Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 864-876.doi: 10.3864/j.issn.0578-1752.2021.04.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology

DU Yu1(),ZHU ZhiWei1(),WANG Jie1,WANG XiuNa3,4,JIANG HaiBin1,FAN YuanChan1,FAN XiaoXue1,CHEN HuaZhi1,LONG Qi1,CAI ZongBing1,XIONG CuiLing1,2,ZHENG YanZhen1,FU ZhongMin1,2,CHEN DaFu1,2(),GUO Rui1,2()   

  1. 1 College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
    2Apitherapy Research Institution, Fujian Agriculture and Forestry University, Fuzhou 350002
    3College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002
    4Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou 350002
  • Received:2020-05-04 Accepted:2020-05-22 Online:2021-02-16 Published:2021-02-16
  • Contact: DaFu CHEN,Rui GUO E-mail:m18505700830@163.com;zzw15235470398@163.com;dfchen826@fafu.edu.cn;ruiguo@fafu.edu.cn

Abstract:

【Objective】Purified mycelia sample (Aam) and spore sample (Aas) were sequenced using third-generation nanopore long-read sequencing technology, followed by construction and annotation of high-quality full-length transcriptome.【Method】Aam and Aas were respectively sequenced using Oxford Nanopore PromethION platform. Guppy software was used to conduct base calling of raw reads. Clean reads were obtained after filtering out short fragments and low-quality raw reads. Full-length transcripts were identified by recognizing primers at both ends of clean reads. Full-length transcripts were aligned to Nr, Swissprot, KOG, eggNOG, Pfam, GO and KEGG databases to gain corresponding annotations. Four approaches such as CPC, CNCI, CPAT, and Pfam were used to predict lncRNAs, and the intersection was deemed to be high-reliability lncRNAs.【Result】In total, 6 321 704 and 6 259 727 raw reads were yielded from nanopore sequencing of Aam and Aas, and after quality control, 5 669 436 and 6 233 159 clean reads were obtained, including 4 497 102 (79.32%) and 4 963 101 (79.62%) full-length clean reads. Additionally, 9 859 and 16 795 non-redundant full-length transcripts were identified, with a N50 of 1 482 and 1 658 bp, an average length of 1 187 and 1 303 bp, and a maximum length of 6 472 and 6 815 bp, respectively. Venn analysis showed that 6 512 non-redundant full-length transcripts were shared by Aam and Aas, while 3 347 and 10 283 ones were specific for Aam and Aas, respectively. Besides, a total of 20 142 full-length transcripts were identified in Aam and Aas, among them 20 809, 11 151, 17 723, 12 164, 11 340 and 9 833 full-length transcripts could be annotated to Nr, KOG, eggNOG, Pfam, GO and KEGG databases, respectively. Most of full-length transcripts were annotated to A. apis, Polytolypa hystricis and Histoplasma capsulatum. Moreover, GO database annotation demonstrated that the above-mentioned full-length transcripts could be annotated to 45 functional terms, involving in cell component-associated terms such as cell part, cell and organelle; molecular function-associated terms such as catalytic activity, binding and transporter activity; and biological process-associated terms such as cellular processes, metabolic processes and single-organism processes. KEGG database annotation indicated that these full-length transcripts could be annotated to 49 pathways, including biosynthesis of antibiotics, ribosome, biosynthesis of amino acid, carbon metabolism, spliceosome and so on. In addition, 648 lncRNAs were identified, including 480 long intergenic RNAs (lincRNAs), 119 anti-sense lncRNAs and 49 sense lncRNAs. 【Conclusion】The first high-quality full-length transcriptome was constructed and annotated in this work, which offers a key basis for exploration of the complexity of A. apis transcriptome, improvement of sequence and functional annotation of reference genome and further study on isoforms’ function of A. apis.

