Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2883-2898.doi: 10.3864/j.issn.0578-1752.2022.15.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet

GUO ShuQing1(),SONG Hui2(),CHAI ShaoHua1,GUO Yan1,SHI Xing1,DU LiHong2,XING Lu2,XIE HuiFang2,ZHANG Yang2,LI Long2,FENG BaiLi1,LIU JinRong2(),YANG Pu1,*()   

  1. 1College of Agriculture, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
    2Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang 455000, Henan
  • Received:2022-01-30 Accepted:2022-03-09 Online:2022-08-01 Published:2022-08-02
  • Contact: JinRong LIU,Pu YANG E-mail:gsq055069@nwafu.edu.cn;837181622@qq.com;yangpu5532@hotmail.com;liujinrong63@163.com

Abstract:

【Objective】Growth period and panicle-related traits are the main factors affecting foxtail millet yield and adaptability. To analyze the molecular genetic mechanisms of the growth period and panicle-related traits, it is necessary to map the related genes. 【Method】A recombinant inbred line (RIL) population of foxtail millet consisting of 400 lines derived from a cross between the elite varieties, Yugu18 and Jigu19, were used in this study. Phenotype surveys were carried out across four independent environments in 2018—2019 to study the days from emergence to heading and heading to maturity, the growth period, panicle length, panicle diameter, and single panicle weight. Based on a high-density genetic map that spanned 2 196 cM of the foxtail millet genome with an average of 1.68 cM/bin, composed of 1 304 bin markers, QTL for growth period and panicle-related traits were mapped using composite interval mapping (CIM), and the candidate genes of the confidence interval were predicted. 【Result】The growth period and panicle-related traits of RIL population exhibited continuous distribution with apparent transgressive segregation in the 4 environments, which accorded with the genetic characteristics of typical quantitative traits and were suitable for QTL genetic analysis. Correlation analysis showed that the days from emergence to heading were significantly positively correlated with the growth period, and negatively correlated with those heading to maturity. A positive correlation between panicle length and diameter was also observed. A total of 88 QTL for the growth period and panicle-related traits were detected on chromosomes 1, 3, 5, 6, 8 and 9, respectively. Among them, 45 QTL were significantly associated with the days from emergence to heading and explained 1.61%-27.60% of the phenotypic variance; seven QTL were significantly associated with the days from heading to maturity and explained 2.65%-12.14% of the phenotypic variance; 20 QTL were significantly associated with the growth period and explained 1.98%-16.97% of the phenotypic variance; nine QTL was significantly associated with the panicle length and explained 3.51%-11.65% of the phenotypic variance; five QTL were significantly associated with the panicle diameter and explained 3.74%-8.34% of the phenotypic variance; two QTL was significantly associated with the single panicle weight and explained 5.16%-5.20% of the phenotypic variance. A total of 12 major QTL were detected in this study, of which five major QTL, including qEHD-9-1, qEHD-9-2, qHMD-9-2, qGRP-9-2 and qPL-5-1, were repeatedly detected in at least two environments and BLUP value. The genomic regions of qEHD-9-1, qHMD-9-1, qGRP-9-1 and qPL-9-1 overlapped on chromosome 9, the genomic regions of qEHD-9-2, qHMD-9-3, qGRP-9-2 and qPL-9-3 overlapped on chromosome 9, and the genomic regions of qPL-5-1 overlapped with qPD-5-1 on chromosome 5. Five candidate genes related to the growth period and panicle-related traits were identified from the confidence interval of the 3 QTL clusters, of which two candidate genes played an important role both in the growth period and panicle-related traits.【Conclusion】A total of 88 QTL for the growth period and panicle-related traits were detected, and 12 were major QTL, of which 5 major QTL were repeatedly detected in multiple environments by clustering distribution. Five candidate genes related to the growth period and panicle-related traits were identified via gene annotation.

Key words: foxtail millet, RIL, growth period, panicle-related traits, QTL

Table 1

Statistical analysis result of the phenotypic data of the growth period and panicle-related traits for the parents and the population"

