Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4585-4600.doi: 10.3864/j.issn.0578-1752.2021.21.009

• PLANT PROTECTION • Previous Articles     Next Articles

Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates

ZHAO WeiSong(),GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping()   

  1. Plant Protection Institute of Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, Hebei
  • Received:2021-03-21 Accepted:2021-05-31 Online:2021-11-01 Published:2021-11-09
  • Contact: Ping MA E-mail:zhaoweisong1985@163.com;pingma88@126.com

Abstract:

【Objective】L-proline in root exudates of cotton is one of the key factors affecting the colonization of biocontrol microorganisms. Previous studies showed that L-proline could improve the ability of Bacillus subtilis NCD-2 biofilm formation. The objective of this study is to explore the regulatory genes related to the biofilm formation and biocontrol potential of strain NCD-2 through high-throughput sequencing technology, and to lay a foundation for further understanding the molecular interaction between cotton root exudates and biocontrol strain.【Method】Strain NCD-2 was co-cultured with L-proline at the concentration of 10 mg·mL -1 for 24 h, and it was analyzed by transcriptome (RNA-seq) and isotope labeled relative quantitative proteomics (iTRAQ). The expression of some differential genes in different metabolic pathways was verified by RT-qPCR.【Result】Transcriptome analysis showed that 1 071 differentially expressed genes (DEGs) were obtained after L-proline and NCD-2 co-culture, of which 602 genes were up-regulated and 469 genes were down-regulated. GO analysis showed that 49, 14 and 30 functional items were significantly enriched in biological process, cell component and molecular function, respectively. KEGG pathways were mainly enriched in compound metabolism, flagellum assembly, bacterial motility or chemotaxis. Proteomic analysis showed that a total of 211 differentially expressed proteins (DEPs) were detected compared to the control, of which 118 proteins were up-regulated and 93 proteins were down-regulated. GO analysis showed that 13 and 8 functional items were significantly enriched in biological process and molecular function, respectively. KEGG pathways were mainly enriched in amino acid metabolism, carbohydrate metabolism, flagellum assembly and ABC transporter. Further transcriptional-proteomics analysis revealed that 112 DEGs (or DEPs), including 38 down-regulated genes (or proteins) and 74 up-regulated genes (or proteins), were detected. GO functional items were significantly enriched in nine aspects, including nutrient reservoir activity, catalytic activity, cell membrane, localization, cellular lipid metabolic process, oxidation-reduction process, sigma factor activity, transport activity and spore formation. KEGG pathways were mainly enriched in energy metabolism, ABC transporter, antibiotic biosynthesis, flagellum assembly, motility or chemotaxis and two-component system. Twenty-six DEGs were verified by RT-qPCR. The results showed that there were some differences in the expression level, but the expression trend was basically consistent with that of RNA-seq and iTRAQ.【Conclusion】The interaction between L-proline in cotton root exudates and B. subtilis NCD-2 is a complex biological process, which depends on multiple genes in different metabolic pathway networks. It is cleared that DEGs (or DEPs) of the two-component system, antibiotic biosynthesis, energy metabolism, motility or chemotaxis, flagellum assembly and ABC transporter pathway may play an important role in the interaction between cotton root exudates and B. subtilis.

Key words: L-proline, Bacillus subtilis, transcriptome, proteome, interaction relationship

Table 1

Primers and their base sequences"

