Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 3976-3986.doi: 10.3864/j.issn.0578-1752.2019.22.004

• MOLECULAR GENETICS • Previous Articles     Next Articles

Response of Receptor-Like Protein Kinase Gene SiRLK35 of Foxtail Millet to Salt in Heterologous Transgenic Rice

LI XiaoBo1,2,LI Zhen2,DAI ShaoJun3,PAN JiaoWen2,WANG QingGuo2,GUAN YanAn4,5,DING GuoHua1(),LIU Wei2,5()   

  1. 1 School of Life Sciences and Technology, Harbin Normal University, Harbin 150025
    2 Biotechnology Research Center, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100
    3 College of Life and Environmental Sciences, Shanghai Normal University/Development Center of Plant Germplasm Resources, Shanghai 200234
    4 Crop Research Institute, Shandong Academy of Agricultural Sciences/Shandong Engineering Laboratory for Featured Crops, Jinan 250100
    5 College of Life Sciences, Shandong Normal University, Jinan 250014
  • Received:2019-07-02 Accepted:2019-09-19 Online:2019-11-16 Published:2019-11-16
  • Contact: GuoHua DING,Wei LIU E-mail:hsddgh@hrbnu.edu.cn;wheiliu@163.com

Abstract:

【Objective】Salt stress affects the crop yield and quality, while the crop salt tolerance is regulated by specific genes. Using heterogeneous over-expressed rice lines (OE-1, OE-2, and OE-3) of foxtail millet receptor-like protein kinase gene SiRLK35, the possible mechanisms of SiRLK35 under salinity will be dissected on phenotypic, physiological and molecular levels. 【Method】 The expressions of SiRLK35 in OE-1, OE-2, and OE-3 were analyzed by qRT-PCR. The phenotypes of three-leaf stage seedlings treated with 0, 150 and 200 mmol·L -1 NaCl were observed, and the lengths of seedlings and roots were measured after treated with 150 mmol·L -1 NaCl for 3 days. The dry weights, death rate and dead leaf rate of four-leaf stage seedlings that treated with 150 mmol·L -1 NaCl for 14 days were also measured. OE-1with the highest SiRLK35 expression was further used for DAB and NBT dyeing analysis. The activities of partial antioxidases, and expression patterns of marker genes were detected. 【Result】 There was the highest SiRLK35 expression level in OE-1. The growth of control and OE seedlings were all inhibited under 150 mmol·L -1 NaCl. The decreased levels of dry weight, the death rate and dead leaf rate of OE rice were all lower than those of the control, together with the less accumulation of O 2- and H2O2, and the higher activities of antioxidases under salinity. Partial of salt responsive genes were up-regulated in SiRLK35 OE lines, especially the OsLEA3 was induced about 1.9 times higher after treated with NaCl for 24 h. 【Conclusion】 SiRLK35 OE rice lines have tolerance under salinity, and the gene SiRLK35 of foxtail millet could participate in salt response by regulation the activities of antioxidases and related signal pathways.

Key words: foxtail millet (Setaria italica L.), SiRLK35, salt tolerance, antioxidase, salt responsive genes

Table 1

Genes information and specific primers"

基因名称Gene name 登录号Accession number 正向引物Forward primer (5'-3') 反向引物Reverse primer (5'-3')
OsACTIN MS971743.1 TCGGCTACAACCCTGACAA CAAACTTGACGGCAATGTGG
SiRLK35 XM_004956247.2 AAATAGTTGGGTAGACGAGG TACGCAGATGATTGACAGAT
OsP5CS D49714.1 CTATTCCTCGTAATGTTGG CTTAGTTGACGCCTTGAT
OsLEA3 Z68090.1 ACAAGGACACCTCTGCCACC AATAGACCCAAAGGGAAATCA
OsNHX1 AB021878.1 GAGAGGAGCTGTGTCGATTG CTCTCGAGGTCAGAACCTTG
OsHKT1 KU501218.1 ACCATAAGCACAACCCAG AATCCTAAGAACCACCTCA
OsNAC6 AB028185.1 GATCATGCACGAGTACCGC GCACCCAATCATCCAACCT
OsDREB2A JQ341059.1 GCTGAGATCCGTGAACCA ACCATACATTGCCCTTGC

