Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 3987-4001.doi: 10.3864/j.issn.0578-1752.2019.22.005
• MOLECULAR GENETICS • Previous Articles Next Articles
DONG Ming1,KUERBAN Zaituniguli2,Lü Peng1,DU RuiHeng1,YE Kai2,HOU ShengLin1(),LIU GuoQing1(
)
[1] | KAUSHAL S S . Increased salinization decreases safe drinking water. Environmental Science & Technology, 2016,50(6):2765-2766. |
[2] | KHALID N, AQSA T, IQRA , KHALID H, ABDUL M . Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal, 2010,10(1):93-99. |
[3] | GUZM N-MURILLO M A, ASCENCIO F, LARRINAGA- MAYORAL J A . Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma, 2013,250(1):33-42. |
[4] | MUNNS R . Comparative physiology of salt and water stress. Plant, Cell & environment, 2002,25(2):239-250. |
[5] | 高玉红, 闫生辉, 邓黎黎 . 不同盐胁迫对甜瓜幼苗根系和地上部生长发育的影响. 江苏农业科学, 2019,47(3):120-123. |
GAO Y H, YAN S H, DENG L L . Effects of different salt stress on root and above-ground growth and development of muskmelon seedlings. Jiangsu Agricultural Science, 2019,47(3):120-123. (in Chinese) | |
[6] | GULZAR S, KHAN M A, UNGAR I A . Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis, 2003,34(17/18):2595-2605. |
[7] | KERKEB L, DONAIRE J P, VENEMA K, RODR GUEZ-ROSALES M P . Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli . Physiologia Plantarum, 2001,113(2):217-224. |
[8] | PARIDA A K, DAS A B, MITTRA B, MOHANTY P . Salt-stress induced alterations in protein profile and protease activity in the mangrove bruguiera parviflora. Zeitschrift für Naturforschung C, 2004,59(5/6):408-414. |
[9] | HARE P D, CRESS W A . Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 1997,21(2):79-102. |
[10] | SERRAJ R, SINCLAIR R T . Osmolyte accumulation: Can it really help increase crop yield under drought conditions. Plant, Cell and Environment, 2002,25(3):33-41. |
[11] | GANIE S A, MOLLA K A, HENRY R J, BHAT K V, MONDAL T K . Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 2019,132(4):851-870. |
[12] | WANG M, WANG Y, ZHANG Y, LI C, GONG S, YAN S, LI G, HU G, REN H, YANG J, YU T, YANG K . Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes & Genomics, 2019,41(7):781-801. |
[13] | AMIRBAKHTIAR N, ISMAILI A, GHAFFARI M R, NAZARIAN FIROUZABADI F, SHOBBAR Z S . Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS ONE, 2019,14(3):e0213305. |
[14] | YANG Z, ZHENG H, WEI X, SONG J, WANG B, SUI N . Transcriptome analysis of sweet sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 2018,430(1):423-439. |
[15] | AKBUDAK M A, FILIZ E, KONTBAY K . DREB2 (dehydration- responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): Genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech, 2018,8(10):426. |
[16] | FORGHANI A H, ALMODARES A, EHSANPOUR A A . Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Applied Biological Chemistry, 2018,61(1):113-124. |
[17] | 王海莲, 张华文, 刘宾, 杨延兵, 秦岭, 陈二影, 管延安 . 低度盐胁迫下高粱苗期相关性状的QTL定位. 分子植物育种, 2017,15(2):604-610. |
WANG H L, ZHANG H W, LIU B, YANG Y B, QIN L, CHEN E Y, GUAN Y A . QTL mapping for traits related to salt tolerance at seedling stage of Sorghum under low salt stress. Molecular Plant Breeding, 2017,15(2):604-610. (in Chinese) | |
[18] | WANG H L, CHEN G L, ZHANG H W, LIU B, YANG Y B, GUAN Y A . Identification of QTLs for salt tolerance at germination and seedling stage ofSorghum bicolor L. Moench. Euphytica, 2014,196:117-127. |
[19] | 汪仁, 李晓丹, 江玉梅, 贺佳, 彭峰, 夏冰 . 石蒜捕光叶绿素a/b结合蛋白基因的克隆和序列分析. 江苏农业科学, 2011,39(2):42-44. |
WANG R, LI X D, JIANG Y M, HE J, PENG F, XIA B . Cloning and sequence analysis of light-harvesting chlorophyll a/b binding protein gene from Lycoris radiata. Jiangsu Agricultural Science, 2011,39(2):42-44. (in Chinese) | |
[20] | DUAN L, DIETRICH D, NG C H, CHAN P M, BHALERAO R, BENNETT M J, DINNENY J R . Endodermal ABA signaling promotes lateral root quiescence during salt stress inArabidopsis seedlings. The Plant Cell, 2013,25(1):324-341. |
[21] | ACHARD P, CHENG H, DE GRAUWE L, DECAT J, SCHOUTTETEN H, MORITZ T, VANDER S D, PENG J, HARBERD N P . Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006,311(5757):91-94. |
[22] | ZHU J K . Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002,53(1):247-273. |
[23] | YAMAGUCHI-SHINOZAKI K, SHINOZAKI K . Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006,57(1):781-803. |
[24] | CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, ABRAMS S R . Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 2010,61(1):651-679. |
[25] | FUJITA Y, NAKASHIMA K, YOSHIDA T, KATAGIRI T, KIDOKORO S, KANAMORI N, UMEZAWA T, FUJITA M, MARUYAMA K, ISHIYAMA K, KOBAYASHI M, NAKASONE S, YAMADA K, ITO T, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology, 2009,50(12):2123-2132. |
[26] | YUAN H, ZHAO K, LEI H, SHEN X, LIU Y, LIAO X, LI T . Genome-wide analysis of the GH3 family in apple (Malus × Domestica). BMC Genomics, 2013,14(1):297. |
[27] | CHEONG Y H, CHANG H-S, GUPTA R, WANG X, ZHU T, LUAN S . Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 2002,129(2):661-677. |
[28] | SONG Y, WANG L, XIONG L . Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 2009,229(3):577-591. |
[29] | LIU X, ZHANG H, ZHAO Y, FENG Z, LI Q, YANG H Q, LUAN S, LI J, HE Z H . Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2013,110(38):15485-15490. |
[30] | 李安节, 柳振峰 . 植物光系统Ⅱ捕光过程的超分子结构基础. 生物化学与生物物理进展, 2018,45(9):935-946. |
LI A J, LIU Z F . Supramolecular structural basis of light harvesting in plant photosystem II. Advances in Biochemistry and Biophysics, 2018,45(9):935-946. (in Chinese) | |
[31] | O'LEARY B, O'PARK J, PLAXTON WILLIAMC . The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011,436(1):15-34. |
[1] | YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911. |
[2] | YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278. |
[3] | SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010. |
[4] | LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. |
[5] | HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708. |
[6] | ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525. |
[7] | GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166. |
[8] | LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963. |
[9] | HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300. |
[10] | ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683. |
[11] | DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876. |
[12] | WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868. |
[13] | SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584. |
[14] | ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600. |
[15] | LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433. |
|