Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4421-4433.doi: 10.3864/j.issn.0578-1752.2021.20.015

• HORTICULTURE • Previous Articles     Next Articles

Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat

LIU Lian1,2(),TANG ZhiPeng3,LI FeiFei4,XIONG Jiang1,2,LÜ BiWen1,2,MA XiaoChuan1,2,TANG ChaoLan1,2,LI ZeHang1,2,ZHOU Tie1,2,SHENG Ling1,2,LU XiaoPeng1,2()   

  1. 1College of Horticulture, Hunan Agricultural University, Changsha 430128
    2National Center for Citrus Improvement (Changsha), Changsha 410128
    3College of Agricultural, Guangxi University, Nanning 530005
    4Institute of Horticulture, Hunan Academy of Agricultural Science, Changsha 410125
  • Received:2020-12-31 Accepted:2021-02-20 Online:2021-10-16 Published:2021-10-25
  • Contact: XiaoPeng LU E-mail:durian@stu.hunau.edu.cn;xl678@hunau.edu.cn

Abstract:

【Objective】As a citrus fruit with edible peel, the fruit peel of kumquat affects not only the chewing texture but also fruit storage performance. With identical genetic background, Rong’an kumquat, Huapi kumquat and Cuimi kumquat exhibit significant differences in fruit peel. This study aimed to provide new insights and methods for kumquat fruit quality regulation and postharvest storage, through comparisons of three kumquats in fruit quality, storability, peel transcriptome analysis and effects of peel on postharvest characteristics. 【Method】Fruits of Rong’an, Huapi and Cuimi were harvested at commercial maturity stage and stored for 99 days at room temperature. During storage, fruit changes of water loss rate, soluble solid, acid, hardness and shear force were determined. Further, peel transcriptome analysis was performed for three kumquats. 【Result】The results showed that Huapi had the highest water loss rate and happened peel shrinking earliest among three cultivars. Water loss rate of Huapi was up to 38.6 % at 99 days after storage, significantly higher than 5.8% of Rong’an and 14.3% of Cuimi. Fruit soluble solid and acid in all three kumquats increased overall during storage. During storage, Cuimi exposed the highest soluble solid content always, while Huapi showed the lowest acid content since 22 days after storage. Cuimi and Huapi were with better inner quality during storage than Rong’an. Fruit structure of Rong’an changed tremendously during storage, and the fruit cells were damaged obviously at 44 days of storage. Fruit hardness and shear force of Huapi and Cuimi were significantly higher than those of Rong’an. Lignins (A280·g-1) in peels of Huapi and Cuimi were 1.41 and 1.31, respectively, which were all higher than 1.12 of Rong’an. Both Huapi and Cuimi showed more peel cellulose as well than Rong'an. Peel transcriptome analysis suggested that phenylpropaneiod biosynthesis pathway was up-regulated significantly in Huapi and Cuimi relative to Rong’an, while it changed scarcely between Huapi and Cuimi. Gene expression analysis showed that nine genes in lignin biosynthesis pathway expressed higher in Huapi and Cuimi. 【Conclusion】Three kumquats could be stored in a short time at room temperature, and being sold out in one month after harvest could be a good option for planter. In storage, Huapi kumquat lost commodity value quickly because of its fast water loss, while Cuimi kumquat performed well in both external and internal quality. Stronger fruit firmness and shear force as well as better storage performance of Cuimi were associated with the higher lignin and cellulose contents in fruit peel and closer cell arrangement in fruit. Lower peel lignin content in Rong'an kumquat caused by a weak phenylpropane biosynthesis was related closely to its poor peel toughness.

Key words: kumquat, storage, transcriptome, lignin

Table 1

qPCR primers for lignin-related genes"