Fig. 1

PCR verification of SiRLK35 transgenic rice M: Trans2K Plus DNA Marker; 1: Zhonghua 11; 2-3: OE-1; 4-5: OE-2; 6-7: OE-3"

Fig. 2

The relative expression levels of SiRLK35 in control and transgenic rice lines ***: Indicates that compared with Zhonghua11, the relative expression levels of SiRLK35 in OE rice lines were significantly different at P<0.001 (n = 3). The same as below"

Fig. 3

Salt-resistance detection of control and SiRLK35 transgenic rice lines A: The phenotypes of control and transgenics treated with 0 , 150 and 200 mmol·L-1 NaCl for 2 days, Bar=5 cm; B:Plant height of control and transgenics treated with 0 and 150 mmol·L-1 NaCl for 3days; C: Root length of control and transgenics treated with 0 and 150 mmol·L-1 NaCl for 3days; D: Relative reduction of dry weight in the above-ground part of control and transgenics treated with 0 and 150 mmol·L-1 NaCl for 14 days; E: Relative reduction of dry weight in underground parts of control and transgenics treated with 0 and 150 mmol·L-1 NaCl for 14 days; F: Death rate of control and transgenics treated with 150 mmol·L-1 NaCl for 14 days; G: Dead leaf rate of control and transgenics treated with 150 mmol·L-1 NaCl for 14 days;* significantly different at P< 0.05 level (n = 3); ** significantly different at P< 0.01 level (n = 3). The same as below"

Fig. 4

Detection of reactive oxygen and antioxidant enzyme activities of control and OE-1 after salt treatment A: DAB and NBT staining analysis of control and OE-1 after 3 day of NaCl treatment, Bar=1cm; B: SOD activity analysis of control and OE-1 after salt treatment; C: POD activity of control and OE-1 after salt treatment; the different letters above the curve indicate significant difference (P<0.05) of different treatments(n=3)"

Fig. 5

The relative expressions of salt responsive genes in control and OE-1 under salinity"