基因 Gene 序列Sequence (5′ to 3′) 基因 Gene 序列Sequence (5′ to 3′)
fliF F ACCGAAAGCGGGAACTAC opuCC F GCAAGGAAGCGGAGAAAG
R CATCAGGCGGCTCTACCA R AGCCGTAGGAATCAAACCA
gInQ F TATCGGGATGGTGTTTCA gcvPB F TTATTTCCCGCTTAATGTTG
R GTCAGCCTTGTCTGGGAT R TCTTCCGCCTCGTATCTG
cheY F GGAGCACAAGCGGTAGAG putC F AATCGTTTCAATCAACCCAG
R CTGAATGGCATCAATAAC R TATCGGCATCCGCCTCGT
fliY F CAGACCGTATTCCTGATG rocA F TAGTTGAGCATCCGAAGAC
R CACCGTTTCTTCTTCCTC R CAATTACCCGTTTGAGCC
opuCA F CCAGCAGAACATCTCACTC yodQ F GGCAATACAGCCCTTCTT
R GCGGATAACGGTCTAAATAC R GCCGCACTCTTCATCTAC
znuA F GGGCTTTCACCTGACCAA ald F CCTCTTCTGACGCCAATG
R CGAGCGTATCTGCGACCT R CAACGCCTCCTCCGATAA
gapB F AAGAGGTTGTGGCTGGTG yerA F GAGAAGGCTGGAACTGGG
R TTGCTTCGACGACTATGT R ATTGTAGGCGTCGATTGC
mmgD F AATGGAAACGCTGGAACG asnO F TGTCGGATGTGCCTGTTT
R TGTTTGCGGAAGGAGACC R CATTTGTGGTGCGTTGTG
acoC F TGGACCAGGCGGACGAAT yisZ F AGGATCGGGACATGGTTA
R TCGGGCAGCGATGACCTT R ATGAAATCGGGTGAAAGC
thrD F ACTGATCGCCGCTTACTT ggt F ACACTGTCCAGGATTTCG
R ACCGCTCCGTGAGAATGT R GGAGGAGGAGTAGTAGCG
yjmD F CAGCGGAGGTGAAGAAGC yoaD F CCCGAACTTTCATTTGTC
R GAGGGTAGCGAGCGGATT R CTCCATCCTTCAGCCACT
epsA F TCGAATCTCAGTGACATCCA epsC F AATCCAGAAGAGGCGGTCAA
R AGATAGGTGCAATTCCGC R GCCGAAGCGAACAGCAAC
ssuB F ATTATCAATCGCACCAGG scoB F TTGTCGCAAATGAGATACCC
R CAACAGTCAGCCAAGGAA R CGTCTTCCGTTCCTTCCA
gyrB F GAAGCACGGACAATCACC
R TCCAAAGCACTCTTACGG

Table 2

Sequencing data quality statistics"

处理
Treatment
原始序列
Raw reads
过滤序列
Clean reads
过滤序列大小
Clean reads bases (G)
Q20 比例Q20 percentage (%) Q30比例Q30 percentage (%) G和C占总碱基数量百分比
GC content (%)
CK 11104298±1620312 10870077±1617999 1.63±0.24 97.46±0.11 92.90±0.32 41.81±0.40
T 8978376±1390913 8783987±1431917 1.32±0.22 97.99±0.11 93.79±0.27 43.30±0.05

Table 3

Statistics on the number and proportion of genes in different expression levels"

项目
Item
处理
Treatment
FPKM值 FPKM value
0-1 1-3 3-15 15-60 >60
基因数量
Number of genes
CK 616.33±7.64 130.33±10.41 493.67±31.13 984.67±33.01 2305.00±54.44
T 690.00±22.27 165.67±4.73 569.33±18.58 1073.67±36.23 2031.33±74.22
基因表达比例
Gene expression ratio (%)
CK 13.60±0.17 2.87±0.23 10.90±0.69 21.74±0.73 50.88±1.20
T 15.23±0.49 3.66±0.10 12.57±0.41 23.70±0.80 44.84±1.64

Fig. 1

Overall distribution of DEGs"

Fig. 2

GO analysis of DEGs"

Table 4

KEGG pathway analysis"

KEGG代谢途径
KEGG pathway
差异基因数目
Number of DEGs
所有基因数目
Number of all genes
差异表达基因比例
DEGs ratio (%)
P
P-value
表达调控
Regulated
不同环境的微生物代谢
Microbial metabolism in diverse environments
40 169 23.67 0.0076 Up
链霉素生物合成 Streptomycin biosynthesis 6 9 66.67 0.0088 Up
碳代谢Carbon metabolism 25 94 26.60 0.0103 Up
硫代谢Sulfur metabolism 8 17 47.06 0.0118 Up
乙醛酸和二羧酸代谢
Glyoxylate and dicarboxylate metabolism
9 25 36.00 0.0276 Up
鞭毛组装 Flagellar assembly 26 33 78.79 0 Down
细菌趋化性 Bacterial chemotaxis 13 24 54.17 0 Down
核糖体 Ribosome 18 88 20.45 0.0248 Down
萜类化合物生物合成 Terpenoid backbone biosynthesis 5 14 35.71 0.0413 Down
错配修复Mismatch repair 6 20 30.00 0.0475 Down