基因号
Gene ID
引物名称
Primer name
序列(5'-3')
Sequence (5' to 3')
-- β-Actin-F CCGACCGTATGAGCAAGGAAA
β-Actin-R TTCCTGTGGACAATGGATGGA
Unigene0006358 Q-PAL-F ACATATCTTGGATGGTAG
Q-PAL-R GATTATCATTCACAGAGTTA
Unigene0032500 Q-C4H-F AATGACTTCCGTTACCTT
Q-C4H-R CCAATAGTGATACCAAGAATT
Unigene0003313 Q-4CL-F ACTTGTCGTCTATTAGGATAT
Q-4CL-R TTGATTCTCACAGCATCT
Unigene0010487 Q-HCT-F AGTTGTGTTCTTGAGGATT
Q-HCT-R GCCACCAGTAATGGATAA
Unigene0001236 Q-C3H-F CAGTGGCATTCAACAACAT
Q-C3H-R GCTCGTCCATCACATCTT
Unigene0010359 Q-CCoAOMT-F CCTCTACCAGTATATTCTTG
Q-CCoAOMT-R CGTTGTCATAATGTTCCA
Unigene0030233 Q-COMT-F TGTTCGTCAGTATTCCAA
Q-COMT-R CTTCGTAGCAATTCTTCAA
Unigene0010788 Q-F5H-F GGAGCAATAGACACTTCAC
Q-F5H-R TTCTTCATCACCGTAGGA
Unigene0004476 Q-CAD-F GCTGATATTGAGGTCATA
Q-CAD-R ATATCTAACATCGGCTTTA

Fig. 1

Changes of fruit morphology (A) and water loss rate (B) of three kumquats during storage RA: Rong’an kumquat; HP:‘Huapi’kumquat CM:‘Cuimi’kumquat. Different lower case letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Histological changes in peels of three cultivars A: Overview of fruit peel; B: Structure changes of mesocarp"

Fig. 3

Changes of total soluble sugar and acid in three kumquats during storage"

Fig. 4

Changes of fruit hardness and shear force during storage"

Fig. 5

Changes of peel lignin and cellulose contents during storage"

Table 2

Differentially expressed genes (DEGs) in mature peel between Rong’an, Huapi and Cuimi"

RA vs HP RA vs CM CM vs HP
差异表达基因数 Number of DEGs 1771 4648 1694
上调基因数 Number of up-regulated genes 757 (42.7%) 3134 (67.4%) 1417 (83.6%)
下调基因数 Number of down-regulated genes 1014 (57.3%) 1514 (32.6%) 277 (16.4%)

Table 3

Pathways with significantly enriched genes among three kumquats"

通路
Pathway
通路注释到的差异
基因(330)
DEGs with pathway annotation (330)
通路注释到的全部基因(5917)
All genes with pathway annotation (5917)
Q值
Q value
RA vs HP 苯丙烷的生物合成 Phenylpropanoid biosynthesis 27 93 2.925557e-11
次生代谢产物的生物合成Biosynthesis of secondary metabolites 90 806 4.711536e-10
二苯乙烯类、二芳基庚烷类和姜辣素的生物合成
Stilbenoid, diarylheptanoid and gingerol biosynthesis
10 31 9.676913e-05
苯丙氨酸代谢 Phenylalanine metabolism 13 54 9.676913e-05
类黄酮的生物合成 Flavonoid biosynthesis 11 39 9.676913e-05
代谢通路 Metabolic pathways 124 1603 1.750089e-04
二萜生物合成 Diterpenoid biosynthesis 5 12 3.678667e-03
光合作用 Photosynthesis 14 89 3.865546e-03
淀粉和蔗糖代谢 Starch and sucrose metabolism 16 126 1.514148e-02
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism 11 75 2.328198e-02
RA vs CM 次生代谢产物的生物合成Biosynthesis of secondary metabolites 162 806 9.336325e-09
代谢通路 Metabolic pathways 260 1603 2.509351e-05
光合作用 Photosynthesis 29 89 2.509351e-05
类胡萝卜素的生物合成 Carotenoid biosynthesis 15 31 3.399227e-05
植物和病原菌互作 Plant-pathogen interaction 45 178 5.517173e-05
苯丙烷的生物合成 Phenylpropanoid biosynthesis 28 93 1.121020e-04
泛醌及其他萜类醌的生物合成
Ubiquinone and other terpenoid-quinone biosynthesis
16 46 1.266753e-03
植物激素信号转导 Plant hormone signal transduction 39 168 1.266753e-03
半胱氨酸和蛋氨酸代谢 Cysteine and methionine metabolism 21 75 3.300664e-03
甘氨酸、丝氨酸和苏氨酸的代谢 Glycine, serine and threonine metabolism 18 61 3.953406e-03
HP vs CM 植物激素信号转导 Plant-pathogen interaction 33 178 6.513308e-08
光合作用 Photosynthesis 22 89 9.991586e-08
代谢通路 Metabolic pathways 127 1603 1.466413e-04
光合作用-触角蛋白 Photosynthesis-antenna proteins 9 30 5.974961e-04
次生代谢产物的生物合成 Biosynthesis of secondary metabolites 71 806 9.572057e-04
苯丙烷的生物合成 Phenylpropanoid biosynthesis 15 93 2.930200e-03
亚麻酸代谢 Alpha-linolenic acid metabolism 8 32 3.966276e-03
植物激素信号转导 Plant hormone signal transduction 21 168 5.177878e-03
类胡萝卜素的生物合成 Carotenoid biosynthesis 7 31 1.419480e-02
亚油酸代谢 Linoleic acid metabolism 4 10 1.468044e-02

