Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 3987-4001.doi: 10.3864/j.issn.0578-1752.2019.22.005

• MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome Analysis and Gene Mining of Salt Tolerance in Sorghum Seedlings (Sorghum bicolor L. Moench)

DONG Ming1,KUERBAN Zaituniguli2,Lü Peng1,DU RuiHeng1,YE Kai2,HOU ShengLin1(),LIU GuoQing1()   

  1. 1 Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/The Key Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang 050035;
    2 Institute of Bioenergy, Xinjiang Academy of Agriculture Sciences, Urumqi 830091
  • Received:2019-06-17 Accepted:2019-09-24 Online:2019-11-16 Published:2019-11-16
  • Contact: ShengLin HOU,GuoQing LIU E-mail:shenglinhou@aliyun.com;guoqingliu@hotmail.com

Abstract:

【Object】The primary aim of this study was to identify salt tolerance genes and explore the tolerance response mechanism under salt stress in sorghum, which may provide a theoretical basis for sorghum salt tolerance breeding. 【Method】Two sorghum varieties, L-Tian, salt-sensitive and Shihong 137, salt-tolerant were employed as plant materials. The sorghum seedlings were treated with 2% NaCl solution at three-leaf and one heart stage. Three treatments including 0 h (CK), 1 h and 24 h were conducted. The plant height, root length, dry matter weight, Na + content and relative content of chlorophyll (SPAD value) were determined, and the transcriptome sequencing was performed on Illumina HiSeq 2000 platform. The FPKM method was employed to calculate the gene expression level. Both the differential expression fold (Fold Change) ≥ 2 and FDR<0.001 were used as screening criteria to detect the differentially expressed genes. The Gene Ontology and KEGG Pathway databases were used to analyze the differentially expressed genes involved in salt stress at different time points. 【Result】Salt stress had no significant effect on plant height, root length and dry matter weight of sorghum, but had significant effect on Na + content and SPAD value. The plant height, root length, Na + content and SPAD value of Shihong 137 were higher than those of L-tian. Totally 26628 known genes and 866 new genes have been identified from RNA-seq, of which, the number of differentially expressed genes from Shihong 137 is higher than that from L-tian. 375, 4206 and 3750 differentially expressed genes in 0 h VS 1 h, 0 h VS 24 h and 1 h VS 24 h groups had been identified from Shihong 137 respectively. The number of differentially expressed genes of 0 h VS 1 h, 0 h VS 24 h, and 1 h VS 24 h of L-tian was 167, 2534 and 1612, respectively. GO and KEGG analysis revealed that plant hormones such as abscisic acid, auxin, cytokinin, gibberellin and ethylene were involved in the salt tolerance of sorghum at an early stage of salt stress (1h), while Lhca, Lhcb, phosphoenolpyruvate carboxylase, and ribulose phosphate kinase were involved in the salt tolerance at a late stage of salt stress (24 h). The difference in salt tolerance between Shihong 137 and L-tian was mainly caused by the flavonoid biosynthetic metabolic pathway. 【Conclusion】The sorghum response to salt stress is a complex biological process that relies on the balanced expression of multiple genes in complex networks. Under salt stress, sorghum response to environmental stimuli was controlled by both hormonal signal transduction and photosynthesis. The flavonoid biosynthesis pathway played an important role in salt-tolerant varieties.

Key words: sorghum (Sorghum bicolor L.), salt stress, transcriptome, gene mining

Table 1

Primers of qRT-PCR"

基因ID Gene ID 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer(5′-3′)
Sobic.006G018400 CATCAATGGTTACCGTGTGC CGCTCAGTGATGGTGATCTC
Sobic.006G034300 AGGAAGCGAAGGGAGTTAAAG TCTGGAACATGGAAAGGCTC
Sobic.004G300300 ACGGCTACGGCTACGACTAC ATGCCACCGCGTTCCACTC
Sobic.004G227400 TCATGTTCCAGCCGTCGTCG AAGAGGCCGTGGGCGTTG
GADPH TCACTGCTACCCAAAAGACG AGACATCAACGGTAGGAACAC