[1] YANG Y Q, GUO Y . Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 2018,60(9):796-804.
[2] ROZEMA J, FLOWERS T . Crops for a salinized world. Science, 2008,322(5907):1478-1480.
[3] 张建锋, 张旭东, 周金星, 刘国华, 李冬雪 . 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2006,12(6):28-30.
ZHANG J F, ZHANG X D, ZHOU J X, LIU G H, LI D X . World resources of saline soil and main amelioration measures. Research of Soil and Water Conservation, 2006,12(6):28-30. (in Chinese)
[4] LIU Z X, ZHANG H X, YANG X Y . Effects of soil salinity on growth, ion relations, and compatible solute accumulation of two sumac species:Rhus glabra and Rhus trilobata. Communications in Soil Science and Plant Analysis, 2013,44(21):3187-3204.
[5] 贾冠清, 刁现民 . 谷子(Setaria italica ( L.) P. Beauv. )作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017,29(3):292-301.
JIA G Q, DIAO X M . Current status and perspectives of researches on foxtail millet ( Setaria italica( L.) P. Beauv.): A potential model of plant functional genomics studies. Chinese Bulletin of Life Sciences, 2017,29(3):292-301. (in Chinese)
[6] YE Y Y, DING Y F, JIANG Q, WANG F J, SUN J W, ZHU C . The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Report, 2017,36:235-242.
[7] LIM C W, YANG S H, SHIN K H, LEE S C, KIM S H . The AtLRK10L1.2, Arabidopsis, ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Report, 2015,34(3):447-455.
[8] VAID N, PANDEY P, SRIVASTAVA V K, TUTEJA N . Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Molecular Biology, 2015,88(1/2):1-14.
[9] LI C H, SUN Y . The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. The Plant Cell, 2014,26(6):2538-2553.
[10] ZHANG P Y, ZHANG Z H, WANG J, CONG B L, CHEN K S, LIU S H . A novel receptor-like kinase (PnRLK-1) from the Antarctic Moss Pohlia nutans enhances salt and oxidative stress tolerance. Plant Molecular Biology Reporter, 2014,33:1156-1170.
[11] SERRA T S, FIGUEIREDO D D, CORDEIRO A M, ALMEIDA D M, LOURENC T, ABREU I A, SEBASTIAN A, FERNANDES L, CONTRERAS M B, OLIVEIRA M M, SAIBO N J M . OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. . Plant Molecular Biology, 2013,82(4/5):439-455.
[12] 冯露, 钟理, 陈丹丹, 马有志, 徐兆师, 李连城, 周永斌, 陈明, 张小红 . 过表达谷子液泡 H+-ATPase E亚基基因在拟南芥中的耐盐性 . 作物学报, 2015,41(11):1682-1691.
FENG L, ZHONG L, CHEN D D, MA Y Z, XU Z S, LI L C, ZHOU Y B, CHEN M, ZHANG X H . Overexpression of vacuole H+-ATPase E subunit gene SiVHA-E from Foxtail Millet enhances salt resistance in transgenic Arabidopsis thaliana. Acta Agronomica Sinica, 2015,41(11):1682-1691. (in Chinese)
[13] 黄锁, 胡利芹, 徐东北, 李微微, 徐兆师, 李连城, 周永斌, 刁现民, 贾冠清, 马有志, 陈明 . 谷子转录因子 SiNF-YA5 通过ABA非依赖途径提高转基因拟南芥耐盐性. 作物学报, 2016,42(12):1787-1797.
HUANG S, HU L Q, XU D B, LI W W, XU Z S, LI L C, ZHOU Y B, DIAO X M, JIA G Q, MA Y Z, CHEN M . Transcription factor SiNF-YA5 from Foxtail Millet (Setaria italica) conferred tolerance to high-salt stress through ABA-independent pathway in transgenic Arabidopsis. Acta Agronomica Sinica, 2016,42(12):1787-1797. (in Chinese)
[14] 秦玉海, 张小红, 冯露, 李微微, 徐兆师, 李连城, 周永斌, 马有志, 刁现民, 贾冠清, 陈明, 闵东红 . 谷子转录因子基因 SibZIP42在拟南芥中对高盐和ABA的响应. 中国农业科学, 2016,49(17):3276-3286.
QIN Y H, ZHANG X H, FENG L, LI W W, XU Z S, LI L C, ZHOU Y B, MA Y Z, DIAO X M, JIA G Q, CHEN M, MIN D H . Response of Millet transcription factor gene SibZIP42 to high salt and ABA treatment in transgenic Arabidopsis. Scientia Agricultura Sinica, 2016,49(17):3276-3286. (in Chinese)
[15] 李建锐 . 谷子SiASR4基因参与植物响应干旱和盐胁迫的功能研究[D]. 北京: 中国农业大学, 2018.