Fig. 6

DEGs in lignin biosynthesis pathway among three cultivars"

Fig. 7

Relative expression of lignin-related genes in three kumquat peels"

[1] CHEN C Y, NIE Z P, WAN C P, GAN Z Y, CHEN J Y. Suppression on postharvest juice sac granulation and cell wall modification by chitosan treatment in harvested pummelo (Citrus grandis L. Osbeck) stored at room temperature. Food Chemistry, 2021, 336:127636.
doi: 10.1016/j.foodchem.2020.127636
[2] 李果果, 欧智涛, 陈东奎, 梁春, 梁增, 刘要鑫, 赵洪涛, 陈香玲. 沃柑低温环境贮藏的品质变化分析. 江苏农业科学, 2019, 47(17):219-221.
LI G G, OU Z T, CHEN D K, LIANG C, LIANG Z, LIU Y X, ZHAO H T, CHEN X L. Analysis of quality changes of low-temperature environment storage of Orah. Jiangsu Agricultural Sciences, 2019, 47(17):219-221. (in Chinese)
[3] 邹运乾, 张立, 吴方方, 许让伟, 徐娟, 胡世全, 谢合平, 程运江. 打蜡处理对温州蜜柑果实异味物质积累的影响. 中国农业科学, 2020, 53(12):2450-2459.
ZOU Y Q, ZHANG L, WU F F, XU R W, XU J, HU S Q, XIE H P, CHENG Y J. Effects of wax coating on off-flavor compound accumulation in the pulp of Satsuma mandarin. Scientia Agricultura Sinica, 2020, 53(12):2450-2459. (in Chinese)
[4] 张晶琳, 王永江, 刘海东, 费溧锋, 陈存坤, 班兆军. 壳聚糖/CMC复合涂膜处理对柑橘果实采后品质的影响. 现代食品科技, 2019, 35(10):50-57, 260.
ZHANG J L, WANG Y J, LIU H D, FEI L F, CHEN C K, BAN Z J. Effect of chitosan/CMC composite coating treatment on quality of postharvest Citrus fruit. Modern Food Science & Technology, 2019, 35(10):50-57, 260. (in Chinese)
[5] LI Y, WU C H, WU T T, YUAN C H, HU Y Q. Antioxidant and antibacterial properties of coating with chitosan-citrus essential oil and effect on the quality of Pacific mackerel during chilled storage. Food Science and Nutrition, 2019, 7(3):1131-1143.
doi: 10.1002/fsn3.2019.7.issue-3
[6] 杨少桧. 柑橙橘柚类水果采后处理和贮藏风险控制(下). 保鲜与加工, 2010, 10(4):1-4.
YANG S H. Risk control for postharvest handling and storage of Citrus fruit (B). Storage and Process, 2010, 10(4):1-4. (in Chinese)
[7] 陶爱群, 易干军, 石雪晖, 姜小文. 柑橘留树保鲜研究进展. 广东农业科学, 2012, 39(24):45-49.
TAO A Q, YI G J, SHI X H, JIANG X W. Overview of Citrus storage on tree. Guangdong Agricultural Sciences, 2012, 39(24):45-49. (in Chinese)
[8] 李明娟, 刘根华, 何新华, 景艳艳, 李德安, 周祥杰. 避雨栽培对金柑留树保鲜果实品质的影响. 北方园艺, 2012(4):149-153.
LI M J, LIU G H, HE X H, JING Y Y, LI D A, ZHOU X J. Effects of rain shelter cultivation on quality of Fortunella crassifolia fruits during the tree storage. Northern Horticulture, 2012(4):149-153. (in Chinese)
[9] 邓光宙, 刘萍, 蒋运宁, 李柳洪, 陈国平. 不同浓度水杨酸处理对金柑果实贮藏保鲜效果的影响. 北方园艺, 2011(13):161-164.
DENG G Z, LIU P, JIANG Y N, LI L H, CHEN G P. The effect of different concentrations of salicylic acid treatments on the storability of Fortunella crassifolia. Northern Horticulture, 2011(13):161-164. (in Chinese)
[10] 王淑娟, 陈明, 陈金印. 水杨酸对‘遂川金柑’采后生理及贮藏效果的影响. 果树学报, 2012, 29(6):1110-1114.
WANG S J, CHEN M, CHEN J Y. Effects of salicylic acid treatments on postharvest physiology and storage of ‘Suichuan Kumquat' fruits. Journal of Fruit Science, 2012, 29(6):1110-1114. (in Chinese)
[11] 邓光宙, 刘萍, 李柳洪, 蒋运宁. 采前和采后外源水杨酸处理对金柑果实生理的影响. 中国南方果树, 2013, 42(6):56-58, 63.
