Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4769-4780.doi: 10.3864/j.issn.0578-1752.2022.23.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken

TU YunJie1(),JI GaiGe1,ZHANG Ming1,LIU YiFan1,JU XiaoJun1,SHAN YanJu1,ZOU JianMin1,LI Hua2,CHEN ZhiWu3,SHU JingTing1,*()   

  1. 1Key Laboratory of Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu
    2Foshan University, Foshan 528225, Guangdong
    3Guangxi Jinling Agriculture and Animal Husbandry Group Co., Ltd., Nanning 530000
  • Received:2021-09-13 Accepted:2022-05-27 Online:2022-12-01 Published:2022-12-06
  • Contact: JingTing SHU E-mail:tyj3030@126.com;shujingting@163.com

Abstract:

【Objective】 The Wnt signaling pathway plays an important role in the development of animal skin feather follicles. The results of previous studies indicated that the Wnt3a might be an important candidate gene that had effects on the chicken feather follicle density. In order to further verify the role of Wnt3a in the growth and development of skin feather follicle density, Wnt3a SNPs were screened and their association with feather follicle density would be analyzed in Jinling Hua chicken. The study could provide a reference for “breeding by molecular writing” of slaughter-type broilers with beautiful carcasses.【Method】 The SNPs of Wnt3a gene were screened by PCR amplification and direct sequencing, and the correlation between a single SNP marker and skin feather follicle density traits was analyzed. Haploview software was used to analyze the degree of linkage disequilibrium (LD) of these SNP loci, and the correlation between different haplotype combinations and feather follicle density traits was also analyzed..【Result】 A total of 14 SNP sites were found, and one SNP site (SNP1) was found in the second exon, which was a synonymous mutation. Four mutation sites (SNP2-SNP5) were found in the second intron, and 9 SNP sites (SNP6-SNP14) were found in the third intron. The chi-square test showed that one mutation site (SNP1) in the second exon and three mutation sites (SNP3-SNP5) in the second intron were all in the Hardy-Weinberg equilibrium (P>0.05), 9 mutation sites (SNP6-SNP14) of the third intron deviated from Hardy-Weinberg equilibrium (P<0.05). The expected heterozygosity (He) of SNP1-SNP5 was less than 0.50, and the polymorphic information content (PIC) was less than 0.25. The genetic polymorphisms of these 5 SNP loci were low. The third intron had 9 mutation sites, PIC of SNP6, SNP7, SNP9 sites was less than 0.25, and the other 6 mutation sites were 0.25<PIC<0.5, which were moderately polymorphic. Single-marker association analysis showed that the number of skin feather follicle with SNP2 locus of AG genotype in males and females was significantly higher than that of GG genotype (P<0.05). The number of skin feather follicles with SNP8 locus of AA and GG genotypes in females was significantly higher than that of the AG genotype (P<0.05). The skin feather follicles density in the three genotypes in males was not significantly different. The linkage disequilibrium analysis of 14 SNPs showed that SNP6-SNP13 and SNP3-SNP5 had a strong linkage disequilibrium, respectively. SNP3, SNP4, and SNP5 produced three haplotype combinations after the combination of the two haplotypes linked by SNP3- SNP5. Association analysis found that the skin feather follicle density of the three haplotype combinations in males and females were not significantly different. After the combination of 5 main haplotypes at SNP6-SNP13 locus, the males had 7 haplotype combinations, and the skin feather follicles density was not significant. Females had 8 haplotype combinations, of which H1H1 (AACCAATTTTAATTCC) had the highest skin feather follicles density. SNP2 and SNP8 were significantly correlated with skin feather follicle density, and the haplotype combination H1H1(AGAA) and H1H2 (AGAG) were the dominant haplotypes in hens.【Conclusion】 Fourteen SNPs of Wnt3a were screened. Among them, individuals with different genotypes at rs2587721 G>A (SNP2) and rs2555967G>A (SNP8) locus had significant differences in feather follicle density. Eight SNPs (SNP6-SNP13) loci were in strong linkage disequilibrium, and the combination of H1H1 had the highest feather follicles density in females. The haplotype combination of SNP2 and SNP8 of Wnt3a H1H (AGAA), H1H2 (AGAG) and SNP6-SNP13 linked to produce the H1H1 (AACCAATTTTAATTCC) haplotype combination were significantly correlated with feather follicle density in females, which provided important genetic information for “breeding by molecular writing” on chicken skin feather follicle density.