性状
Traits
环境
Environments
亲本 Parents RIL群体 RIL population
豫谷18
Yugu 18
冀谷19
Jigu 19
平均值±标准差
Mean±SD
变异系数
Variable coefficient (%)
最小值
Min value
最大值
Max value
偏度
Skewness
峰度
Kurtosis
抽穗期
EHD (d)
2018AY 44.00 52.00 45.55±2.42 5.30 40.00 54.00 0.38 0.38
2018CD 56.00 62.00 61.89±4.10 6.62 50.00 71.00 0.20 -0.55
2019BZW 43.00 48.00 44.47±2.11 4.75 38.00 50.00 -0.02 -0.14
2019BZZ 53.00 61.00 53.97±3.58 6.63 44.00 66.00 0.01 0.32
抽穗-成熟天数HMD (d) 2018AY 40.00 41.00 38.04±2.47 6.51 30.00 46.00 -0.04 -0.13
2018CD 28.00 31.00 32.39±3.58 11.04 19.00 55.00 0.65 4.43
2019BZW 40.00 34.00 39.23±2.36 6.01 33.00 48.00 0.37 0.29
2019BZZ 39.00 33.00 36.54±2.44 6.69 29.00 43.00 -0.01 0.01
全生育期
GRP (d)
2018AY 84.00 83.00 83.59±1.52 1.82 82.00 91.00 0.99 1.62
2018CD 94.00 93.00 94.29±2.85 3.02 88.00 105.00 0.64 -0.18
2019BZW 83.00 82.00 83.70±3.33 3.98 77.00 91.00 0.28 -0.65
2019BZZ 92.00 94.00 90.50±3.05 3.37 83.00 104.00 0.20 0.76
穗长
PL cm)
2018AY 19.87 22.23 20.52±1.87 9.12 14.50 25.33 0.002 -0.12
2018CD 25.43 28.37 26.65±2.95 11.06 11.25 38.66 0.06 1.80
2019BZW 18.00 22.00 21.00±1.93 9.19 16.33 26.33 0.02 -0.21
2019BZZ 19.33 20.83 22.24±2.25 10.13 16.50 30.33 0.27 -0.10
穗粗
PD (cm)
2018AY 2.50 3.23 2.55±0.31 11.98 0.33 4.67 0.10 11.70
2018CD 2.80 3.23 2.86±0.74 25.92 1.10 5.10 -0.30 -0.14
2019BZW 2.50 2.67 2.49±0.26 10.37 2.00 3.67 0.39 0.56
2019BZZ 2.67 2.83 2.56±0.27 10.60 2.00 4.00 1.11 3.58
单穗重
SPW (g)
2018AY 26.33 24.95 25.07±5.86 23.36 10.92 60.53 1.72 5.68
2018CD 29.98 27.83 30.96±5.67 18.32 15.30 48.02 0.26 -0.09
2019BZW 12.81 14.13 14.35±2.32 16.16 6.64 21.28 0.04 0.22
2019BZZ 18.38 11.32 16.72±3.57 21.34 8.97 35.00 1.37 4.72

Fig. 1

Frequency distribution of the growth period and panicle-related traits in the foxtail millet RIL population across four environments P1: Yugu18; P2: Jigu19"

Fig. 2

Correlation analysis of the growth period and panicle-related traits in the foxtail millet RIL population across four environments a: 2018 Anyang; b: 2018 Chengde; c: Late sowing in 2019 from Baizhuang; d: Early sowing in 2019 from Baizhuang"

Table 2

QTL associated with the growth period of the foxtail millet"

