Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1288-1300.doi: 10.3864/j.issn.0578-1752.2021.06.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data

HuaZhi CHEN1(),YuanChan FAN1(),HaiBin JIANG1,Jie WANG1,XiaoXue FAN1,ZhiWei ZHU1,Qi LONG1,ZongBing CAI1,YanZhen ZHENG1,ZhongMin FU1,2,GuoJun XU1,DaFu CHEN1,2,Rui GUO1,2()   

  1. 1College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
    2Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-05-06 Accepted:2020-05-28 Online:2021-03-16 Published:2021-03-25
  • Contact: Rui GUO E-mail:CHZ0720@outlook.com;fanyc19980201@126.com;ruiguo@fafu.edu.cn

Abstract:

【Objective】The objective of this study is to improve gene sequence and functional annotation of current reference genome of Nosema ceranae using previously obtained Nanopore full-length transcriptome dataset. 【Method】TransDecoder software was used to predict open reading frames (ORFs) of N. ceranae and corresponding amid acids. Comparison between full-length transcripts and transcripts annotated in reference genome was performed using gffcompare software to extend upstream sequences or downstream sequences of annotated genes’ untranslated regions and correct genes’ boundaries. MISA software was used to explore simple sequence repeat (SSR) loci within transcripts with a length above 500 bp, including single nucleotide repeat, dinucleotide repeat, trinucleotide repeat, tetranucleotide repeat, pentanucleotide repeat, hexanucleotide repeat and mixed SSR. By using Blast tool, novel genes and novel transcripts were aligned to Nr, KOG, eggNOG, GO and KEGG databases to gain functional annotations. 【Result】A total of 2 353 complete ORFs were predicted, and those ORFs with a length distribution among 0-100 aa were the predominant, reaching a ratio of 72.12% among total ORFs. Additionally, structures of 2 340 N. ceranae genes were optimized; 5′ ends of 1 182 genes and 3′ ends of 1 158 genes were respectively prolonged. Moreover, 1 658 SSRs were identified, and the numbers of single nucleotide repeat, dinucleotide repeat, trinucleotide repeat, tetranucleotide repeat were 1 622, 23, seven and six, respectively. The density of single nucleotide repeat was the highest (182.32/Mb), followed by those of mixed SSR, dinucleotide repeat and trinucleotide repeat, reaching 6.90, 2.78 and 0.73/Mb, respectively. Further, 954 novel genes were identified, among them 951, 333, 371, 422 and 321 were respectively annotated to Nr, KOG, eggNOG, GO and KEGG databases. In addition, 6 164 novel transcripts were identified, among them 6 141, 2 808, 2 932, 3 196 and 2 585 were annotated to the aforementioned five databases, respectively. The species annotated by the highest number of new gene and new transcript was N. ceranae followed by Nosema apis. 【Conclusion】Our results well improve sequences and functional annotations of annotated genes in current reference genome of N. ceranae, and supplement and annotate a number of unannotated novel genes and transcripts. Lots of SSR sites were provided for research on molecular markers, information of genes and transcripts on reference genome were supplemented.

Key words: Nanopore sequencing, full-length transcript, transcriptome, genome, honeybee, Nosema ceranae

Table 1

Summary of structural optimization of 10 genes in N. ceranae reference genome"

基因ID
Gene ID
基因位置
Gene locus
正负链
Plus and minus strand
末端
End
原位置
Original site
优化后位置
Optimized site
Gene1175 NW_020169317.1:49652-50638 - 3′ 50341 50638
Gene326 NW_020169413.1:1478-3041 - 3′ 2683 3041
Gene503 NW_020169431.1:1208-2193 - 5′ 1461 1208
Gene503 NW_020169431.1:1208-2193 - 3′ 1634 2193
Gene1591 NW_020169298.1:96744-98975 + 5′ 96746 96744
Gene1591 NW_020169298.1:96744-98975 + 3′ 98671 98975
Gene588 NW_020169310.1:2436-3030 + 3′ 2741 3030
Gene350 NW_020169307.1:13073-18338 - 5′ 17277 13073
Gene36 NW_020169296.1: 54153-55245 - 5′ 54289 54153
Gene2363 NW_020169300.1:40046-41314 - 5′ 40510 40046

Table 2

Summary of searching result of N. ceranae SSRs based on MISA"