Key words: chicken, Wnt3a, skin feather follicle, SNP sites, linkage disequilibrium

Fig. 1

The method of measuring the back feather follicles density of males and females"

Table 1

Comparison of skin feather follicles density between male and female Jinling Hua Chickens"

性别
Sex
数量(只)
Number (individuals)
4 cm2中毛囊个数
Number of feather follicle in 4 cm2
公Male 162 14.25b
母 Female 220 15.71a

Fig. 2

Sequencing peak map of different genotypes at 14 mutation sites of Wnt3a"

Table 2

The genetic diversity of 14 loci of Wnt3a and the Hardy-Weinberg equilibrium test"

SNP位点
SNP locus
基因型
Gene type
基因型频率
Frequency of gene type
等位基因
Allele
等位基因频率
Frequency
of alle
期望杂合度(He
Expected
heterozygosity
观察杂合度(Ho
Observe
heterozygosity
多态信息含量(PIC
Polymorphic information content
哈温平衡
(P值)
HWE (P-value)
SNP1
rs2587569
GG 0.80 G 0.90 0.19 0.19 0.17 1.0
AA 0.01 A 0.10
AG 0.19
SNP2
rs2587721
GG 0.79 G 0.89 0.19 0.21 0.17 0.0173
AG 0.21 A 0.11
SNP3
rs2587832
GG 0.78 G 0.88 0.21 0.20 0.19 0.5168
TT 0.02 T 0.12
TG 0.20
SNP4
rs2587845
AA 0.78 A 0.88 0.21 0.20 0.19 0.5168
CC 0.02 C 0.12
CA 0.20
SNP5
rs2587849
TT 0.78 T 0.88 0.21 0.20 0.19 0.5168
CC 0.02 C 0.12
CT 0.20
SNP6
rs2555891
GG 0.07 G 0.11 0.20 0.09 0.18 1.9837E-16
AA 0.84 A 0.89
GA 0.09
SNP7
rs2555961
TT 0.07 T 0.11 0.20 0.09 0.18 1.9837E-16
CC 0.84 C 0.89
TC 0.09
SNP8
rs2555967
GG 0.42 G 0.53 0.50 0.23 0.37 8.9336E-28
AA 0.36 A 0.47
AG 0.23
SNP9
rs2556041
CC 0.07 C 0.11 0.20 0.09 0.18 1.9837E-16
TT 0.84 T 0.89
CT 0.09
SNP10
rs2556078
TT 0.62 C 0.29 0.41 0.18 0.33 4.1697E-26
CC 0.20 T 0.71
CT 0.18
SNP11
rs2556088
AA 0.49 A 0.59 0.49 0.19 0.37 1.3379E-33
CC 0.32 C 0.41
AC 0.19
ASNP12
rs2556093
TT 0.49 C 0.41 0.49 0.19 0.37 1.3379E-33
CC 0.32 T 0.59
TC 0.19
SNP13
rs2556109
AA 0.42 A 0.52 0.50 0.20 0.37 3.0303E-34
CC 0.38 C 0.48
AC 0.20
SNP14
rs2556178
GG 0.19 G 0.24 0.37 0.11 0.30 8.4255E-39
TT 0.70 T 0.76
TG 0.11

Fig. 3

The linkage disequilibrium analysis among 14 SNP loci of Wnt3a A: Linkage disequilibrium plot. The color of the square ranges from light to deep indicates that the degree of linkage from low to high. The value represents the strength of the linkage disequilibrium between the sites (numerical value = D'value × 100); B: Haplotype analysis. The thicker the line, the more likely it is to combine adjacent haplotypes"

Table 3

Association analysis of Wnt3a locus and skin feather follicle density traits (Mean±SE)"

位点
Locus
性别
Sex
基因型
Gene type
毛囊密度(个/4 cm2
Skin feather follicle density(individual/4 cm2
数量
Number
SNP2(rs2587721)
A>G
A G 14.93±0.35a 40
G G 14.03±0.20b 122
A G 18.44±0.56a 41
G G 15.09±0.274b 179
SNP8(rs2555967) A A 14.20±0.30 55
A G 14.30±0.39 33
G G 14.27±0.26 74
A A 16.57±0.42a 81
A G 14.79±0.52b 53
G G 15.48±0.41ab 86

Table 4

Association analysis between Wnt3a SNP3-SNP5 locus haplotype combination and skin feather follicle density traits (Mean±SE)"