性状
Traits
数量性
状位点
QTL
染色体
Chromosome
环境
Environments
标记区间
Marker interval
遗传位置
Genetic position (cM)
物理区间
Physical interval
(bp)
阈值
LOD
加性效应
Additive effect
贡献率
R2
(%)
抽穗期EHD
(d)
qEHD-1-1 1 BLUP Chr.1-bin22—Chr.1-bin24 33.159—34.970 7383232—7618736 4.90 0.24 2.73
qEHD-1-2 1 BLUP Chr.1-bin26—Chr.1-bin27 39.370—42.472 7826425—8072796 4.52 0.24 2.59
qEHD-1-3 1 BLUP (2019BZZ) Chr.1-bin27—Chr.1-bin28 42.472—44.998 7857646—8213561 4.59 0.24 2.60
qEHD-3-1 3 BLUP Chr.3-bin55—Chr.3-bin56 72.136—73.672 8372841—8432775 4.62 -0.24 2.42
qEHD-3-2 3 BLUP (2019BZZ) Chr.3-bin61—Chr.3-bin62 83.766—88.344 11405077—11814796 3.72 -0.24 2.04
qEHD-3-3 3 BLUP Chr.3-bin64—Chr.3-bin65 91.860—93.092 11841659—12225276 4.75 -0.27 2.49
qEHD-3-4 3 BLUP (2019BZZ) Chr.3-bin71—Chr.3-bin72 100.512—101.845 12837291—12961507 5.87 -0.31 3.06
qEHD-3-5 3 BLUP (2019BZZ) Chr.3.bin75—Chr.3.bin76 105.389—106.721 13029966—13628423 6.08 -0.32 3.16
qEHD-3-6 3 BLUP (2019BZW
\2019BZZ)
Chr.3-bin77—Chr.3-bin78 107.902—109.058 13628424—13713052 6.87 -0.34 3.55
qEHD-3-7 3 BLUP (2018CD/
2019BZZ)
Chr.3-bin79—Chr.3-bin80 110.365—111.646 13713053—13756530 6.80 -0.34 3.52
qEHD-3-8 3 BLUP (2019BZZ) Chr.3-bin82—Chr.3-bin85 114.260—115.895 13793248—14081551 6.51 -0.34 3.38
qEHD-3-9 3 BLUP (2018CD/
2019BZZ)
Chr.3-bin86—Chr.3-bin87 120.269—121.426 14081552—14212812 6.41 -0.33 3.33
qEHD-3-10 3 BLUP (2018CD) Chr.3-bin90—Chr.3-bin91 124.367—125.448 14260453—14335548 5.48 -0.31 2.86
qEHD-3-11 3 BLUP Chr.3-bin93—Chr.3-bin94 129.172—130.127 14401525—14566486 5.22 -0.32 2.73
qEHD-3-12 3 BLUP (2019BZZ) Chr.3-bin98—Chr.3-bin99 135.938—137.296 14637541—14778894 3.35 -0.25 1.77
qEHD-3-13 3 BLUP (2018AY/
2018AY)
Chr.3-bin131—Chr.3-bin132 175.610—176.465 17715556—18022340 3.39 -0.27 1.79
qEHD-3-14 3 BLUP Chr.3-bin140—Chr.3-bin141 183.103—184.339 18750824—18860666 3.65 -0.28 1.93
qEHD-3-15 3 BLUP (2019BZZ) Chr.3-bin146—Chr.3-bin147 188.538—189.544 19257021—20089242 3.10 -0.27 1.64
qEHD-3-16 3 BLUP (2019BZZ) Chr.3-bin155—Chr.3-bin156 196.458—197.262 20677208—20864551 3.17 -0.28 1.68
qEHD-3-17 3 BLUP Chr.3-bin194—Chr.3-bin195 243.337—244.468 26706784—27289107 15.87 -0.49 9.82
qEHD-3-18 3 BLUP (2019BZZ) Chr.3-bin198—Chr.3-bin199 248.188—249.545 30727891—37792728 16.77 -0.51 10.33
qEHD-3-19 3 BLUP (2019BZZ) Chr.3-bin202—Chr.3-bin203 253.919—256.168 38165509—38853342 16.85 -0.51 10.37
qEHD-3-20 3 BLUP (2019BZZ) Chr.3_bin204—Chr.3_bin205 257.853—259.538 38853343—39335961 16.80 -0.51 10.34
qEHD-3-21 3 BLUP Chr.3-bin207—Chr.3-bin208 262.605—264.038 39570932—40234675 16.59 -0.50 10.23
qEHD-3-22 3 BLUP (2018AY/
2019BZW/
2019BZZ)
Chr.3-bin245—Chr.3-bin246 319.052—320.434 44710972—44885104 4.76 -0.3 2.49
qEHD-3-23 3 BLUP Chr.3-bin251—Chr.3-bin252 328.392—331.223 45689213—45877762 4.72 -0.28 2.47
qEHD-3-24 3 BLUP Chr.3-bin255—Chr.3-bin256 335.295—339.407 46042065—46582016 3.87 -0.25 2.24
qEHD-3-25 3 BLUP Chr.3-bin256—Chr.3-bin257 339.407—340.815 46483582—46618927 3.81 -0.24 2.01
qEHD-3-26 3 BLUP Chr.3-bin260—Chr.3-bin261 344.988—346.421 46728763—46855047 3.97 -0.24 2.09
qEHD-3-27 3 BLUP (2019BZZ) Chr.3-bin271—Chr.3-bin272 360.630—362.213 47273755—47391186 5.2 -0.27 2.72
qEHD-3-28 3 BLUP Chr.3-bin273—Chr.3-bin274 363.978—365.360 47391187—47593066 4.83 -0.26 2.53
qEHD-5-1 5 BLUP Chr.5-bin80—Chr.5-bin81 164.573—165.654 34202091—34304938 3.18 -0.19 1.68
qEHD-5-2 5 BLUP Chr.5-bin85—Chr.5-bin86 171.164—172.371 34517958—34583021 3.07 -0.19 1.62
qEHD-6-1 6 BLUP Chr.6-bin75—Chr.6-bin76 123.248—124.732 21173085—22142445 3.13 -0.19 1.66
qEHD-8-1 8 BLUP Chr.8-bin142—Chr.8-bin143 148.642—149.398 12625705—12853225 5.05 0.25 2.84