MISA搜索项目 MISA searching item 数量 Number
搜索基因 Searching gene 8021
搜索基因的总序列长度
Total sequence length of searching gene (bp)
8265494
鉴定到的SSR位点 Identified SSR loci 1658
鉴定到的SSR总序列长度
Total sequence length of identified SSRs (bp)
1405
含有1个以上SSR的基因
Genes containing more than one SSR
212
混合SSR Mixed SSR 65
单核苷酸重复Single nucleotide repeat 1622
双核苷酸重复Dinucleotide repeat 23
三核苷酸重复Trinucleotide repeat 7
四核苷酸重复Tetranucleotide repeat 6

Fig. 1

Nr (A), KOG (B) and eggNOG (C) database annotations of novel genes of N. ceranae"

Fig. 2

GO database annotation of novel genes of N. ceranae"

Fig. 3

KEGG database annotation of novel genes of N. ceranae"

Fig. 4

Nr (A), KOG (B) and eggNOG (C) database annotations of novel transcripts of N. ceranae"

Fig. 5

GO database annotation of novel transcripts of N. ceranae"

Fig. 6

KEGG database annotations of novel transcripts of N. ceranae"

Fig. 7

Length distribution of amino acids encoded by complete ORFs of N. ceranae"

[1] WHEELER D A, SRINIVASAN M, EGHOLM M, SHEN Y, CHEN L, MCGUIRE A, HE W, CHEN Y J, MAKHIJANI V, ROTH G T, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature, 2008,452(7189):872-876.
doi: 10.1038/nature06884 pmid: 18421352
[2] XIA Q, ZHOU Z, LU C, CHENG D, DAI F, LI B, ZHAO P, ZHA X, CHENG T, CHAI C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004,306(5703):1937-1940.
doi: 10.1126/science.1102210 pmid: 15591204
[3] The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006,443(7114):931-949.
doi: 10.1038/nature05260 pmid: 17073008
[4] KOCHER S D, LI C, YANG W, TAN H, YI S V, YANG X, HOEKSTRA H E, ZHANG G, PIERCE N E, YU D W. The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biology, 2013,14(12):R142.
doi: 10.1186/gb-2013-14-12-r142 pmid: 24359881
[5] PARK D, JUNG J W, CHOI B S, JAYAKODI M, LEE J, LIM J, YU Y, CHOI Y S, LEE M L, PARK Y, CHOI I Y, YANG T J, EDWARDS O R, NAH G, KWON H W. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015,16(1):1.
doi: 10.1186/1471-2164-16-1
[6] OLSEN J L, ROUZÉ P, VERHELST B, LIN Y C, BAYER T, COLLEN J, DATTOLO E, DE PAOLI E, DITTAMI S, MAUMUS F, et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016,530(7590):331-335.
doi: 10.1038/nature16548 pmid: 26814964
[7] ZHANG G Q, XU Q, BIAN C, TSAI W C, YEH C M, LIU K W, YOSHIDA K, ZHANG L S, CHANG S B, CHEN F, et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports, 2016,6:19029.
doi: 10.1038/srep19029 pmid: 26754549
[8] PELIN A, SELMAN M, 1 ARIS-BROSOU S, FARINELLI L, CORRADI N. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environmental Microbiology, 2015,17(11):4443-4458.
doi: 10.1111/1462-2920.12883 pmid: 25914091
[9] LIU B, ZHOU Y, LI K, HU X, WANG C, CAO G, XUE R, GONG C. The complete genome of cyprinid herpesvirus 2, a new strain isolated from Allogynogenetic crucian carp. Virus Research, 2018,256:6-10.
doi: 10.1016/j.virusres.2018.07.016 pmid: 30053416
[10] RHOADS A, AU K F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 2015,13(5):278-289.
doi: 10.1016/j.gpb.2015.08.002 pmid: 26542840
[11] MAGRINI V, GAO X, ROSA B A, MCGRATH S, ZHANG X, HALLSWORTH-PEPIN K, MARTIN J, HAWDON J, WILSON R K, MITREVA M. Improving eukaryotic genome annotation using single molecule mRNA sequencing. BMC Genomics, 2018,19(1):172.
pmid: 29495964
[12] TANG Y T, GAO X, ROSA B A, ABUBUCKER S, HALLSWORTH- PEPIN K, MARTIN J, TYAGI R, HEIZER E, ZHANG X, BHONAGIRI-PALSIKAR V, et al. Genome of the human hookworm Necator americanus. Nature Genetics, 2014,46(3):261-269.
doi: 10.1038/ng.2875