Key words: third-generation high-throughput sequencing technology, nanopore sequencing, full-length transcript, reference transcriptome, honeybee, Ascosphaera apis

Table 1

Summary of raw reads produced from nanopore long-read sequencing"

样品
Sample
原始读段数
Number of raw reads
碱基数
Number of bases
居中长度
N50 (bp)
平均长度
Mean length (bp)
最大长度
Maximum length (bp)
平均质量值
Mean Q score
球囊菌菌丝Aam 6 321 704 6 271 320 854 1 094 992 9 421 Q10
球囊菌孢子Aas 6 259 727 6 553 996 867 1 157 1 047 13 060 Q10

Fig. 1

Length and quality distribution of raw reads generated from nanopore long-read sequencing of A. apis mycelium and spore A:球囊菌菌丝测序产生的原始读段的长度分布Length distribution of raw reads produced from sequencing of Aam;B:球囊菌孢子测序产生的原始读段的长度分布Length distribution of raw reads produced from sequencing of Aas;C:球囊菌菌丝测序产生的原始读段的质量值分布Quality distribution of raw reads produced from sequencing of Aam;D:球囊菌孢子测序产生的原始读段的质量值分布Quality distribution of raw reads produced from sequencing of Aas"

Table 2

Overview of full-length clean reads"

样品
Sample
有效读段数
Number of clean reads
全长有效读段数
Number of full-length clean reads
全长有效读段数的占比
Percentage of full-length clean reads (%)
球囊菌菌丝Aam 5 669 436 4 497 102 79.32
球囊菌孢子Aas 6 233 159 4 963 101 79.62

Fig. 2

Length distribution of full-length clean reads and redundant clean reads-removed full-length transcripts A:球囊菌菌丝测序产生的全长有效读段Full-length clean reads yielded from sequencing of Aam;B:球囊菌孢子测序产生的全长有效读段Full-length clean reads yielded from sequencing of Aas;C:球囊菌菌丝测序产生的全长转录本Full-length transcripts yielded from sequencing of Aam;D:球囊菌孢子测序产生的全长转录本 Full-length transcripts yielded from sequencing of Aas"

Table 3

Overview of full-length transcripts after removing redundant full-length clean reads"

样品
Sample
全长转录本数
Number of full-length transcripts
碱基数
Number of bases
居中长度
N50 (bp)
平均长度
Mean length (bp)
最大长度
Maximum length (bp)
球囊菌菌丝Aam 9 859 11 706 153 1 482 1 187 6 472
球囊菌孢子Aas 16 795 21 899 133 1 658 1 303 6 815

Fig. 3

Venn analysis of full-length transcripts in A. apis mycelium and spore"

Fig. 4

Nr (A), KOG (B) and eggNOG (C) database annotation of full-length transcripts in A. apis"

Fig. 5

GO classification of A. apis full-length transcripts 1:胞外区 Extracellular region;2:细胞 Cell;3:拟核 Nucleoid;4:细胞膜 Membrane;5:病毒 Virion;6:细胞膜内腔 Membrane-enclosed lumen;7:大分子复合物 Macromolecular complex;8:细胞器 Organelle;9:胞外区 Extracellular region part;10:细胞器组件 Organelle part;11:病毒体组件 Virion part;12:细胞膜组件 Membrane part;13:细胞组件 Cell part;14:超分子复合物 Supramolecular complex;15:转录因子活性,蛋白结合 Transcription factor activity, protein binding;16:核酸结合转录因子活性 Nucleic acid binding transcription factor activity;17:催化活性 Catalytic activity;18:信号传感器活性 Signal transducer activity;19:结构分子活性 Structural molecule activity;20:转运器活性 Transporter activity;21:结合 Binding;22:电子载体活性 Electron carrier activity;23:抗氧化活性 Antioxidant activity;24:金属伴侣活性 Metallochaperone activity;25:蛋白标签Protein tag;26:翻译常规活性 Translation regular activity;27:分子转换器活性 Molecular transducer activity;28:分子功能调节器 Molecular function regulator;29:生殖 Reproduction;30:免疫系统进程 Immune system process;31:代谢进程 Metabolic process;32:细胞进程 Cellular process;33:生殖进程 Reproductive process;34:生物黏附 Biological adhesion;35:信号 Signaling;36:多细胞组织进程 Multicellular organismal process;37:发育进程 Developmental process;38:生长 Growth;39:单一组织进程 Single-organism process;40:应激反应 Response to stimulus;41:定位 Localization;42:多组织进程 Multi-organism process;43:生物调控 Biological regulation;44:细胞成分组织或生物合成 Cellular component organization or biogenesis;45:解毒作用 Detoxification"