Fig. 1

Na+ content (Left) and SPAD value (Right) of L tian and Shihong 137 Different lowercase letters indicate a significant difference at a 5% level between different treatments"

Table 2

Statistics of agronomic characters under salt stress"

处理 Treatment 株高 Plant height (cm) 根长 Root length (cm) 干物重 Dry weight (g)
gCK 5.24 4.86 0.18
g1h 5.21 4.83 0.18
g24h 5.20 4.77 0.22
nCK 6.56 6.23 0.25
n1h 6.69 6.22 0.26
n24h 6.59 6.22 0.28

Fig. 2

Phenotype of sorghum in four-leaf stage A: 0 h salt stress of Shihong137 and L tian; B: Salt stress treatment and control treatment of Shihong137"

Table 3

Sequencing statistics of transcriptomes in sorghum leaves"

分类Classification 最大值Maximum 最小值Minimum 平均值Average
总序列标签Total reads 56174902 42082348 48578108
比对到基因组序列标签Mapped reads 44513494 33795753 37417638
比对到基因组序列标签比例Ratio of mapped reads (%) 79.74 76.27 78.33
GC含量GC content (%) 58.67 55.73 57.30
Q30碱基百分比Percentage of Q30 base (%) 93.29 92.40 92.89
已知转录本数Number of known gene 26628
新转录本数Number of novel gene 866

Table 4

Number of DEGs in salt treatments"

处理DEG Set 差异表达基因数DEG Number 上调表达基因数Up-regulated gene number 下调表达基因数Down-regulated gene number
nCK VS n1h 375 332 43
nCK VS n24h 4206 1947 2259
n1h VS n24h 3750 1711 2039
gCK VS g1h 167 149 18
gCK VS g24h 2534 1259 1275
g1h VS g24h 1612 715 897
gCK VS nCK 1240 576 664
g1h VS n1h 1184 540 644
g24h VS n24h 1910 783 1127

Fig. 3

Venn map of DEGs g: Salt sensitive variety L tian; n: Salt tolerant variety Shihong 137; gCK: L tian control; g1h: L tian salt stress for 1 h; g24h: L tian salt stress for 24 h; nCK: Shihong 137 control; n1h: Shihong 137 salt stress for 1 h; n24h: Shihong 137 salt stress for 24 h. The same as below"

Table 5

GO enrichment analysis of s DEGs in sorghum leaves"