[13] MITREVA M, JASMER D P, ZARLENGA D S, WANG Z, ABUBUCKER S, MARTIN J, TAYLOR C M, YIN Y, FULTON L, MINX P, et al. The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 2011,43(3):228-235.
doi: 10.1038/ng.769 pmid: 21336279
[14] PENDLETON M, SEBRA R, PANG A W C, UMMAT A, FRANZEN O, RAUSCH T, STÜTZ A M, STEDMAN W, ANANTHARAMAN T, HASTIE A, et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nature Methods, 2015,12(8):780-786.
doi: 10.1038/nmeth.3454 pmid: 26121404
[15] SHIELDS E J, SHENG L, WEINER A K, GARCIA B A, BONASIO R. High-quality genome assemblies reveal long non-coding RNAs expressed in ant brains. Cell Reports, 2018,23(10):3078-3090.
doi: 10.1016/j.celrep.2018.05.014 pmid: 29874592
[16] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, VAN DE GEEST H, BIANCO L, MICHELETTI D, VELASCO R, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017,49(7):1099-1106.
pmid: 28581499
[17] DONG L, LIU H, ZHANG J, YANG S, KONG G, CHU S C, CHEN N, WANG D. Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics, 2015,16(1):1039.
doi: 10.1186/s12864-015-2257-y
[18] CORNMAN R S, CHEN Y P, SCHATZ M C, STREET S, ZHAO Y, DESANY B, EGHOLM M, HUTCHISON S, PETTIS J S, LIPKIN W I, EVANS J D. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathogens, 2009,5(6):e1000466.
doi: 10.1371/journal.ppat.1000466 pmid: 19503607
[19] 陈华枝, 杜宇, 范小雪, 祝智威, 蒋海宾, 王杰, 范元婵, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 基于第三代纳米孔测序技术的东方蜜蜂微孢子虫全长转录组构建及注释. 昆虫学报, 2020,63(12):1461-1472.
CHEN H Z, DU Y, FAN X X, ZHU Z W, JIANG H B, WANG J, FAN Y C, XIONG C L, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Construction and annotation of the full-length transcriptome of Nosema ceranae based on the third-generation nanopore sequencing technology. Acta Entomologica Sinica, 2020,63(12):1461-1472. (in Chinese)
[20] 陈华枝, 范小雪, 范元婵, 王杰, 祝智威, 蒋海宾, 张文德, 隆琦, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 东方蜜蜂微孢子虫基因的可变剪接及可变腺苷酸化解析. 菌物学报, 2021,40(1):161-173.
CHEN H Z, FAN X X, FAN Y C, WANG J, ZHU Z W, JIANG H B, ZHANG W D, LONG Q, XIONG C L, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Analysis of alternative splicing and alternative polyadenylation of Nosema ceranae genes. Mycosystema, 2021,40(1):161-173. (in Chinese)
[21] THIEL T, MICHALEK W, VARSHNEY R, GRANER A. Exploiting EST databases for the development and characterization of gene- derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2003,106(3):411-422.
pmid: 12589540
[22] 郭睿, 陈华枝, 童新宇, 熊翠玲, 郑燕珍, 付中民, 解彦玲, 王海朋, 赵红霞, 陈大福. 蜜蜂球囊菌基因结构优化及新基因鉴定. 中国农业大学学报, 2019,24(1):61-68.
GUO R, CHEN H Z, TONG X Y, XIONG C L, ZHENG Y Z, FU Z M, XIE Y L, WANG H P, ZHAO H X, CHEN D F. Structural optimization of annotated genes and identification of novel genes in Ascosphaera apis. Journal of China Agricultural University, 2019,24(1):61-68. (in Chinese)
[23] 熊翠玲, 王海朋, 郑燕珍, 付中民, 徐国均, 童新宇, 赵红霞, 陈大福, 郭睿. 基于中华蜜蜂幼虫肠道转录组数据对东方蜜蜂基因组的基因结构优化及新基因鉴定. 中国农业大学学报, 2019,24(3):86-93.
XIONG C L, WANG H P, ZHENG Y Z, FU Z M, XU G J, TONG X Y, ZHAO H X, CHEN D F, GUO R. Gene structure optimization and identification of novel genes in Apis cerana genome: Based on the transcriptome data obtained from larval gut. Journal of China Agricultural University, 2019,24(3):86-93. (in Chinese)
[24] CHENG B, FURTADO A, HENRY R J. Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts. Giga Science, 2017,6(11):1-13.
doi: 10.1093/gigascience/gix093 pmid: 29048480
[25] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, KUMAR D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49(5):660-670.
doi: 10.1007/s13592-018-0593-z