Fig. 6

KEGG database annotation of A. apis full-length transcripts"

Fig. 7

Number (A) and type (B) of A. apis lncRNAs"

[1] CHEN D F, GUO R, XU X J, XIONG C L, LIANG Q, ZHENG Y Z, LUO Q, ZHANG Z N, HUANG Z J, KUMAR D, XI W J, ZOU X, LIU M. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017,621:40-50.
[2] GUO R, CHEN D F, DIAO Q Y, XIONG C L, ZHENG Y Z, HOU C S. Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019,166:107210.
[3] QIN X, EVANS J D, ARONSTEIN K A, MURRAY K D, WEINSTOCK G M. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006,15(5):715-718.
[4] SHANG Y F, XIAO G H, ZHENG P, CEN K, ZHAN S, WANG C S. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016,8(5):1374-1387.
[5] 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017,60(1):34-44.
ZHANG Z N, XIONG C L, XU X J, HUANG Z J, ZHENG Y Z, LUO Q, LIU M, LI W D, TONG X Y, ZHANG Q, LIANG Q, GUO R, CHEN D F. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017,60(1):34-44. (in Chinese)
[6] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
[7] 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017,57(12):1865-1878.
GUO R, CHEN D F, HUANG Z J, LIANG Q, XIONG C L, XU X J, ZHENG Y Z, ZHANG Z N, XIE Y L, TONG X Y, HOU Z X, JIANG L L, DAO C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017,57(12):1865-1878. (in Chinese)
[8] 郭睿, 李汶东, 陈大福, 熊翠玲, 郑燕珍, 付中民, 徐细建, 黄枳腱, 骆群. 意大利蜜蜂幼虫肠道内球囊菌及其纯培养的高表达基因差异分析. 微生物学通报, 2018,45(2):368-375.
GUO R, LI W D, CHEN D F, XIONG C L, ZHENG Y Z, FU Z M, XU X J, HUANG Z J, LUO Q. Highly-expressed gene differences between Ascosphaera apis stressing the larval gut of Apis mellifera ligustica and the pure culture of Ascosphaera apis. Microbiology China, 2018,45(2):368-375. (in Chinese)
[9] 陈大福, 王鸿权, 李汶东, 熊翠玲, 郑燕珍, 付中民, 徐细建, 黄枳腱, 郭睿. 胁迫中华蜜蜂幼虫肠道的球囊菌及其体外培养的高表达基因分析. 福建农林大学学报 (自然科学版), 2017,46(5):562-568.
CHEN D F, WANG H Q, LI W D, XIONG C L, ZHENG Y Z, FU Z M, XU X J, HUANG Z J, GUO R. Analysis of highly expressed genes of Ascosphaera apis infecting the gut of Apis cerana cerana larvae and its in vitro culture. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017,46(5):562-568. (in Chinese)
[10] 郭睿, 陈华枝, 童新宇, 熊翠玲, 郑燕珍, 付中民, 解彦玲, 王海朋, 赵红霞, 陈大福. 蜜蜂球囊菌基因结构优化及新基因鉴定. 中国农业大学学报, 2019,24(1):61-68.
GUO R, CHEN H Z, TONG X Y, XIONG C L, ZHENG Y Z, FU Z M, XIE Y L, WANG H P, ZHAO H X, CHEN D F. Structural optimization of annotated genes and identification of novel genes in Ascosphaera apis. Journal of China Agricultural University, 2019,24(1):61-68. (in Chinese)
[11] 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
[12] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, LI W D, KUMAR D, LIANG Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
[13] GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y L, WANG H P, DU Y, DIAO Q Y. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018,678:17-22.
[14] LU H Y, GIORDANO F, NING Z M. Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics and Bioinformatics, 2016,14(5):265-279.
