENTHILVEL S, VARSHNEY R K, PARZIES H K . Population structure and linkage disequilibrium of ICRISAT foxtail millet (Setaria italica (L.) P. Beauv.) core collection. Euphytica, 2014,196:423-435
[25] GUPTA S, KUMARI K, MUTHAMILARASAN M, PARIDA W K, PRASAD M . Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Report, 2014,33:881-893
[26] 王春芳 . 利用微卫星标记分析中国谷子地方品种的群体结构与遗传多样性[D]. 石家庄: 河北师范大学, 2011.
WANG C F . Population structure and genetic diversity of foxtail millet landraces in China assessed by microsatellites[D]. Shijiazhuang: Hebei Normal University, 2011. (in Chinese)
[27] ZHANG S, TANG C J, ZHAO Q, LI J, YANG L F, QIE L F, FAN X K, LI L, ZHANG N, ZHAO M C, LIU X T, CHAI Y, ZHANG X, WANG H L, LI Y T, LI W, ZHI H, JIA G Q, DIAO X M . Development of highly polymorphic simple sequence repeat markers using genome- wide microsatellite variant analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2014,15:78.
[28] 白鹏, 程须珍, 王丽侠, 王素华, 陈红霖 . 小豆遗传差异、群体结构和连锁不平衡水平的SSR分析. 作物学报, 2014,40(5):788-797.
BAI P, CHENG X Z, WANG L X, WANG S H, CHEN H L . Genetic diversity, population structure and linkage disequilibrium in adzuki bean by using SSR markers. Acta Agronomica Sinica, 2014,40(5):788-797. (in Chinese)
[29] 熊海铮 . 豇豆遗传多样性及若干农艺性状关联分析[D]. 杭州: 浙江大学, 2016.
XIONG H Z . Genetic diversity and association analysis of agronomic traits in Cowpea[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[30] 王海岗, 温琪汾, 乔治军, 穆志新 . 山西谷子地方品种初选核心种质构建. 农学学报, 2019,9(4):26-31.
WANG H G, WEN Q F, QIAO Z J, MU Z X . Construction of candidate core collection local varieties of foxtail millet in Shanxi. Journal of Agriculture, 2019,9(4):26-31. (in Chinese)
[31] 温琪汾, 王纶, 赵卫红, 畅建武 . 山西省谷子种质资源的繁种入库. 山西农业科学, 2002 , 30(4):32-34.
WEN Q F, WANG L, ZHAO W H, CHANG J W . Reproduction and storage of foxtail millet germplasm in Shanxi. Journal of Shanxi Agricultural Sciences, 2002,30(4):32-34. (in Chinese)
[32] 温琪汾, 王纶, 王星玉 . 山西省谷子种质资源及抗旱种质的筛选利用. 山西农业科学, 2005,33(4):32-33.
WEN Q F, WANG L, WANG X Y . The foxtail millet germplasm resources and screening and utilization of drought resistance germplasm in Shanxi. Agricultural Sciences, 2005,33(4):32-33. (in Chinese)
[33] EVANNO G, REGNAUTS S, GOUDET J . Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005,14:2611-2620.
[34] JIA X P, ZHANG Z B, LIU Y H, ZHANG C W, SHI Y S, SONG Y C, WANG T Y, LI Y . Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theoretical and Applied Genetics, 2009,118(4):821-829.
[35] 古兆明, 古世禄 . 山西谷子起源与发展研究. 北京: 中国农业科学技术出版社, 2007: 166-168.
GU Z M, GU S L. Origin and Development of Shanxi Foxtail Millet. Beijing: Agricultural Science and Technology Press, 2007: 166-168. (in Chinese)
[36] 任继海, 温琪汾, 王星玉, 王纶 . 山西省谷子品种类型及其分布. 华北农学报, 1999,14(3):25-30.
REN J H, WEN Q F, WANG X Y, WANG L . Varieties of foxtail millet and their distribution in Shanxi province. Acta Agriculturae Boreali-Sinica, 1999,14(3):25-30. (in Chinese)
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[5] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[6] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[9] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[10] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[11] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[12] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[13] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[14] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[15] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!