[26] BARRETT L W, FLETCHER S, WILTON S D. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cellular and Molecular Life Sciences, 2012,69(21):3613-3634.
pmid: 22538991
[27] 熊翠玲, 童新宇, 陈华枝, 耿四海, 庄天艺, 郑燕珍, 付中民, 陈大福, 赵红霞, 郭睿. 东方蜜蜂微孢子虫的基因结构优化及新基因鉴定. 环境昆虫学报, 2019,41(2):373-379.
XIONG C L, TONG X Y, CHEN H Z, GENG S H, ZHUANG T Y, ZHENG Y Z, FU Z M, CHEN D F, ZHAO H X, GUO R. Optimization of gene structure and identification of novel genes in Nosema ceranae. Journal of Environmental Entomology, 2019,41(2):373-379. (in Chinese)
[28] JARNE P, LAGODA P J. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution, 1996,11(10):424-429.
pmid: 21237902
[29] ZANE L, BARGELLONI L, PATARNELLO T. Strategies for microsatellite isolation: A review. Molecular Ecology, 2002,11(1):1-16.
doi: 10.1046/j.0962-1083.2001.01418.x pmid: 11903900
[30] 朱家颖, 吴国星, 杨斌. 基于转录组数据高通量发掘黄粉甲微卫星引物. 昆虫学报, 2013,56(7):724-728.
ZHU J Y, WU G X, YANG B. High-throughput discovery of SSR genetic markers in the yellow mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae), from its transcriptome database. Acta Entomologica Sinica, 2013,56(7):724-728. (in Chinese)
[31] 罗梅, 张鹤, 宾淑英, 林进添. 基于转录组数据高通量发掘扶桑绵粉蚧微卫星引物. 昆虫学报, 2014,57(4):395-400.
LUO M, ZHANG H, BIN S Y, LIN J T. High-throughput discovery of SSR genetic markers in the mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae), from its transcriptome database. Acta Entomologica Sinica, 2014,57(4):395-400. (in Chinese)
[32] 李汶东, 熊翠玲, 王鸿权, 侯志贤, 童新宇, 张璐, 付中民, 郑燕珍, 陈大福, 郭睿. 基于RNA-seq数据大规模挖掘蜜蜂球囊菌的SSR分子标记. 福建农林大学学报(自然科学版), 2017,46(4):434-438.
LI W D, XIONG C L, WANG H Q, HOU Z X, TONG X Y, ZHANG L, FU Z M, ZHENG Y Z, CHEN D F, GUO R. Large scale development of SSR molecular markers of Ascosphaera apis based on RNA-seq data. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017,46(4):434-438. (in Chinese)
[33] 熊翠玲, 张璐, 付中民, 王鸿权, 侯志贤, 童新宇, 李汶东, 郑燕珍, 陈大福, 郭睿. 基于RNA-seq数据大规模开发中华蜜蜂幼虫的SSR分子标记. 环境昆虫学报, 2017,39(1):68-74.
XIONG C L, ZHANG L, FU Z M, WANG H Q, HOU Z X, TONG X Y, LI W D, ZHENG Y Z, CHEN D F, GUO R. Large-scale development of SSR primers for Apis cerana cerana larvae based on its RNA-seq datasets. Journal of Environmental Entomology, 2017,39(1):68-74. (in Chinese)
[34] 郭睿, 陈华枝, 庄天艺, 熊翠玲, 郑燕珍, 付中民, 陈恒, 陈大福. 利用转录组数据开发意大利蜜蜂的SSR分子标记. 安徽农业大学学报, 2018,45(3):404-408.
GUO R, CHEN H Z, ZHUANG T Y, XIONG C L, ZHENG Y Z, FU Z M, CHEN H, CHEN D F. Exploitation of SSR markers for Apis mellifera ligustica based on transcriptome data. Journal of Anhui Agricultural University, 2018,45(3):404-408. (in Chinese)
[35] 张鹏飞, 周晓榕, 庞保平, 谭瑶, 常静, 高利军. 基于转录组数据高通量发掘沙葱萤叶甲微卫星引物. 应用昆虫学报, 2016,53(5):1058-1064.
ZHANG P F, ZHOU X R, PANG B P, TAN Y, CHANG J, GAO L J. High-throughput discovery of microsatellite markers in Galeruca daurica (Coleoptera: Chrysomelidae) from a transcriptome database. Chinese Journal of Applied Entomology, 2016,53(5):1058-1064. (in Chinese)
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[4] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[5] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[6] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[7] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[8] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[9] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[10] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[11] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[14] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[15] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!