Fig. 3

Cluster analysis of DEPs"

Fig. 4

GO function enrichment of DEPs"

Table 5

KEGG pathways analysis of DEPs"

KEGG代谢途径
KEGG pathway
注释代谢途径的差异表达蛋白数量
Number of DEPs with pathway annotation
注释代谢途径的蛋白数量
Number of proteins with pathway annotation
差异蛋白比例
DEPs ratio
(%)
P
P-value
上调数量Up-regulated
number
下调数量Down-regulated
number
酮体的合成与降解
Synthesis and degradation of ketone bodies
4 5 80.00 0.0004 4 0
乙醛酸和二羧酸代谢
Glyoxylate and dicarboxylate metabolism
9 29 31.03 0.0009 7 2
牛磺酸和亚牛磺酸代谢
Taurine and hypotaurine metabolism
3 7 42.86 0.0224 2 1
丙氨酸、天冬氨酸和谷氨酸代谢
Alanine, aspartate and glutamate metabolism
7 31 22.58 0.0226 4 3
鞭毛组装Flagellar assembly 2 3 66.67 0.0255 0 2
戊糖和葡萄糖醛酸的相互转化
Pentose and glucuronate interconversions
5 19 26.32 0.0284 4 1
精氨酸和脯氨酸代谢
Arginine and proline metabolism
5 19 26.32 0.0284 3 2
丁酸代谢Butanoate metabolism 5 19 26.32 0.0284 5 0
不同环境的微生物代谢
Microbial metabolism in diverse environments
22 151 14.57 0.0335 13 9
ABC转运蛋白ABC transporter 13 79 16.46 0.0486 7 6

Fig. 5

Venn diagram of expression regulation of transcriptome and proteome all_tran represents all the genes identified by transcriptome, diff_tran represents the differentially expressed genes identified by transcriptome, all_prot represents all the proteins identified by proteome, diff_prot represents the differential expressed proteins identified by proteome"

Fig. 6

RT-qPCR validation of DEGs 1-13 are genes related to energy metabolism (amino acids, sugars, etc.), representing putC, rocA, ald, gapB, yerA, mmgD, asnO, acoC, yisZ, thrD, ggt, yjmD and yoaD, respectively. 14-19 are genes related to ABC transporters, representing scoB, glnQ, opuCC, opuCA, znuA and ssuB, respectively. 20-21 are genes related to flagellar assembly, representing fliF and fliY, respectively. 22-23 are genes related to biosynthesis of antibiotics, representing gcvPB and yodQ, respectively. 24-25 are genes related to biofilm formation, representing epsA and epsC, respectively. 26 represents chemotaxis related gene cheY"