qEHD-8-2 8 BLUP Chr.8-bin156—Chr.8-bin157 158.546—159.175 13626368—13846690 5.42 0.26 3.04
qEHD-8-3 8 BLUP (2018AY) Chr.8-bin162—Chr.8-bin173 160.909—161.336 14415972—22135047 5.41 0.26 3.03
qEHD-8-4 8 BLUP (2019BZW) Chr.8-bin169—Chr.8-bin171 162.467—163.020 21496234—21959783 5.26 0.25 2.95
qEHD-8-5 8 BLUP (2019BZW) Chr.8-bin168—Chr.8-bin170 163.598—164.075 21456415—21848090 5.53 0.26 3.09
qEHD-8-6 8 BLUP (2019BZW) Chr.8-bin186—Chr.8-bin167 164.603—164.954 18319627—23218474 5.83 0.27 3.26
qEHD-8-7 8 BLUP Chr.8-bin166—Chr.8-bin164 166.236—166.713 14609487—18319626 5.46 0.26 3.06
qEHD-8-8 8 BLUP Chr.8-bin184—Chr.8-bin175 167.743—168.296 22298819—23143912 5.51 0.26 3.09
qEHD-9-1 9 BLUP (2018AY/
2018CD/2019BAW
/2019BZZ)
Chr.9-bin3—Chr.9-bin4 12.761—13.968 1020636—1081249 38.44 0.78 27.60
qEHD-9-2 9 BLUP (2018AY/
2018CD)
Chr.9-bin7—Chr.9-bin8 17.693—19.002 1165237—1323365 33.79 0.73 24.85
qEHD-9-3 9 BLUP Chr.9-bin51—Chr.9-bin52 109.941—111.025 17224206—17818411 3.05 0.19 1.61
抽穗-成熟
天数HMD (d)
qHMD-1-1 1 BLUP (2019BZW) Chr.1-bin11—Chr.1-bin12 11.748—13.937 5989491—6043795 5.79 -0.13 5.08
qHMD-1-2 1 BLUP (2018AY) Chr.1-bin13—Chr.1-bin14 15.863—17.275 6043796—6136316 6.06 -0.14 5.27
qHMD-3-1 3 BLUP Chr.3-bin269—Chr.3-bin270 356.978—358.944 47109073—47273754 3.12 0.10 2.65
qHMD-3-2 3 BLUP Chr.3-bin275—Chr.3-bin276 366.949—392.747 47593067—50652576 3.64 0.12 4.42
qHMD-9-1 9 BLUP (2018CD) Chr.9-bin3—Chr.9-bin4 12.761—13.968 1020636—1081249 13.24 -0.20 12.14
qHMD-9-2 9 BLUP (2018AY\
2019BZZ)
Chr.9-bin5—Chr.9-bin6 15.300—16.813 1081250—1165236 13.12 -0.21 12.04
qHMD-9-3 9 BLUP Chr.9-bin8—Chr.9-bin9 19.002—20.591 1296358—1344786 11.97 -0.19 11.05
全生
育期GRP
(d)
qGRP-3-1 3 BLUP Chr.3-bin82—Chr.3-bin85 114.260—115.895 13793248—14081551 5.97 -0.21 3.8
qGRP-3-2 3 BLUP Chr.3-bin83—Chr.3-bin86 118.660—120.269 13892365—14106973 5.20 -0.20 3.33
qGRP-3-3 3 BLUP Chr.3-bin87—Chr.3-bin88 121.426—122.382 14106974—14234898 5.75 -0.21 3.66
qGRP-3-4 3 BLUP(2019BZZ) Chr.3-bin91—Chr.3-bin92 125.448—127.505 14303367—14401524 5.88 -0.21 3.75
qGRP-3-5 3 BLUP Chr.3-bin95—Chr.3-bin96 131.258—132.817 14566487—14610137 5.35 -0.2 3.41
qGRP-3-6 3 BLUP Chr.3-bin236—Chr.3-bin237 306.882—308.216 43369331—43507343 8.38 -0.25 5.65
qGRP-3-7 3 BLUP (2018AY/
2019BZW/
2019BZZ)
Chr.3-bin244—Chr.3-bin245 316.945—319.052 44280815—44754403 11.37 -0.28 7.55
qGRP-3-8 3 BLUP (2018AY/
2019BZW/
2019BZZ)
Chr.3-bin248—Chr.3-bin249 322.822—325.795 45168414—45466528 11.17 -0.28 7.43
qGRP-8-1 8 BLUP (2019BZW) Chr.8-bin91—Chr.8-bin92 112.889—113.844 6404083—6582741 6.05 0.18 3.88
qGRP-8-2 8 BLUP Chr.8-bin94—Chr.8-bin95 116.158—116.962 6658786—6888868 6.20 0.19 3.98
qGRP-8-3 8 BLUP (2019BZW) Chr.8-bin99—Chr.8-bin100 119.928—120.732 7369110—7779259 6.23 0.19 4.00
qGRP-8-4 8 BLUP Chr.8-bin103—Chr.8-bin104 123.052—123.630 8148192—8250376 6.99 0.2 4.46
qGRP-8-5 8 BLUP Chr.8-bin105—Chr.8-bin106 124.007—124.334 8250377—8415850 6.71 0.19 4.29
qGRP-8-6 8 BLUP (2019BZW) Chr.8-bin111—Chr.8-bin112 127.806—128.763 8570149—8953918 6.55 0.19 4.19
qGRP-8-7 8 BLUP Chr.8-bin118—Chr.8-bin119 132.885—133.463 9374426—9577974 6.16 0.19 3.95
qGRP-9-1 9 BLUP (2018CD) Chr.9-bin4—Chr.9-bin5 13.968—15.300 1051492—1134471 23.38 0.38 16.97
qGRP-9-2 9 BLUP (2018CD\
2019BZW)
Chr.9-bin7—Chr.9-bin8 17.693—19.002 1165237—1323365 20.46 0.36 15.10
qGRP-9-3 9 BLUP Chr.9-bin41—Chr.9-bin42 98.942—100.225 16720473—16794977 3.39 0.13 2.12
qGRP-9-4 9 BLUP Chr.9-bin50—Chr.9-bin51 109.137—109.941 17185562—17265906 3.90 0.14 2.43
qGRP-9-5 9 BLUP Chr.9-bin55—Chr.9-bin56 113.588—114.543 17993917—18066318 3.17 0.13 1.98