性别
Sex
单倍型组合
Haplotype combination
基因型
Gene type
毛囊密度
Skin feather follicle density (individual/4 cm2)
数量
Number
公 Male H1H1 GGAATT 14.23±0.20 122
H1H2 TGCACT 14.37±0.38 35
H2H2 TTCCCC 14.00±1.00 5
母 Female H1H1 GGAATT 15.69±0.29 177
H1H2 TGCACT 15.81±0.60 41

Table 5

Association analysis between Wnt3a SNP6-SNP13 locus haplotype combination and skin feather follicle density traits (Mean±SE)"

性别
Sex
单倍型组合
Haplotype combination
基因型
Gene type
毛囊密度(个/4cm2
Skin feather follicle density (individual/4 cm2)
数量
Number
公 Male H1H1 AACCAATTTTAATTCC 14.20±0.30 55
H1H2 AACCAGTTCTCACTCA 14.50±0.47 22
H2H2 AACCGGTTCCCCCCAA 14.28±0.37 36
H3H3 AACCGGTTTTCCCCAA 14.47±0.51 19
H1H4 AGCTAGCTTTAATTCA 14.00±0.74 6
H3H4 AGCTGGCTCTCACTAA 13.17±0.91 5
H4H4 GGTTGGCCTTAATTAA 14.00±0.74 9
母Female H1H1 AACCAATTTTAATTCC 16.57±0.42a 81
H1H2 AACCAGTTCTCACTCA 15.83±0.77ab 24
H1H5 AACCAGTTCTCACTCC 12.45±1.14c 11
H2H2 AACCGGTTCCCCCCAA 15.08±0.60b 40
H3H3 AACCGGTTTTCCCCAA 16.25±0.77ab 24
H1H4 AGCTAGCTTTAATTCA 14.71±0.91bc 17
H3H4 AGCTGGCTCTCACTAA 15.75±1.88abc 4
H4H4 GGTTGGCCTTAATTAA 14.81±0.94bc 16

Table 6

Association analysis between Wnt3a SNP2, SNP8 locus haplotype combination and skin feather follicle density traits (Mean±SE)"