DENG G Z, LIU P, LI L H, JIANG Y N. Effects of exogenous salicylic acid treatment on the physiology of kumquat fruit before and after harvest. South China Fruits, 2013, 42(6):56-58, 63. (in Chinese)
[12] 刘萍, 范七君, 牛英, 娄兵海, 刘冰浩, 邓崇岭. 次氯酸钙处理对金柑采后腐烂及抗氧化物酶活性的影响. 果树学报, 2016, 33(9):1148-1155.
LIU P, FAN Q J, NIU Y, LOU B H, LIU B H, DENG C L. Effects of calcium hypochlorite treatment on postharvest decay and defense enzyme activity of kumquat fruits. Journal of Fruit Science, 2016, 33(9):1148-1155. (in Chinese)
[13] HOSSEINI S F, AMRAIE M, SALEHI M, MOHSENI M, ALOUI H. Effect of chitosan-based coatings enriched with savory and/or tarragon essential oils on postharvest maintenance of kumquat (Fortunella sp.) fruit. Food Science and Nutrition, 2019, 7(1):155-162.
doi: 10.1002/fsn3.835
[14] 王淑娟, 陈明, 陈金印. 蒽醌类化合物对遂川金柑采后生理及贮藏效果的影响. 中国食品学报, 2012, 12(1):118-123.
WANG S J, CHEN M, CHEN J Y. Effects of anthrquinones treatments on postharvest physiology and storage of Suichuan kumquat fruits. Journal of Chinese Institute of Food Science and Technology, 2012, 12(1):118-123. (in Chinese)
[15] VANHOLME R, MORREEL K, RALPH J, BOERJAN W. Lignin engineering. Current Opinion in Plant Biology, 2008, 11(3):278-285.
doi: 10.1016/j.pbi.2008.03.005
[16] BOUDET A M. A new view of lignification. Trends in Plant Science, 1998, 3(2):67-71.
doi: 10.1016/S1360-1385(97)01176-X
[17] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54(1):519-546.
doi: 10.1146/arplant.2003.54.issue-1
[18] CAI C, XU C J, LI X, FERGUSON I, CHEN K S. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology, 2006, 40:163-169.
doi: 10.1016/j.postharvbio.2005.12.009
[19] JIN Q, YAN C C, QIU J X, ZHANG N, LIN Y, CAI Y P. Structural characterization and deposition of stone cell lignin in Dangshan Su pear. Scientia Horticulturae, 2013, 155:123-130.
doi: 10.1016/j.scienta.2013.03.020
[20] PENG J, ZHENG Y, TANG S, RUI H, WANG C Y. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology, 2009, 52(1):24-29.
doi: 10.1016/j.postharvbio.2008.09.011
[21] 潘腾飞, 朱学亮, 潘东明, 郭志雄, 佘文琴, 陈桂信. ‘琯溪蜜柚’贮藏期间汁胞粒化与木质素代谢的关系. 果树学报, 2013, 30(2):294-298.
PAN T F, ZHU X L, PAN D M, GUO Z X, SHE W Q, CHEN G X. Relationship between granulation and lignin metabolism in ‘Guanximiyou’ pummelo fruit during storage. Journal of Fruit Science, 2013, 30(2):294-298. (in Chinese)
[22] 韦成兴. 优质金柑品种: 融安滑皮金桔. 中国南方果树, 2001, 30(3):26-27.
WEI C X. High quality kumquat cultivar - Rongan Huapi kumquat. South China Fruits, 2001, 30(3):26-27. (in Chinese)
[23] 唐志鹏, 高兴, 秦荣耀, 孙宁静, 蓝惠国, 韦日机, 邓光宙, 刘冰浩. 金柑新品种‘脆蜜金柑’的选育. 果树学报, 2018, 35(1):131-134.
TANG Z P, GAO X, QIN R Y, SUN N J, LAN H G, WEI R J, DENG G Z, LIU B H. A new Fortunella crassifiolia cultivar ‘Cuimi Kumquat’. Journal of Fruit Science, 2018, 35(1):131-134. (in Chinese)
[24] 梁社坚, 梁锦堂, 蒋宁雄, 刘培卫, 吴鸿. 柑橘果实分泌囊发育与挥发油积累关系研究. 华南农业大学学报, 2014, 35(2):61-65.
LIANG S J, LIANG J T, JIANG N X, LIU P W, WU H. The relationship between secretory cavity development and accumulation of essential oils in fruit of Citrus reticulata. Journal of South China Agricultural University, 2014, 35(2):61-65. (in Chinese)