Table 3

QTL associated with panicle-related traits of the foxtail millet"

性状
Traits
数量性
状位点
QTL
染色体
Chromosome
环境
Environment
标记区间
Marker interval
遗传位置
Genetic position (cM)
物理区间
Physical interval
(bp)
阈值
LOD
加性效应
Additive effect
贡献率
R2
(%)
穗长
PL
(cm)
qPL-3-1 3 BLUP (2018AY/ 2018CD) Chr.3-bin63—Chr.3-bin64 90.527—91.860 11814797—11910395 4.20 0.15 3.51
qPL-3-2 3 BLUP (2018AY/ 2018CD) Chr.3-bin67—Chr.3-bin68 95.658—96.815 12330455—12432361 5.36 0.17 4.45
qPL-5-1 5 BLUP (2018AY/ 2019BZW) Chr.5-bin126—Chr.5-bin127 250.396—257.529 41261506—43386429 12.64 -0.27 11.65
qPL-6-1 6 BLUP (2018AY/ 2019BZW) Chr.6-bin59—Chr.6-bin60 102.475—103.505 7444554—7513668 6.31 -0.18 5.21
qPL-6-2 6 BLUP (2018CD/ 2019BZW) Chr.6-bin120—Chr.6-bin121 193.650—201.019 29947335—31729605 10.62 -0.24 9.60
qPL-6-3 6 BLUP (2018CD/ 2019BZW) Chr.6-bin122—Chr.6-bin123 202.981—207.158 31729606—32246096 9.09 -0.21 7.39
qPL-9-1 9 BLUP (2018CD/ 2019BZW) Chr.9-bin3—Chr.9-bin4 12.761—13.968 1020636—1081249 6.05 0.18 5.44
qPL-9-2 9 BLUP (2018AY/ 2019BZW) Chr.9-bin90—Chr.9-bin91 156.760—157.966 22194797—22455064 8.10 0.21 7.36
qPL-9-3 9 BLUP Chr.9-bin7—Chr.9-bin8 17.693—19.002 1165237—1323365 5.03 0.17 4.55
穗粗
PD
(cm)
qPD-5-1 5 BLUP Chr.5-bin127—Chr.5-bin128 257.529—259.771 43359466—43412659 3.80 0.01 3.74
qPD-5-2 5 BLUP Chr.5-bin129—Chr.5-bin130 261.682—268.328 43412660—45336734 3.69 0.01 4.16
qPD-9-1 9 BLUP Chr.9-bin128—Chr.9-bin129 212.208—213.994 36259049—36379621 5.97 0.01 6.19
qPD-9-2 9 BLUP Chr.9-bin133—Chr.9-bin134 221.828—223.286 37257348—38464278 8.16 0.02 8.34
qPD-9-3 9 BLUP Chr.9-bin139—Chr.9-bin140 230.680—232.566 40138779—40323908 7.80 0.01 7.99
单穗重SPW
(g)
qSPW-9-1 9 BLUP Chr.9-bin150—Chr.9-bin151 252.257—254.167 42275808—42540717 5.07 0.01 5.20
qSPW-9-2 9 BLUP Chr.9-bin155—Chr.9-bin156 260.934—268.406 42685851—43436931 4.48 0.01 5.16

Fig. 3

The QTL associated with growth period and panicle-related traits of the foxtail millet"

Fig. 4

Distribution of the QTL associated with the growth period and panicle-related traits of the foxtail millet The red marked fields represent the regions of the major QTL"

Table 4

Annotation of candidate genes"