[1] 陈志谊. 芽孢杆菌类生物杀菌剂的研发与应用. 中国生物防治学报, 2015, 31(5):723-732.
CHEN Z Y. Research and application of bio-fungicide with Bacillus spp. Chinese Journal of Biological Control, 2015, 31(5):723-732. (in Chinese)
[2] WANG L Y, XIE Y S, CUI Y Y, XU J J, HE W, CHEN H G, GUO J H. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum. Microbiological Research, 2015, 177:34-42.
doi: 10.1016/j.micres.2015.05.005
[3] WU L M, WU H J, CHEN L N, XIE S S, ZANG H Y, BORRISS R, GAO X W. Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Applied and Environmental Microbiology, 2014, 80(24):7512-7520.
doi: 10.1128/AEM.02605-14
[4] LI Y, HAN L R, ZHANG Y Y, FU X C, CHEN X Y, ZHANG L X, MEI R H, WANG Q. Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. The Plant Pathology Journal, 2013, 29(2):168-173.
doi: 10.5423/PPJ.SI.08.2012.0125
[5] BARRET M, MORRISSEY J P, ÓGARA F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, 2011, 47:729-743.
doi: 10.1007/s00374-011-0605-x
[6] BAIS H P, FALL R, VIVANCO J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 2004, 134(1):307-319.
doi: 10.1104/pp.103.028712
[7] MOLINA M A, RAMOS J L, ESPINOSA-URGEL M. Plant-associated biofilms. Reviews in Environmental Science and Biotechnology, 2003, 2:99-108.
doi: 10.1023/B:RESB.0000040458.35960.25
[8] YARYURA P M, LEON M, CORREA O S, KERBER N L, PUCHEU N L, GARCIA A F. Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Current Microbiology, 2008, 56(6):625-632.
doi: 10.1007/s00284-008-9137-5
[9] 董丽红, 郭庆港, 张晓云, 李社增, 鹿秀云, 马平. 棉花根系分泌物对枯草芽胞杆菌NCD-2生物膜形成和根际定殖的影响. 植物病理学报, 2015, 45(5):541-547.
DONG L H, GUO Q G, ZHANG X Y, LI S Z, LU X Y, MA P. Effects of cotton root exudates on the biofilm formation and root colonization of Bacillus subtilis strain NCD-2. Acta Phytopathologica Sinica, 2015, 45(5):541-547. (in Chinese)
[10] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, VER LOREN VAN THEMAAT E, SCHULZE-LEFERT P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64:807-838.
doi: 10.1146/arplant.2013.64.issue-1
[11] LIU Y P, ZHANG N, QIU M H, FENG H C, VIVANCO J M, SHEN Q R, ZHANG R F. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiology Letters, 2014, 353(1):49-56.
doi: 10.1111/fml.2014.353.issue-1
[12] 郭庆港, 吴园园, 李社增, 鹿秀云, 王洪港, 马平. ywbB基因对枯草芽胞杆菌NCD-2菌株生物膜形成和根际定殖能力的影响. 植物保护学报, 2013, 40(1):45-50.
GUO Q G, WU Y Y, LI S Z, LU X Y, WANG H G, MA P. Functional analysis of ywbB gene to the biofilm formation and root colonization in Bacillus subtilis strain NCD-2. Journal of Plant Protection, 2013, 40(1):45-50. (in Chinese)
[13] GU Y, HOU Y G, HUANG D P, HAO Z X, WANG X F, WEI Z, JOUSSET A, TAN S Y, XU D B, SHEN Q R, XU Y C, FRIMAN V P. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415(1/2):269-281.
doi: 10.1007/s11104-016-3159-8
[14] 董丽红, 郭庆港, 张晓云, 赵卫松, 王培培, 苏振贺, 鹿秀云, 李社增, 马平. 棉花根系分泌物对枯草芽胞杆菌NCD-2菌株趋化性的影响. 植物病理学报, 2019, 49(3):399-407.
DONG L H, GUO Q G, ZHANG X Y, ZHAO W S, WANG P P, SU Z H, LU X Y, LI S Z, MA P. Effect of cotton root exudates on the chemotaxis of Bacillus subtilis strain NCD-2. Acta Phytopathologica Sinica, 2019, 49(3):399-407. (in Chinese)
[15] 李社增, 鹿秀云, 马平, 高胜国, 刘杏忠, 刘干. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定. 植物病理学报, 2005, 35(5):451-455.
LI S Z, LU X Y, MA P, GAO S G, LIU X Z, LIU G. Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton verticillium wilt in field trials. Acta Phytopathologica Sinica, 2005, 35(5):451-455. (in Chinese)