[25] ZHAO Y J, DENG L L, ZHOU Y H, MING J, YAO S X, ZENG K F. Wound healing in citrus fruit is promoted by chitosan and Pichia membranaefaciens as a resistance mechanism against Colletotrichum gloeosporioides. Postharvest Biology and Technology, 2018, 145:134-143.
doi: 10.1016/j.postharvbio.2018.07.007
[26] 徐呈祥, 郑福庆, 马艳萍, 张少平, 陈小婷, 叶思敏. 贮藏温度对耐贮性不同的柑橘品种果皮蜡质含量及其化学组成的影响. 食品科学, 2021, 42(13):223-232.
XU C X, ZHENG F Q, MA Y P, ZHANG S P, CHEN X T, YE S M. Effect of storage temperature on peel wax content and chemical composition of Citrus cultivars with different storability. Food Science, 2021, 42(13):223-232. (in Chinese)
[27] 曾琼, 吴启, 王玥辰, 刘德春, 刘山蓓, 刘传福, 刘勇. 纽荷尔脐橙果皮光泽型突变体贮藏性研究. 江西农业大学学报, 2013, 35(3):525-529.
ZENG Q, WU Q, WANG Y C, LIU D C, LIU S B, LIU C F, LIU Y. A study on fruit storability of glossy mutant of “newhall” navel orange. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(3):525-529. (in Chinese)
[28] CHU W J, GAO H Y, CHEN H J, FANG X J, ZHENG Y H. Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chemistry, 2018, 239:68-74.
doi: 10.1016/j.foodchem.2017.06.024
[29] VOGG G, FISCHER S, LEIDE J, EMMANUEL E, JETTER R, LEVY A A, RIEDERER M. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. Journal of Experimental Botany, 2004, 55(401):1401-1410.
doi: 10.1093/jxb/erh149
[30] 马张正, 马巧利, 辜青青, 勒思, 雷常玉, 魏清江. 滑皮金柑和融安金柑外观、风味及营养成分比较. 浙江农业学报, 2019, 31(4):654-660.
MA Z Z, MA Q L, GU Q Q, LE S, LEI C Y, WEI Q J. Comparative study of fruit appearance, flavor and nutritional components in Huapi and Rong’an kumquat. Acta Agriculturae Zhejiangensis, 2019, 31(4):654-660. (in Chinese)
[31] SUN X H, XIONG J J, ZHU A D, ZHANG L, MA Q L, XU J, CHEN Y J, DENG X X. Sugars and organic acids changes in pericarp and endocarp tissues of pumelo fruit during postharvest storage. Scientia Horticulturae, 2012, 142:112-117.
doi: 10.1016/j.scienta.2012.05.009
[32] CHEA S, YU D J, PARK J, OH H D, CHUNG S W, LEE H J. Fruit softening correlates with enzymatic and compositional changes in fruit cell wall during ripening in ‘Bluecrop’ highbush blueberries. Scientia Horticulturae, 2019, 245:163-170.
doi: 10.1016/j.scienta.2018.10.019
[33] LUO T, NIU J J, GUO X M, WU H T, HAN D M, SHUAI L, WU Z X. Preharvest zinc sulfate spray improves the storability of longan (Dimocarpus longan Lour.) fruits by protecting the cell wall components and antioxidants of pericarp. Journal of the Science of Food and Agriculture, 2019, 99(3):1098-1107.
doi: 10.1002/jsfa.2019.99.issue-3
[34] XU J Y, ZHAO Y H, ZHANG X, ZHANG L J, HOU Y L, DONG W X. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation. Frontiers in Plant Science, 2016, 7:1524.
[35] LIU X F, LI S R, FENG X X, LI L L. Study on cell wall composition, fruit quality and tissue structure of hardened ‘suli’ pears (Pyrus bretschneideriRehd). Journal of Plant Growth Regulation, 2020. https://doi.org/10.1007/s00344-020-10248-4.
[36] ZHANG L F, CHEN F S, YANG H S, SUN X Y, HUI L, GONG X Z, JIANG C B, DING C H. Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage. LWT-Food Science and Technology, 2010, 43(1):26-32.