处理
Treatments
GO编号
GO ID
GO分类
Term
注释基因数Annotated 显著基因数Significant 期望值
Expected
显著性
KS
nCK VS n1h GO:0060416 生长激素响应Response to growth hormone 48 1 0.68 1.80E-08
GO:0006749 谷胱甘肽代谢Glutathione metabolic process 88 1 1.25 2.20E-07
GO:0006569 色氨酸分解代谢Tryptophan catabolic process 129 2 1.83 5.00E-07
GO:0009684 吲哚乙酸生物合成Indoleacetic acid biosynthetic process 210 3 2.99 6.10E-07
GO:0080148 缺水反应负调节过程Negative regulation of response to water deprivation 56 1 0.80 8.20E-07
GO:0015824 脯氨酸转运Proline transport 164 3 2.33 2.10E-06
GO:0016036 磷缺失细胞响应过程 Cellular response to phosphate starvation 319 7 4.53 2.60E-06
GO:0051260 蛋白质同源寡聚化Protein homooligomerization 43 2 0.61 6.20E-06
GO:0033506 硫代葡萄糖苷生物合成过程
Glucosinolate biosynthetic process from homomethionine
11 0 0.16 1.00E-05
GO:0071475 细胞高渗盐反应Cellular hyperosmotic salinity response 10 1 0.14 1.60E-05
nCK VS n24h GO:0010207 光系统II组装Photosystem II assembly 257 123 39.38 1.40E-25
GO:0006364 核糖体RNA加工rRNA processing 403 161 61.75 8.30E-24
GO:0010027 类囊体膜组织Thylakoid membrane organization 366 149 56.08 1.00E-21
GO:0009773 光系统I中的光合电子输运
Photosynthetic electron transport in photosystem I
70 43 10.73 1.10E-17
GO:0000023 麦芽糖代谢过程Maltose metabolic process 217 93 33.25 2.50E-16
GO:0019252 淀粉合成过程Starch biosynthetic process 280 110 42.90 5.70E-16
GO:0010114 红光响应过程Response to red light 299 119 45.82 9.60E-15
GO:0019344 半胱氨酸生物合成Cysteine biosynthetic process 389 129 59.61 8.60E-13
GO:0080167 karrikin响应过程Response to karrikin 493 124 75.54 2.20E-12
GO:0006569 色氨酸分解代谢Tryptophan catabolic process 129 38 19.77 9.20E-11
gCK VS g1h GO:0060416 生长激素响应Response to growth hormone 48 0 0.28 9.70E-09
GO:0006749 谷胱甘肽代谢Glutathione metabolic process 88 1 0.52 4.10E-08
GO:0080148 缺水反应负调节过程Negative regulation of response to water deprivation 56 0 0.33 4.60E-07
GO:0009684 吲哚乙酸生物合成Indoleacetic acid biosynthetic process 210 1 1.23 4.70E-07
GO:0006569 色氨酸分解代谢Tryptophan catabolic process 129 1 0.76 5.80E-07
GO:0015824 脯氨酸转运Proline transport 164 2 0.96 8.10E-07
GO:0016036 磷缺失细胞响应过程Cellular response to phosphate starvation 319 1 1.87 2.10E-06
GO:0051260 蛋白质同源寡聚化Protein homooligomerization 43 0 0.25 4.70E-06
GO:0033506 硫代葡萄糖苷生物合成过程
Glucosinolate biosynthetic process from homomethionine
11 0 0.06 8.10E-06
GO:0009704 去乙醇De-etiolation 86 0 0.51 1.20E-05
gCK VS g24h GO:0006098 戊糖磷酸支路Pentose-phosphate shunt 325 134 30.72 6.40E-30
GO:0019288 异戊烯二磷酸生物合成过程Isopentenyl diphosphate biosynthetic process.
甲基赤藓糖醇4-磷酸通路Methylerythritol 4-phosphate pathway
392 123 37.06 3.80E-19
GO:0010207 光系统II组装Photosystem II assembly 257 89 24.29 2.30E-17
GO:0000023 麦芽糖代谢Maltose metabolic process 217 77 20.51 5.00E-14
GO:0019252 淀粉生物合成Starch biosynthetic process 280 89 26.47 1.80E-13
GO:0009773 光系统I中的光合电子输运
Photosynthetic electron transport in photosystem I
70 38 6.62 4.00E-13
GO:0080167 karrikin响应过程Response to karrikin 493 94 46.6 1.30E-11
GO:0010114 红光反应系统Response to red light 299 90 28.26 3.20E-11
GO:0060416 生长激素响应Response to growth hormone 48 12 4.54 1.60E-10
GO:0010027 类囊体膜组织Thylakoid membrane organization 366 93 34.60 3.60E-10

Fig. 4

Heatmap of plant hormone signal transduction"

Table 6

Genes involved in photosynthesis and salt stress"