性状
Traits
数量性
状位点QTL
染色体Chromosome 候选基因
Candidate genes
KO注释
KO annotation
GO注释
GO annotation
拟南芥同源基因
Homologous genes in Arabidopsis
功能注释
Functional annotation
抽穗期
EHD (d)
qEHD-9-1 Chr.9 Seita.9G020100.1 GO:0005515 AT5G15850 CONSTANS-like 1
Chr.9 Seita.9G019800.1 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G019800.3 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G019800.2 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
qEHD-9-2 Chr.9 Seita.9G023100.1 K09534 AT5G49580 分子伴侣DnaJ结构域超家族蛋白
Chaperone DnaJ-domain superfamily protein
Chr.9 Seita.9G023600.1 AT3G06610 DNA结合增强子相关蛋白
DNA-binding enhancer protein-related
抽穗-成熟天数
HMD (d)
qEHD-9-1 Chr.9 Seita.9G019800.1 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G019800.3 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G019800.2 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G020100.1 GO:0005515 AT5G15850 CONSTANS-like 1
全生育期
GRP (d)
qGRP-9-1 Chr.9 Seita.9G020100.1 GO:0005515 AT5G15850 CONSTANS-like 1
Chr.9 Seita.9G020800.1 GO:0016787, GO:0008152 AT3G02875 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Chr.9 Seita.9G020900.1 K14664 GO:0016787, GO:0008152 AT3G02875 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
qGRP-9-2 Chr.9 Seita.9G023600.1 AT3G06610 DNA结合增强子相关蛋白
DNA-binding enhancer protein-related
Chr.9 Seita.9G023100.1 K09534 AT5G49580 伴侣DNAJ结构域超家族蛋白
Chaperone DnaJ-domain superfamily protein
穗长
PL (cm)
qPL-9-1 Chr.9 Seita.9G020100.1 GO:0005515 AT5G15850 CONSTANS-like 1
Chr.9 Seita.9G019800.1 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G019800.3 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
Chr.9 Seita.9G019800.2 GO:0003676 AT2G27040 AGO家族蛋白 Argonaute family protein
qPL-9-3 Chr.9 Seita.9G023600.1 AT3G06610 DNA结合增强子相关蛋白
DNA-binding enhancer protein-related
Chr.9 Seita.9G023100.1 K09534 AT5G49580 伴侣DNAJ结构域超家族蛋白
Chaperone DnaJ-domain superfamily protein
[1] 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 459-470.
LI S G, LIU F, LIU M, CHENG R H, XIA E J, DIAO X M. Current status and future prospective of foxtail millet production and seed industry in China. Scientia Agricultura Sinica, 2021, 54(3): 459-470. (in Chinese)
[2] GUPTA N, SRIVASTAVA A K, PANDEY V N. Biodiversity and nutraceutical quality of some Indian millets. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2012, 82(2): 265-273.
[3] 韩飞, 诸葛玉平, 娄燕宏, 王会, 张乃丹, 何伟, 晁赢. 63份谷子种质的耐盐综合评价及耐盐品种筛选. 植物遗传资源学报, 2018, 19(4): 685-693.
HAN F, ZHUGE Y P, LOU Y H, WANG H, ZHANG N D, HE W, CHAO Y. Evaluation of salt tolerance and screening for salt tolerant accessions of 63 foxtail millet germplasm. Journal of Plant Genetic Resources, 2018, 19(4): 685-693. (in Chinese)
[4] DOUST A N, DEVOS K M, GADBERRY M D, GALE M D, KELLOGG E A. The genetic basis for inflorescence variation between foxtail and green millet (poaceae). Genetics, 2005, 169: 1659-1672.
doi: 10.1534/genetics.104.035543
[5] TIAN B H, ZHANG L X, LIU Y L, WU P P, WANG W, ZHANG Y, LI H J. Identification of QTL for resistance to leaf blast in foxtail millet by genome re-sequencing analysis. Theoretical and Applied Genetics, 2021, 134(Suppl): 1-12.
doi: 10.1007/s00122-020-03709-7
[6] CHARU L, MANOJ P. Association of an allele-specific marker with dehydration stress tolerance in foxtail millet suggests SiDREB2 to be an important QTL. Journal of Plant Biochemistry and Biotechnology, 2014, 23(1): 119-122.
doi: 10.1007/s13562-013-0193-y
[7] 贾小平, 张博, 董志平, 全建章, 王永芳, 张小梅, 袁玺垒, 李剑峰, 戴凌峰. 海南短日照条件下谷子穗部性状的全基因组关联分析. 河南农业科学, 2018, 47(9): 33-40.
JIA X P, ZHANG B, DONG Z P, QUAN J Z, WANG Y F, ZHANG X M, YUAN X L, LI J F, DAI L F. Genome-wide association analysis of panicle traits of foxtail millet under Hainan short-day condition. Journal of Henan Agricultural Sciences, 2018, 47(9): 33-40. (in Chinese)
[8] 张艾英, 郭二虎, 刁现民, 范惠萍, 李瑜辉, 王丽霞, 郭红亮, 程丽萍, 吴引生. 2005-2015年西北春谷中晚熟区谷子育成品种评. 中国农业科学, 2017, 50(23): 4486-4505.
ZHANG A Y, GUO E H, DIAO X M, FAN H P, LI Y H, WANG L X, GUO H L, CHENG L P, WU Y S. Evaluation of foxtail millet cultivars developed in the middle and late-maturing spring-sowing region in Northwest China in 2005-2015. Scientia Agricultura Sinica, 2017, 50(23): 4486-4505. (in Chinese)