doi: 10.1016/j.lwt.2009.06.015
[37] 潘东明, 郑国华, 陈桂信, 佘文琴, 郭志雄, 施木田, 林慧颖. 琯溪蜜柚汁胞粒化原因分析. 果树学报, 1999, 16(3):202-209.
PAN D M, ZHENG G H, CHEN G X, SHE W Q, GUO Z X, SHI M T, LIN H Y. Analysis of the reasons caused granulation of juice sacs in guanximiyou pomelo variety. Journal of Fruit Science, 1999, 16(3):202-209. (in Chinese)
[38] NG J K, SCHRÖDER R, SUTHERLAND P W, HALLETT I C, HALL M I, PRAKASH R, SMITH B G, MELTON L D, JOHNSTON J W. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth. BMC Plant Biology, 2013, 13(1):183.
doi: 10.1186/1471-2229-13-183
[39] 唐红英. 南丰蜜橘纤维素、半纤维素代谢与化渣性关系研究[D]. 南昌: 江西农业大学, 2015.
TANG H Y. Study on the relationship between cellulose, hemicellulose metabolism and mastication of Nangfeng tangerine[D]. Nanchang: Jiangxi Agricultural University, 2015. (in Chinese)
[40] 古湘. 南丰蜜橘木质素代谢与化渣的关系研究[D]. 南昌: 江西农业大学, 2016.
GU X. Study on the relationship between lignin metabolism and mastication of Nangfeng tangerine[D]. Nanchang: Jiangxi Agricultural University, 2016. (in Chinese)
[41] CAI C, XU C J, LI X, FERGUSON L, CHEN K S. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology, 2005, 40(2):163-169.
doi: 10.1016/j.postharvbio.2005.12.009
[42] KONAN J A, KOFFI K K, ZORO A I B. Lignin biosynthesis rate is responsible for varietal difference in fruit rind and seed coat hardness in the bottle gourd Lagenaria siceraria (Molina) Standley. South African Journal of Botany, 2018, 117:276-281.
doi: 10.1016/j.sajb.2018.05.025
[43] ZHANG X, ZHANG Q P, SUN X Y, DU X, LIU W S, DONG W X. Differential expression of genes encoding phenylpropanoid enzymes in an apricot cultivar (Prunus armeniaca L.) with cleavable endocarp. Trees, 2019, 33(6):1695-1710.
doi: 10.1007/s00468-019-01890-x
[44] LIU W L, ZHANG J, JIAO C, YIN X R, FEI Z J, WU Q B, CHEN K S. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research, 2019, 6:49.
doi: 10.1038/s41438-019-0131-9
[1] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[2] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[3] DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa [J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
[4] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[5] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[6] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[7] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[8] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[9] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[10] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[11] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[12] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[13] HU FeiFei,QIAN ShuYi,HUANG Feng,JIANG Wei,QIANG Yu,JIANG Feng,HU HaiMei,LI Xia,ZHANG ChunHui. Effect of Low Voltage Electrostatic Field-Assisted Short-Term Frozen Storage on Quality of Pork [J]. Scientia Agricultura Sinica, 2021, 54(9): 1993-2005.
[14] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[15] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!