性别
Sex
SNP2,SNP8单倍型组合
Haplotype combination of SNP2 and SNP8 locus
基因型
Gene type
毛囊密度(个/4 cm2
Skin feather follicle density (individual/4 cm2)
数量
Number
公 Male H1H1 AGAA 14.40±0.70 10
H1H2 AGAG 15.00±0.78 8
H1H3 AGGG 15.14±0.47 22
H2H1 GGAA 14.16±0.33 45
H2H2 GGAG 14.08±0.44 25
H2H3 GGGG 13.90±0.31 52
母 Female H1H1 AGAA 18.57± 0.78a 21
H1H2 AGAG 19.00±1.27a 8
H1H3 AGGG 17.83± 1.04ab 12
H2H1 GGAA 15.87± 0.46b 60
H2H2 GGAG 14.04± 0.53c 45
H2H3 GGGG 15.10± 0.42bc 74
[1] 文杰. 中国肉鸡产业技术创新与发展趋势. 兽医导刊, 2020(3): 4-5.
WEN J. Technological innovation and development trend of broiler industry in China. Veterinary Orientation, 2020(3): 4-5. (in Chinese)
[2] 辛翔飞, 郑麦青, 文杰, 王济民. 2019年肉鸡产业形势分析、未来展望与对策建议. 中国畜牧杂志, 2020, 56(3): 155-159. doi:10.19556/j.0258-7033.20200217-07.
doi: 10.19556/j.0258-7033.20200217-07
XIN X F, ZHENG M Q, WEN J, WANG J M. Situation analysis, future prospect and countermeasures of broiler industry in 2019. Chinese Journal of Animal Science, 2020, 56(3): 155-159. doi:10.19556/j.0258-7033.20200217-07. (in Chinese)
doi: 10.19556/j.0258-7033.20200217-07
[3] 陈宽维. 黄羽肉鸡冰鲜市场展望. 科学种养, 2015(2): 64.
CHEN K W. Prospects for the yellow feather broiler chilled fresh market. Ke Xue Zhong Yang, 2015(2): 64. (in Chinese)
[4] 赵华, 范梅华. 活鸡向冰鲜鸡消费转型亟需解决的六大问题. 中国畜牧杂志, 2015, 51(16): 8-10, 14.
ZHAO H, FAN M H. Six problems need to solve during the consumption of chilled chicken replacing live chicken. Chinese Journal of Animal Science, 2015, 51(16): 8-10, 14. (in Chinese)
[5] CHI W, WU E, MORGAN B A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development, 2013, 140(8): 1676-1683. doi:10.1242/dev.090662.
doi: 10.1242/dev.090662 pmid: 23487317
[6] CHANG C H, JIANG T X, LIN C M, BURRUS L W, CHUONG C M, WIDELITZ R. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mechanisms of Development, 2004, 121(2): 157-171. doi:10.1016/j.mod.2003.12.004.
doi: 10.1016/j.mod.2003.12.004
[7] FESSING M Y, SHAROVA T Y, SHAROV A A, ATOYAN R, BOTCHKAREV V A. Involvement of the edar signaling in the control of hair follicle involution (catagen). The American Journal of Pathology, 2006, 169(6): 2075-2084. doi:10.2353/ajpath.2006.060227.
doi: 10.2353/ajpath.2006.060227
[8] YU M, YUE Z, WU P, WU D Y, MAYER J A, MEDINA M, WIDELITZ R B, JIANG T X, CHUONG C M. The biology of feather follicles. The International Journal of Developmental Biology, 2004, 48(2/3): 181-191. doi:10.1387/ijdb.031776my.
doi: 10.1387/ijdb.031776my
[9] 陶林, 杜炳旺, 张丽. 卷羽鸡毛囊发育规律及卷羽候选基因KRT75遗传特征分析. 中国农业科学, 2015, 48(4): 821-830.
TAO L, DU B W, ZHANG L. The development of frizzled follicle and genetic characteristics of candidate gene KRT75 in frizzled feather chicken. Scientia Agricultura Sinica, 2015, 48(4): 821-830. (in Chinese)
[10] 苏蕊, 李金泉, 张文广, 尹俊, 赵珺, 常子丽.骨形态发生蛋白2(BMP2) 基因在内蒙古绒山羊不同时期皮肤毛囊中的表达. 中国农业科学, 2008, 41(2): 559-563.
SU R, LI J Q, ZHANG W G, YIN J, ZHAO J, CHANG Z L. Expression of BMP 2 in the skin and hair follicle from different stage in Inner Mongolia cashmere goat. Scientia Agricultura Sinica, 2008, 41(2): 559-563. (in Chinese)
[11] ELLIOTT K, STEPHENSON T J, MESSENGER A G. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. The Journal of Investigative Dermatology, 1999, 113(6): 873-877. doi:10.1046/j.1523-1747.1999.00797.x.
doi: 10.1046/j.1523-1747.1999.00797.x
[12] 姬改革, 束婧婷, 单艳菊, 章明, 屠云洁, 刘一帆, 巨晓军, 邹剑敏. 鸡皮肤毛囊性状研究进展. 中国家禽, 2019, 41(10): 46-49. doi:10.16372/j.issn.1004-6364.2019.10.009.
doi: 10.16372/j.issn.1004-6364.2019.10.009
JI G G, SHU J T, SHAN Y J, ZHANG M, TU Y J, LIU Y F, JU X J, ZOU J M. Research progress of skin hair follicle traits in chicken. China Poultry, 2019, 41(10): 46-49. doi:10.16372/j.issn.1004-6364.2019.10.009. (in Chinese)
doi: 10.16372/j.issn.1004-6364.2019.10.009