[16] 赵卫松, 郭庆港, 董丽红, 王培培, 张晓云, 苏振贺, 鹿秀云, 李社增, 马平. L-脯氨酸对枯草芽胞杆菌NCD-2菌株生物膜形成的影响. 植物病理学报, 2021, 51(1):115-122.
ZHAO W S, GUO Q G, DONG L H, WANG P P, ZHANG X Y, SU Z H, LU X Y, LI S Z, MA P. Effect of L-proline on biofilm formation of Bacillus subtilis NCD-2. Acta Phytopathologica Sinica, 2021, 51(1):115-122. (in Chinese)
[17] WU Q, NI M, WANG G S, LIU Q Q, YU M X, TANG J. Omics for understanding the tolerant mechanism of Trichoderma asperellum TJ01 to organophosphorus pesticide dichlorvos. BMC Genomics, 2018, 19(1):596.
doi: 10.1186/s12864-018-4960-y
[18] BRANDA S S, CHU F, KEARNS D B, LOSICK R, KOLTER R. A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 2006, 59(4):1229-1238.
doi: 10.1111/mmi.2006.59.issue-4
[19] GUTTENPLAN S B, BLAIR K M, KEARNS D B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genetics, 2010, 6(12):e1001243.
doi: 10.1371/journal.pgen.1001243
[20] 李任峰, 何启盖, 周锐, 陈焕春. 细菌鞭毛研究概况及进展. 微生物学通报, 2005, 32(6):124-127.
LI R F, HE Q G, ZHOU R, CHEN H C. The research advances on the bacterial flagella. Microbiology China, 2005, 32(6):124-127. (in Chinese)
[21] SCHARF B E, HYNES M F, ALEXANDRE G M. Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Molecular Biology, 2016, 90(6):549-559.
doi: 10.1007/s11103-016-0432-4
[22] 周华飞, 杨红福, 姚克兵, 庄义庆, 束兆林, 陈志谊. FliZ调控枯草芽孢杆菌Bs916生物膜形成及其对水稻纹枯病的防治效果. 中国农业科学, 2020, 53(1):55-64.
ZHOU H F, YANG H F, YAO K B, ZHUANG Y Q, SHU Z L, CHEN Z Y. FliZ regulated the biofilm formation of Bacillus subtilis Bs916 and its biocontrol efficacy on rice sheath blight. Scientia Agricultura Sinica, 2020, 53(1):55-64. (in Chinese)
[23] YONEZAWA H, OSAKI T, KURATA S, FUKUDA M, KAWAKAMI H, OCHIAI K, HANAWA T, KAMIYA S. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiology, 2009, 9:197.
doi: 10.1186/1471-2180-9-197
[24] WILKSCH J J, YANG J, CLEMENTS A, GABBE J L, SHORT K R, CAO H W, CAVALIERE R, JAMES C E, WHITCHURCH C B, SCHEMBRI M A, et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathogens, 2011, 7(8):e1002204.
doi: 10.1371/journal.ppat.1002204
[25] LINARES J F, GUSTAFSSON I, BAQUERO F, MARTINEZ J L. Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19484-19489.
[26] HOFFMAN L R, D’ARGENIO D A, MACCOSS M J, ZHANG Z Y, JONES R A, MILLER S I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, 436(7054):1171-1175.
doi: 10.1038/nature03912
[27] LÓPEZ D, FISCHBACH M A, CHU F, LOSICK R, KOLTER R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1):280-285.
[28] XU Z H, SHAO J H, LI B, YAN X, SHEN Q R, ZHANG R F. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Applied and Environmental Microbiology, 2013, 79(3):808-815.
doi: 10.1128/AEM.02645-12
[29] 徐志辉, 张慧慧, 张钰婷, 冯元韬, 张馨玉, 仇美华. Bacillomycin D突变体在生物膜形成中的转录组分析. 南京农业大学学报, 2017, 40(5):850-858.
XU Z H, ZHANG H H, ZHANG Y T, FENG Y T, ZHANG X Y, QIU M H. Transcriptome analysis of antibiotic bacillomycin D-deficient mutant on biofilm formation. Journal of Nanjing Agricultural University, 2017, 40(5):850-858. (in Chinese)
[30] 董丽红. 脂肽在枯草芽胞杆菌NCD-2根际定殖中的作用及PhoR/PhoP对其调控机理[D]. 保定: 河北农业大学, 2019.
DONG L H. The role of lipopeptides in rhizosphere colonization of Bacillus subtilis NCD-2 and the regulation mechanism of PhoR/PhoP on lipopeptides production[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese)
[31] STOCK A M, ROBINSON V L, GOUDREAU P N. Two-component signal transduction. Annual Review of Biochemistry, 2000, 69:183-215.
doi: 10.1146/biochem.2000.69.issue-1