LI J R . Function analysis of the foxtail millet (Setaria italica) gene, SiASR4, in response to drought and salt stresses of plants[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[16] 王一帆, 李臻, 潘教文, 李颖秀, 王庆国, 管延安, 刘炜 . 谷子SiRLK35基因克隆及功能分析. 遗传, 2017,39(5):413-422.
WANG Y F, LI Z, PAN J W, LI Y X, WANG Q G, GUAN Y A, LIU W . Cloning and functional analysis of the SiRLK35 gene in Setaria italic L. Hereditas (Beijing), 2017,39(5):413-422. (in Chinese)
[17] 王一帆, 李臻, 潘教文, 王庆国, 刘炜 . 谷子类受体蛋白激酶基因SiRLK35的克隆及原核表达. 山东农业科学, 2016,48(9) : 1-5.
WANG Y F, LI Z, PAN J W, WANG Q G, LIU W . Cloning of receptor-like protein kinase gene SiRLK35 from Foxtail Millet and its prokaryotic expression. Shandong Agricultural Sciences, 2016,48(9):1-5. (in Chinese)
[18] KUMAR D, YUSUF M A, SINGH P, SARDAR M, SARIN N B . Modulation of antioxidant machinery in alpha-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma, 2013,250(5):1079-1089.
[19] YU J, CHEN S, ZHAO Q, WANG T, YANG C, DIAZ C, SUN G, DAI S . Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuifora. Journal of Proteome Research, 2011,10:3852-3870.
[20] 岩学斌, 袁金海 . 盐胁迫对植物生长的影响. 安徽农业科学, 2019,47(4):30-33.
YAN X B, YUAN J H . Effects of salt stress on plant growth. Journal of Anhui Agricultural Sciences, 2019,47(4):30-33. (in Chinese)
[21] 李小波, 潘教文, 丁国华, 李臻, 王庆国, 刘炜 . 盐胁迫下谷子根部细胞内pH值测定. 山东农业科学, 2019,51(2):40-44.
LI X B, PAN J W, DING G H, LI Z, WANG Q G, LIU W . Determination of pH value in root cells of Foxtail Millet under salt stress. Shandong Agricultural Sciences, 2019,51(2):40-44. (in Chinese)
[22] 封功能, 张雪梅, 仇明, 骆爱兰 . 水稻数量性状研究进展. 安徽农业科学, 2004,32(6):1231-1234.
FENG G N, ZHANG X M, QIU M, LUO A L . Advance in rice quantitative trait loci. Journal of Anhui Agricultural Sciences, 2004,32(6):1231-1234. (in Chinese)
[23] 郑崇珂, 窦玉慧, 解丽霞, 谢先芝 . 水稻耐盐相关基因的研究进展. 分子植物育种, 2017,15(11):4411-4422.
ZHENG C K, DOU Y H, XIE L X, XIE X Z . Research progress on the genes related to salt tolerance in rice. Molecular Plant Breeding, 2017,15(11):4411-4422. (in Chinese)
[24] 朱巍巍, 马天意, 张梅娟, 沙伟 . 类受体蛋白激酶在植物中的研究进展. 基因组学与应用生物学, 2018,37(1):451-458.
ZHU W W, MA T Y, ZHANG M J, SHA W . Research progress of receptor-like protein kinases in plants. Genomics and Applied Biology, 2018,37(1):451-458. (in Chinese)
[25] KUIPER D, SCHUIT J, KUIPER P J C . Actual cytokinin concentration in plant tissue as an indicator for salt resistance in cereals. Plant Soil, 1990,123(2):243-250.
[26] 李金亭, 赵萍萍, 邱宗波 . 外源H2O2对盐胁迫下小麦幼苗生理指标的影响. 西北植物学报, 2012,32(9):1796-1801.
LI J T, ZHAO P P, QIU Z B . Effects of exogenous H2O2 on physiological indexes of wheat seedlings under salt stress. Acta Botanica Boreali-occidentalia Sinica, 2012,32(9):1796-1801. (in Chinese)
[27] MANIMARAN P, VENKATA R S, MAZAHAR M, RAGHURAMI M, POLI Y, MOHANRAJ S S, BALACHANDRAN S M, KIRTI P B . Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Scientific Reports, 2017,24(4):1-16.
[28] ANOOP N, GUPTA K . Transgenic indica rice CV IR-50 over expressing vigna aconitifolia-pyrroline-5-carboxylatelate synthetase cDNA shows tolerance to high salt. Journal of Plant Biochemistry and Biotechnology, 2003,12(2):109-116.
[29] FUKUDA A, NAKAMURA A, HARA N, TOKI S, TANAKA Y . Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes . Planta, 2011,233(1):175-188.
[30] LIU S P, ZHENG L Q, XUE Y H, ZHANG Q, WANG L, SHOU H X . Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 2010,53(6):444-452.
[31] NAKASHIMA K, TRAN L S, VAN N D, FUJITA M, MARUYANA K, TODAKA D, HAYASHI N, SHINOZAKI K, YAM S K . Functional analysis of a NAC type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007,51(4):617-630.