[9] WANG J, WANG Z L, DU X F, YANG H Q, HAN F, HAN Y H, YUAN F, ZHANG L Y, PENG S Z, GUO E H. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE, 2017, 12(6): 0179717.
[10] ZHI H, HE Q, TANG S, YANG J J, ZHANG W, LIU H F, JIA Y C, JIA G Q, ZHANG A Y, LI Y H, GUO E H, GAO M, LI S J, LI J X, QIN N, ZHU C C, MA C Y, ZHANG H J, CHEN G Q, ZHANG W F, WANG H G, QIAO Z J, LI S G, CHENG R H, XING L, WANG S Y, LIU J R, LIU J, DIAO X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theoretical and Applied Genetics, 2021, 134(9): 3023-3036.
doi: 10.1007/s00122-021-03875-2
[11] 张艾英, 刁现民, 郭二虎, 范惠萍, 王丽霞, 李瑜辉, 程丽萍, 吴引生, 张莉. 西北春谷早熟区谷子品种十五年变化趋势及主要性状分析. 中国农业科学, 2017, 50(23): 4496-4511.
ZHANG A Y, DIAO X M, GUO E H, FAN H P, WANG L X, LI Y H, CHENG L P, WU Y S, ZHANG L. Research progress and major traits of foxtail millet cultivars developed and and in the early-mature spring-sowing region in the past 15years. Scientia Agricultura Sinica, 2017, 50(23): 4496-4511. (in Chinese)
[12] 相吉山, 张恒儒, 于佳东, 索良喜, 郭普丞, 李岩, 韩奕, 杜鹤恬, 马静泽, 陈佳宁. 495个不同产区谷子品种(系)在赤峰地区的农艺性状分析. 河南农业科学, 2020, 49(08):16-30.
XIANG J S, ZHANG H R, YU J D, SUO L X, GUO P C, LI Y, HAN Y, DU H T, MA J Z, CHEN J N. Agronomic traits of 495 foxtail millet [Setaria italica(L.)P. Beauv.] varieties (lines) from different regions planted in Chifeng area. Journal of Henan Agricultural Sciences, 2020, 49(8): 16-30. (in Chinese)
[13] 李志江, 刁现民. 谷子分子标记与功能基因组研究进展. 中国农业科技导报, 2009, 11(4): 16-22.
LI Z J, DIAO X M. Research progress on molecular marker and functional genomic of foxtail millet, Setaria italica Beauv. Journal of Agricultural Science and Technology, 2009, 11(4): 16-22. (in Chinese)
[14] NI X M, XIA Q J, ZHANG H B, CHENG S, LI H, FAN G Y, GUO T, HUANG P, XIANG H T, CHEN Q C, LI N, ZOU H F, CAI X M, LEI X J, WANG X M, ZHOU C S, ZHAO Z H, ZHANG G Y, DU G H, CAI W, QUAN Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience, 2017, 6(2): 1-8.
[15] WANG J, WANG Z L, DU X F, YANG H Q, HAN F, HAN Y H, YUAN F, ZHANG L Y, PENG S Z, GUO E H. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE, 2017, 12(6): e0179717.
[16] JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L F, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E H, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B J, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45(8): 957-961.
doi: 10.1038/ng.2673
[17] 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012.
XIE L L. QTL map and analysis for the related traits of photoperiod sensitivity in Setaria italica[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese)
[18] JAISWAL V, GUPTA S, GAHLAUT V, MUTHAMILARASAN M, BANDYOPADHYAY T, RAMCHIARY N, PRASAD M. Genome- wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Scientific Reports, 2019, 9: 5020.
doi: 10.1038/s41598-019-41602-6
[19] 占小登, 于萍, 林泽川, 陈代波, 沈希宏, 张迎信, 付君林, 程式华, 曹立勇. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL. 中国水稻科学, 2014, 28(6): 570-580.
ZHAN X D, YU P, LIN Z C, CHEN D B, SHEN X H, ZHANG Y X, FU J L, CHENG S H, CAO L Y. QTL mapping of heading data yield-related traits in rice using a recombination inbred lines (RILs) population derived from BJ1×XLJ. Chinese Journal of Rice Science, 2014, 28(6): 570-580. (in Chinese)
[20] 王晓宇, 刁现民, 王节之, 王春芳, 王根全, 郝晓芬, 梁增浩, 王雪梅, 赵芳芳. 谷子SSR分子图谱构建及主要农艺性状QTL定位. 植物遗传资源学报, 2013, 14(5):871-878.
WANG X Y, DIAO X M, WANG J Z, WANG C F, WANG G Q, HAO X F, LIANG Z H, WANG X M, ZHAO F F, Construction of genetic map and QTL analysis of some main agronomic traits in millet. Journal of Plant Genetic Resources, 2013, 14(5):871-878. (in Chinese)
[21] 李海权, 耿玲玲, 李振侠. 谷子重要农艺性状QTL初步定位//2015年学术年会论文摘要集, 北京: 中国作物学会, 2015.
LI H Q, GENG L L, LI Z X. The preliminary location study on the main agronomic characters in foxtail millet//Abstracts of Papers of Annual Meeting in 2015, BeiJing: The Crop Science Society of China, 2015. (in Chinese)
[22] FANG X M, DONG K J, WANG X Q, LIU T P, HE J H, REN R Y, ZHANG L, LIU R, LIU X Y, LI M, HUANG M Z, ZHANG Z S, YANG T Y. A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv]. BMC Genomics, 2016, 17(1): 336.
doi: 10.1186/s12864-016-2628-z
[23] ZHANG K, FAN G, ZHANG X. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. Genes Genomes Genetics, 2017, 7(5): 1587-1594.