[32] HOCH J A. Two-component and phosphorelay signal transduction. Current Opinion in Microbiology, 2000, 3(2):165-170.
doi: 10.1016/S1369-5274(00)00070-9
[33] CAPRA E J, LAUB M T. Evolution of two-component signal transduction systems. Annual Review of Microbiology, 2012, 66:325-347.
doi: 10.1146/micro.2012.66.issue-1
[34] FABRET C, FEHER V A, HOCH J A. Two-component signal transduction in Bacillus subtilis: How one organism sees its world. Journal of Bacteriology, 1999, 181(7):1975-1983.
doi: 10.1128/JB.181.7.1975-1983.1999
[35] SULLIVAN E R. Molecular genetics of biosurfactant production. Current Opinion in Biotechnology, 1998, 9(3):263-269.
doi: 10.1016/S0958-1669(98)80057-8
[36] MURRAY E J, KILEY T B, STANLEY-WALL N R. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology, 2009, 155:1-8.
doi: 10.1099/mic.0.023903-0
[37] GUO Q G, DONG L H, WANG P P, SU Z H, LIU X M, ZHAO W S, ZHANG X Y, LI S Z, LU X Y, MA P. Using a phenotype microarray and transcriptome analysis to elucidate multi-drug resistance regulated by PhoR/PhoP two-component system in Bacillus subtilis strain NCD-2. Microbiological Research, 2020, 239:126557.
doi: 10.1016/j.micres.2020.126557
[38] PISITHKUL T, SCHROEDER J W, TRUJILLO E A, YEESIN P, STEVENSON D M, CHAIAMARIT T, COON J J, WANG J D, AMADOR-NOGUEZ D. Metabolic remodeling during biofilm development of Bacillus subtilis. mBio, 2019, 10(3):e00623-19.
[39] KIMURA T, KOBAYASHI K. Role of glutamate synthase in biofilm formation by Bacillus subtilis. Journal of Bacteriology, 2020, 202(14):e00120-20.
[40] RIZZI A, ROY S, BELLENGER J P, BEAUREGARD P B. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Applied and Environmental Microbiology, 2019, 85(3):e02439-18.
[41] OLLINGER J, SONG K B, ANTELMANN H, HECKER M, HELMANN J D. Role of the Fur regulon in iron transport in Bacillus subtilis. Journal of Bacteriology, 2006, 188(10):3664-3673.
doi: 10.1128/JB.188.10.3664-3673.2006
[42] LIN M H, SHU J C, HUANG H Y, CHENG Y C. Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS ONE, 2012, 7(3):e34388.
doi: 10.1371/journal.pone.0034388
[43] BANIN E, VASIL M L, GREENBERG E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31):11076-11081.
[44] PATRIQUIN G M, BANIN E, GILMOUR C, TUCHMAN R, GREENBERG E P, POOLE K. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. Journal of Biotechnology, 2008, 190(2):662-671.
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] WANG RongHua,MENG LiFeng,FENG Mao,FANG Yu,WEI QiaoHong,MA BeiBei,ZHONG WeiLai,LI JianKe. Proteome Analysis of the Salivary Gland of Nurse Bee from High Royal Jelly Producing Bees and Italian Bees [J]. Scientia Agricultura Sinica, 2022, 55(13): 2667-2684.
[6] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[7] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[8] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[9] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[10] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[11] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[12] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[13] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
[14] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[15] CaiLing TENG,Xi ZHONG,HaoDi WU,Yan HU,ChangYong ZHOU,XueFeng WANG. Biologic and Transcriptomic Analysis of Citrus hystrix Responses to ‘Candidatus Liberibacter asiaticus’ at Different Infection Stages [J]. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!