基因名称
Gene name
基因ID
Gene ID
FPKM 值FPKM value
gCK g1h g24h nCK n1h n24h
Lhca1 Sobic.004G056900 6845.75 5277.53 549.64 7487.56 6519.72 268.80
Lhca2 Sobic.002G215000 1138.05 1161.23 68.34 1049.57 1109.62 20.12
Lhca2 Sobic.002G352100 4759.34 3627.86 260.80 4158.43 3828.06 73.90
Lhca3 Sobic.010G189300 4871.52 3711.42 392.95 5321.69 4030.16 151.76
Lhca4 Sobic.007G136900 4332.36 3332.85 194.35 5032.23 4230.89 67.37
Lhca5 Sobic.004G308700 728.38 595.98 75.06 842.51 805.12 35.45
Lhcb1 Sobic.002G288300 3292.48 3102.02 307.94 3037.17 2900.42 181.03
Lhcb1 Sobic.003G209900 6389.25 4984.08 49.64 3469.75 3574.07 4.02
Lhcb1 Sobic.009G234600 5809.76 5237.89 653.41 4791.33 4965.73 479.47
Lhcb2 Sobic.001G177000 8469.69 6247.14 446.28 13066.13 9860.12 175.30
Lhcb3 Sobic.002G339200 1714.88 1482.53 72.21 1275.63 1696.12 42.19
Lhcb4 Sobic.002G338000 3871.83 3342.85 250.40 3352.35 3419.74 74.70
Lhcb5 Sobic.005G087000 3613.05 3154.13 108.67 3800.17 3639.70 34.51
Lhcb6 Sobic.006G264200 2859.62 2414.96 84.85 1956.43 2112.88 67.85
PPC Sobic.002G167000 22.50 22.36 85.39 13.85 12.02 71.82
PPC Sobic.010G160700 5064.26 4230.24 932.75 4640.39 4269.74 262.15
PPC Sobic.004G106900 66.57 55.44 537.14 71.04 145.90 649.27
PPC Sobic.007G106500 29.54 15.39 23.77 15.24 16.67 71.67
PRK Sobic.004G272100 1162.80 1074.55 96.36 1050.45 1166.71 20.26
PRK Sobic.006G200800 35.80 25.69 4.21 32.01 26.04 3.00

Fig. 5

KEGG enrichment map A:gCK VS nCK;B:g1h VS n1h;C:g24h VS n24h"

Fig.6

FPKM values of ANR and FLS in L tian and Shihong 137"

Fig. 7

The results of qRT-PCR A:Sobic.006G18400;B:006G034300;C:004G300300"