[24] LIU T P, HE J H, DONG K J, WANNG X W, WANG W W, YANG P, REN R Y, ZHANG L, ZHANG Z S, YANG T Y. QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics, 2020, 21(1): 1-13.
doi: 10.1186/s12864-019-6419-1
[25] WANG Z L, WANG J, PENG J X, DU X F, JIANG M S, LI Y F, HAN F, DU G H, YANG H Q, LIAN S C, YONG J P, CAI W, CUI J D, HAN K N, YUAN F, CHANG F, YUAN G B, ZHANG W N, ZHANG L Y, PENG S Z, ZOU H F, GUO E H. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P. Beauv). Molecular Breeding, 2019, 39(2): 1-13.
[26] WANG J, YANG H Q, DU G H, WANG Z L, ZOU H F, DU X F, LI Y F, PENG J X, GUO E H, YONG J P, HAN F, CAI W, XIA Q J, YUAN G B, YUAN F, NI X M, ZHANG L X, PENG S Z. Mapping of Sihc1, which controls hull color, using a high-density genetic map based on restriction site-associated DNA sequencing in foxtail millet [Setaria italica (L.) P.Beauv.]. Molecular Breeding, 2017, 37(10): 1-10.
doi: 10.1007/s11032-016-0586-4
[27] 闫宏山, 刘金荣, 王素英, 路志国, 刘海平, 蒋自可, 宋中强, 王淑君. 谷子新品种豫谷18的选育. 作物杂志, 2012(3): 147-148.
YAN H S, LIU J R, WANG S Y, LU Z G, LIU H P, JIANG Z K, SONG Z Q, WANG S J. Breeding of new foxtail millet cultivar Yugu 18. Journal of Crops, 2012(3): 147-148. (in Chinese)
[28] 程汝宏, 刘正理, 师志刚, 夏雪岩, 杨万桥. 水分高效利用型谷子新品种“冀谷19”选育研究. 河北农业科学, 2006(1): 80-81.
CHENG R H, LIU Z L, SHI Z G, XIA X Y, YANG W Q, Breeding of foxtail millet cultivar Jigu19. Hebei Agricultural Sciences, 2006(1): 80-81. (in Chinese)
[29] 陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LU P. Descriptors and Data Standard for Foxtail Millet Germplasm Resources. Beijing: China Agriculture Press, 2006. (in Chinese)
[30] XIE H F, HOU J L, FU N, WEI M H, LI Y F, YU K, SONG H, LI S M, LIU J R. Identification of QTL related to anther color and hull color by RAD sequencing in a RIL population of Setaria italica. BMC Genomics, 2021, 22(1): 1-13.
doi: 10.1186/s12864-020-07350-y
[31] MAURO-HERRERA M, WANG X W, BARBIER H, BRUTNELL T P, DEVOS K M, DOUST A N. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). Genes Genomes Genetics, 2013, 3(2): 283-295.
[32] 王海岗. 山西谷子种质资源遗传多样性与主要农艺性状的QTL关联分析[D]. 晋中: 山西农业大学, 2019.
WANG H G. Genetic diversity and association analysis of major agronomic traits in foxtail millet [Setaria italica (L.) P.Beauv.] of Shanxi province[D]. Jinzhong: Shanxi Agricultural University, 2019. (in Chinese)
[33] 刘丹青, 金玉环, 郭力, 李永光, 黄先忠. 四种十字花科植物CONSTANS-like基因家族的鉴定和进化分析. 植物生理学报, 2021, 57(6):1241-1260.
LIU D Q, JIN Y H, GUO L, LI Y G, HUANG X Z. Identification and evolutionary analysis of CONSTANS-like gene family in four cruciferous plants. Plant Physiology Journal, 2021, 57(6): 1241-1260. (in Chinese)
[34] 翟立红, 孙伟, 李知洪, 腾峰. 植物Argonaute基因研究进展. 生命科学, 2018, 30(11): 1210-1220.
ZHAI L H, SUN W, LI Z H, TENG F. Argonaute family in plants. Chinese Bulletin of Life Sciences, 2018, 30(11): 1210-1220. (in Chinese)
[35] PACHAMUTHU K, SWETHA C, BASU D, DAS S, SINGH I, SUNDAR V H, SUIJTH T N, SHIVAPRASAD P. Rice-specific Argonaute 17 controls reproductive growth and yield-associated phenotypes. Plant Molecular Biology, 2020, 105(1): 99-104.
doi: 10.1007/s11103-020-01071-2
[36] 薛红丽, 杨军军, 汤沙, 智慧, 王蕊, 贾冠清, 乔治军, 刁现民. 谷子穗顶端败育突变体sipaa1的表型分析和基因定位. 中国农业科学, 2018, 51(9): 1627-1640.
XUE H L, YANG J J, TANG S, ZHI H, WANG R, JIA G Q, QIAO Z J, DIAO X M. Morphological characterization and gene mapping of panicle apical abortion mutant (sipaa1) in foxtail millet. Scientia Agricultura Sinica, 2018, 51(9): 1627-1640. (in Chinese)
[37] LEE H S, CHOI I, JEON Y, AHN H K, CHO H, KIM J, KIM J H, LEE J M, LEE S, BUNTING J, SEO D H, LEE T, LEE D H, LEE I, OH M H, KIM T W, BELKHADIR, PAI H S. Chaperone-like protein DAY plays critical roles in photomorphogenesis. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[7] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[8] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[9] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[10] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[11] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[12] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[13] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[14] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[15] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!