[13] JAMORA C, LEE P, KOCIENIEWSKI P, AZHAR M, HOSOKAWA R, CHAI Y, FUCHS E. A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis. Journal of Cheminformatics, 2005, 3(1): e11. doi:10.1371/journal.pbio.0030011.
doi: 10.1371/journal.pbio.0030011
[14] 张小康. Wnt信号通路在鹅皮肤及羽囊早期发育中的功能研究[D]. 武汉: 华中农业大学, 2018.
ZHANG X K. Study on the function of Wnt signaling pathway in the early development of goose skin and feather follicles[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[15] 姬改革, 束婧婷, 单艳菊, 章明, 屠云洁, 刘一帆, 巨晓军, 邹剑敏. 基于表达谱芯片筛选鸡不同部位皮肤组织差异表达基因. 畜牧兽医学报, 2018, 49(1): 36-45.
JI G G, SHU J T, SHAN Y J, ZHANG M, TU Y J, LIU Y F, JU X J, ZOU J M. Identification of differentially expressed genes between different positions of chicken skin based on gene expression microarray. Chinese Journal of Animal and Veterinary Sciences, 2018, 49(1): 36-45. (in Chinese)
[16] 束婧婷, 姬改革, 屠云洁, 章明, 巨晓军, 单艳菊, 刘一帆, 邹剑敏.鸡Wnt3a基因组织表达差异与SNPs对鸡毛囊密度性状的遗传效应. 中国畜牧兽医, 2021, 48(5): 1672-1680. doi:10.16431/j.cnki.1671-7236.2021.05.018.
doi: 10.16431/j.cnki.1671-7236.2021.05.018
SHU J T, JI G G, TU Y J, ZHANG M, JU X J, SHAN Y J, LIU Y F, ZOU J M. Tissue expression analysis of Wnt3a gene and genetic effects of SNPs on feather follicle density in chicken. China Animal Husbandry & Veterinary Medicine, 2021, 48(5): 1672-1680. doi:10.16431/j.cnki.1671-7236.2021.05.018. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2021.05.018
[17] NEMOTO E, SAKISAKA Y, TSUCHIYA M, TAMURA M, NAKAMURA T, KANAYA S, SHIMONISHI M, SHIMAUCHI H. Wnt3a signaling induces murine dental follicle cells to differentiate into cementoblastic/osteoblastic cells via an osterix-dependent pathway. Journal of Periodontal Research, 2016, 51(2): 164-174. doi:10.1111/jre.12294.
doi: 10.1111/jre.12294 pmid: 26095156
[18] PARK K C, CHOI H R, NA J I, CHO H J, NAM K M, CHOI J W, NA S Y, HUH C H. Effects of murine dermal cells on the regulation of hair growth is dependent on the cell number and post-natal age of newborn mice. Annals of Dermatology, 2012, 24(1): 94-98. doi:10.5021/ad.2012.24.1.94.
doi: 10.5021/ad.2012.24.1.94
[19] YUE Z, JIANG T X, WIDELITZ R B, CHUONG C M. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4): 951-955. doi:10.1073/pnas.0506894103.
doi: 10.1073/pnas.0506894103 pmid: 16418297
[20] XIE W Y, CHEN M J, JIANG S G, YAN H C, WANG X Q, GAO C Q. Investigation of feather follicle morphogenesis and the expression of the Wnt/β-catenin signaling pathway in yellow-feathered broiler chick embryos. British Poultry Science, 2020, 61(5): 557-565.
doi: 10.1080/00071668.2020.1758302
[21] ARDLIE K G, KRUGLYAK L, SEIELSTAD M. Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics, 2002, 3(4): 299-309. doi:10.1038/nrg777.
doi: 10.1038/nrg777 pmid: 11967554
[22] MUELLER J C. Linkage disequilibrium for different scales and applications. Briefings in Bioinformatics, 2004, 5(4): 355-364. doi: 10.1093/bib/5.4.355.
doi: 10.1093/bib/5.4.355 pmid: 15606972
[23] 金陵. 金陵花鸡配套系. 农村百事通, 2016(17): 33. doi:10.19433/ j.cnki.1006-9119.2016.17.014.
doi: 10.19433/ j.cnki.1006-9119.2016.17.014
JIN L. Jin Ling Hua chicken cross strain. Nongcun Baishi Tong, 2016(17): 33. doi:10.19433/j.cnki.1006-9119.2016.17.014. (in Chinese)
doi: 10.19433/ j.cnki.1006-9119.2016.17.014
[24] TU Y J, CHEN K W, ZHANG S J, TANG Q P, GAO Y S, YANG N. Genetic diversity of 14 indigenous grey goose breeds in China based on microsatellite markers. Asian-Australasian Journal of Animal Sciences, 2006, 19(1): 1-6. doi:10.5713/ajas.2006.1.
doi: 10.5713/ajas.2006.1
[25] ZANETTI E, DE MARCHI M, ABBADI M, CASSANDRO M. Variation of genetic diversity over time in local Italian chicken breeds undergoing in situ conservation. Poultry Science, 2011, 90(10): 2195-2201. doi:10.3382/ps.2011-01527.
doi: 10.3382/ps.2011-01527