[32] CUI M, ZHANG W J, ZHANG Q, XU Z Q, ZHU Z G, DUAN F P, WU R . Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry, 2011,49(12):1384-1391.
[33] MOONS A, BAUW G, PRINSEN E, VAN M M, VAN D S D . Molecular and physiology responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiology, 1995,107(1):177-186.
[34] DUAN J L, CAI W M . OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance, PLoS ONE, 2012,7(9):e45117.
[35] HU T Z . OsLEA3, a late embryogenesis abundant protein gene from rice, confers tolerance to water deficit and salt stress to transgenic rice. Plant Physiology, 2008,55(4):530-537.
[36] KADER M A, SEIDEL T, GOLLDACK D, LINDBERG S . Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany, 2006,57(15):4257-4268.
[37] NATSUKO I K, NAOKI Y, HIROKI Y, KAORU O, HIROKI U, ALEX C, KEITARO T, HIDEO M, MIHO F K, TOMOKI H . OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. The Plant Journal, 2017,91:657-670.
[38] WANG R, JING W, XIAO L, JIN Y, SHEN L, ZHANG W . The OsHKT1;1 transporter is involved in salt tolerance and regulated by an MYB-Type transcription factor. Plant Physiology, 2015,168(3):1076-1090.
[1] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[2] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[3] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[4] YUAN YuHao, YANG QingHua, DANG Ke, YANG Pu, GAO JinFeng, GAO XiaoLi, WANG PengKe, LU Ping, LIU MinXuan, FENG BaiLi. Salt-Tolerance Evaluation and Physiological Response of Salt Stress of Broomcorn Millet (Panicum miliaceum L.) [J]. Scientia Agricultura Sinica, 2019, 52(22): 4066-4078.
[5] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[6] ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng,ZOU JianQiu. Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 4002-4015.
[7] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[8] ZHANG YuJuan, YOU Jun, LIU AiLi, LI DongHua, YU JingYin, WANG YanYan, ZHOU Rong, GONG HuiHui, ZHANG XiuRong. Screening Method for Salt Tolerance in Sesame (Sesamum indicum L.) and Identification of Candidate Salt-tolerant Genes [J]. Scientia Agricultura Sinica, 2018, 51(12): 2235-2247.
[9] Lei NING, ShuGuang WANG, PengJu JU, XingXuan BAI, LinHao GE, Xin QI, QiYan JIANG, XianJun SUN, Ming CHEN, DaiZhen SUN. Rice Overexpression of Millet SiANT1 Gene Increases Salt Tolerance [J]. Scientia Agricultura Sinica, 2018, 51(10): 1830-1841.
[10] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[11] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[12] ZHANG Rui, DENG WenYa, YANG Liu, WANG YaPing, XIAO FangZhi, HE Jian, LU Kun. Genome-Wide Association Study of Root Length and Hypocotyl Length at Germination Stage Under Saline Conditions in Brassica napus [J]. Scientia Agricultura Sinica, 2017, 50(1): 15-27.
[13] WANG Hui-fei, SUN Yan-xiang, FENG Xue, ZHANG Yi-ming, YANG Jiang-tao, MA Mei-fang, CHEN Guang. Cloning and Expression Analysis of Argininosuccinate Synthetase Gene GhASS1 from Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2016, 49(7): 1242-1253.
[14] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
[15] DAI Hai-Fang, WU Hui, A Man-Gu-Li-?Mai-Mai-Ti-A-Li, WANG Li-Hong, MAI Mai-Ti-?A-Pi-Zi, ZHANG Ju-Song. Analysis of Salt-Tolerance and Determination of Salt-Tolerant Evaluation Indicators in Cotton Seedlings of Different Genotypes [J]. Scientia Agricultura Sinica, 2014, 47(7): 1290-1300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!