[1] KAUSHAL S S . Increased salinization decreases safe drinking water. Environmental Science & Technology, 2016,50(6):2765-2766.
[2] KHALID N, AQSA T, IQRA , KHALID H, ABDUL M . Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal, 2010,10(1):93-99.
[3] GUZM N-MURILLO M A, ASCENCIO F, LARRINAGA- MAYORAL J A . Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma, 2013,250(1):33-42.
[4] MUNNS R . Comparative physiology of salt and water stress. Plant, Cell & environment, 2002,25(2):239-250.
[5] 高玉红, 闫生辉, 邓黎黎 . 不同盐胁迫对甜瓜幼苗根系和地上部生长发育的影响. 江苏农业科学, 2019,47(3):120-123.
GAO Y H, YAN S H, DENG L L . Effects of different salt stress on root and above-ground growth and development of muskmelon seedlings. Jiangsu Agricultural Science, 2019,47(3):120-123. (in Chinese)
[6] GULZAR S, KHAN M A, UNGAR I A . Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis, 2003,34(17/18):2595-2605.
[7] KERKEB L, DONAIRE J P, VENEMA K, RODR GUEZ-ROSALES M P . Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli . Physiologia Plantarum, 2001,113(2):217-224.
[8] PARIDA A K, DAS A B, MITTRA B, MOHANTY P . Salt-stress induced alterations in protein profile and protease activity in the mangrove bruguiera parviflora. Zeitschrift für Naturforschung C, 2004,59(5/6):408-414.
[9] HARE P D, CRESS W A . Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 1997,21(2):79-102.
[10] SERRAJ R, SINCLAIR R T . Osmolyte accumulation: Can it really help increase crop yield under drought conditions. Plant, Cell and Environment, 2002,25(3):33-41.
[11] GANIE S A, MOLLA K A, HENRY R J, BHAT K V, MONDAL T K . Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 2019,132(4):851-870.
[12] WANG M, WANG Y, ZHANG Y, LI C, GONG S, YAN S, LI G, HU G, REN H, YANG J, YU T, YANG K . Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes & Genomics, 2019,41(7):781-801.
[13] AMIRBAKHTIAR N, ISMAILI A, GHAFFARI M R, NAZARIAN FIROUZABADI F, SHOBBAR Z S . Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS ONE, 2019,14(3):e0213305.
[14] YANG Z, ZHENG H, WEI X, SONG J, WANG B, SUI N . Transcriptome analysis of sweet sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 2018,430(1):423-439.
[15] AKBUDAK M A, FILIZ E, KONTBAY K . DREB2 (dehydration- responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): Genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech, 2018,8(10):426.
[16] FORGHANI A H, ALMODARES A, EHSANPOUR A A . Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Applied Biological Chemistry, 2018,61(1):113-124.
[17] 王海莲, 张华文, 刘宾, 杨延兵, 秦岭, 陈二影, 管延安 . 低度盐胁迫下高粱苗期相关性状的QTL定位. 分子植物育种, 2017,15(2):604-610.
WANG H L, ZHANG H W, LIU B, YANG Y B, QIN L, CHEN E Y, GUAN Y A . QTL mapping for traits related to salt tolerance at seedling stage of Sorghum under low salt stress. Molecular Plant Breeding, 2017,15(2):604-610. (in Chinese)
[18] WANG H L, CHEN G L, ZHANG H W, LIU B, YANG Y B, GUAN Y A . Identification of QTLs for salt tolerance at germination and seedling stage ofSorghum bicolor L. Moench. Euphytica, 2014,196:117-127.
[19] 汪仁, 李晓丹, 江玉梅, 贺佳, 彭峰, 夏冰 . 石蒜捕光叶绿素a/b结合蛋白基因的克隆和序列分析. 江苏农业科学, 2011,39(2):42-44.
WANG R, LI X D, JIANG Y M, HE J, PENG F, XIA B . Cloning and sequence analysis of light-harvesting chlorophyll a/b binding protein gene from Lycoris radiata. Jiangsu Agricultural Science, 2011,39(2):42-44. (in Chinese)
[20] DUAN L, DIETRICH D, NG C H, CHAN P M, BHALERAO R, BENNETT M J, DINNENY J R . Endodermal ABA signaling promotes lateral root quiescence during salt stress inArabidopsis seedlings. The Plant Cell, 2013,25(1):324-341.
[21] ACHARD P, CHENG H, DE GRAUWE L, DECAT J, SCHOUTTETEN H, MORITZ T, VANDER S D, PENG J, HARBERD N P . Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006,311(5757):91-94.
[22] ZHU J K . Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002,53(1):247-273.
[23] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K . Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006,57(1):781-803.
[24] CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, ABRAMS S R . Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 2010,61(1):651-679.
[25] FUJITA Y, NAKASHIMA K, YOSHIDA T, KATAGIRI T, KIDOKORO S, KANAMORI N, UMEZAWA T, FUJITA M, MARUYAMA K, ISHIYAMA K, KOBAYASHI M, NAKASONE S, YAMADA K, ITO T, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology, 2009,50(12):2123-2132.
[26] YUAN H, ZHAO K, LEI H, SHEN X, LIU Y, LIAO X, LI T . Genome-wide analysis of the GH3 family in apple (Malus × Domestica). BMC Genomics, 2013,14(1):297.
[27] CHEONG Y H, CHANG H-S, GUPTA R, WANG X, ZHU T, LUAN S . Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 2002,129(2):661-677.
[28] SONG Y, WANG L, XIONG L . Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 2009,229(3):577-591.
[29] LIU X, ZHANG H, ZHAO Y, FENG Z, LI Q, YANG H Q, LUAN S, LI J, HE Z H . Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2013,110(38):15485-15490.
[30] 李安节, 柳振峰 . 植物光系统Ⅱ捕光过程的超分子结构基础. 生物化学与生物物理进展, 2018,45(9):935-946.
LI A J, LIU Z F . Supramolecular structural basis of light harvesting in plant photosystem II. Advances in Biochemistry and Biophysics, 2018,45(9):935-946. (in Chinese)
[31] O'LEARY B, O'PARK J, PLAXTON WILLIAMC . The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011,436(1):15-34.
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[6] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[7] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[8] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[9] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[10] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[11] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[12] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[13] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[14] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[15] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!