[26] LU Y, CHEN S R, LIU W B, HOU Z C, XU G Y, YANG N. Polymorphisms in Wnt signaling pathway genes are significantly associated with chicken carcass traits. Poultry Science, 2012, 91(6): 1299-1307. doi:10.3382/ps.2012-02157.
doi: 10.3382/ps.2012-02157 pmid: 22582286
[27] 孙雪, 李胜杰, 杜金星, 姜鹏, 周家辉, 白俊杰. 草鱼GHRH基因SNPs的筛选及其与生长性状的关联分析. 农业生物技术学报, 2021, 29(5): 963-972.
SUN X, LI S J, DU J X, JIANG P, ZHOU J H, BAI J J. Screening of SNPs in GHRH and association analysis with growth traits in grass carp(Ctenopharyngodon idella). Journal of Agricultural Biotechnology, 2021, 29(5): 963-972. (in Chinese)
[28] CARTEGNI L, CHEW S L, KRAINER A R. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nature Reviews Genetics, 2002, 3(4): 285-298. doi:10.1038/nrg775.
doi: 10.1038/nrg775 pmid: 11967553
[29] 岳武成, 杨鹤, 侯鑫, 王静安, 陈晓雯, 王军, 王成辉. 中华绒螯蟹肌肉抑制素基因(MSTN)同义突变对基因转录和翻译效率的影响. 水产学报, 2021, 45(4): 497-504.
YUE W C, YANG H, HOU X, WANG J G, CHEN X W, WANG J, WANG C H. Effects of synonymous mutation on transcription and translation efficiency of Es-MSTN gene in Chinese mitten crab (Eriocheir sinensis). Journal of Fisheries of China, 2021, 45(4): 497-504. (in Chinese)
[30] OROZCO G, HINKS A, EYRE S, KE X, GIBBONS L J, BOWES J, FLYNN E, MARTIN P, WELLCOME TRUST CASE CONTROL CONSORTIUM, YEAR CONSORTIUM, WILSON A G, BAX D E, MORGAN A W, EMERY P, STEER S, HOCKING L, REID D M, WORDSWORTH P, HARRISON P, THOMSON W, BARTON A, WORTHINGTON J. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Human Molecular Genetics, 2009, 18(14): 2693-2699. doi:10.1093/hmg/ddp193.
doi: 10.1093/hmg/ddp193 pmid: 19417005
[31] HORNE B D, CAMP N J. Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation. Genetic Epidemiology, 2004, 26(1): 11-21. doi:10.1002/gepi.10292.
doi: 10.1002/gepi.10292 pmid: 14691953
[32] AKEY J, JIN L, XIONG M M. Haplotypes vs single marker linkage disequilibrium tests: What do we gain? European Journal of Human Genetics, 2001, 9(4): 291-300. doi:10.1038/sj.ejhg.5200619.
doi: 10.1038/sj.ejhg.5200619 pmid: 11313774
[33] 刘志国, 王冰源, 牟玉莲, 魏泓, 陈俊海, 李奎. 分子编写育种:动物育种的发展方向. 中国农业科学, 2018, 51(12): 2398-2409.
LIU Z G, WANG B Y, MU Y L, WEI H, CHEN J H, LI K. Breeding by molecular writing(BMW): The future development of animal breeding. Scientia Agricultura Sinica, 2018, 51(12): 2398-2409. (in Chinese)
[1] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[2] LIN YuNong, WANG ZeZhao, CHEN Yan, ZHU Bo, GAO Xue, ZHANG LuPei, GAO HuiJiang, XU LingYang, CAI WenTao, LI YingHao, LI JunYa, GAO ShuXin. Comparison of Imputation Accuracy for Different Low-Density SNP Selection Strategies [J]. Scientia Agricultura Sinica, 2023, 56(8): 1585-1593.
[3] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[4] GUO YuChen, DONG Ming, ZENG XianMing, TIAN HuiXin, YIN JiaQi, HOU YuKe, BAI Yun, TANG ChangBo, HAN MinYi, XU XingLian. Effects of Pulsed Electric Field on Gelation Properties of PSE-Like Chicken Myosin: A Molecular Dynamics Simulation Analysis [J]. Scientia Agricultura Sinica, 2023, 56(4): 741-753.
[5] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[6] CHEN Qiu, HUANG JingJing, WANG ZhePeng. Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2023, 56(17): 3452-3460.
[7] WU YuCan, ZHANG ZiHan, ZHAO GuiPing, WEI LiMin, HUANG Feng, ZHANG ChunHui. Effect of Boiling Coconut Water on Flavor Formation of Wenchang Chicken [J]. Scientia Agricultura Sinica, 2023, 56(16): 3199-3212.
[8] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[9] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[10] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[11] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[12] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[13] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[14] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[15] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!