[15] WORKMAN R E, TANG A D, TANG P S, JAIN M, TYSON J R, RAZAGHI R, ZUZARTE P C, GILPATRICK T, PAYNE A, QUICK J, et al. Nanopore native RNA sequencing of a human poly (A) transcriptome. Nature Methods, 2019,16(12):1297-1305.
[16] LEA W A, PARNELL S C, WALLACE D P, CALVET J P, ZELENCHUK L V, ALVAREZ N S, WARD C J. Human-specific abnormal alternative splicing of wild-type PKD1 induces premature termination of polycystin-1. Journal of the American Society of Nephrology, 2018,29(10):2482-2492.
[17] CHEN S Y, DENG F L, JIA X B, LI C, LAI S J. A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing. Scientific Reports, 2017,7:7648.
[18] BAYEGA A, OIKONOMOPOULOS S, ZORBAS E, WANG Y C, GREGORIOU M E, TSOUMANI K T, MATHIOPOULOS K D, RAGOUSSIS J. Transcriptome landscape of the developing olive fruit fly embryo delineated by Oxford Nanopore long-read RNA-Seq. bioRxiv, 2018. doi: https://doi.org/10.1101/478172.
[19] CHAO Q, GAO Z F, ZHANG D, ZHAO B G, DONG F Q, FU C X, LIU L J, WANG B C. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnology Journal, 2019,17(1):206-219.
[20] ZHU C H, LI X F, ZHENG J Y. Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene, 2018,666:123-133.
[21] TOMBÁCZ D, BALÁZS Z, CSABAI Z, MOLDOVÁN N, SZŰCS A, SHARON D, SNYDER M, BOLDOGKŐI Z. Characterization of the dynamic transcriptome of a herpesvirus with long-read single molecule real-time sequencing. Scientific Reports, 2017,7:43751.
[22] TOMBÁCZ D, BALÁZS Z, CSABAI Z, SNYDER M, BOLDOGKOI Z. Long-read sequencing revealed an extensive transcript complexity in herpesviruses. Frontiers in Genetics, 2018,9:259.
[23] 陈华枝, 祝智威, 蒋海宾, 王杰, 范元婵, 范小雪, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析. 中国农业科学, 2020,53(17):3606-3619.
CHEN H Z, ZHU Z W, JIANG H B, WANG J, FAN Y C, FAN X X, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. Comparative analysis of microRNAs and corresponding target mRNAs in Ascospheara apis mycelium and spore. Scientia Agricultura Sinica, 2020,53(17):3606-3619. (in Chinese)
[24] 陈华枝, 王杰, 祝智威, 蒋海宾, 范元婵, 范小雪, 万洁琦, 卢家轩, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子中长链非编码RNA的比较及其潜在功能分析. 中国农业科学, 2021,54(2):435-448.
CHEN H Z, WANG J, ZHU Z W, JIANG H B, FAN Y C, FAN X X, WAN J Q, LU J X, ZHENG Y Z, FU Z M, XU G J, CHEN D F, GUO R. Comparison and potential functional analysis of long non-coding RNAs between Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2021,54(2):435-448. (in Chinese)
[25] CHEN H Z, FAN X X, DU Y, FAN Y C, WANG J, JIANG H B, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. Nanopore-based long-read transcriptome data of Nosema ceranae-infected and un-infected western honeybee workers’ midguts. bioRxiv, 2020. doi: https://doi.org/10.1101/2020.03.21.001958.
[26] DU Y, FAN Y C, CHEN H Z, WANG J, XIONG C L, ZHENG Y Z, CHEN D F, GUO R. A full-length transcriptome dataset of normal and Nosema ceranae-challenged midgut tissues of eastern honeybee workers. bioRxiv, 2020. doi: https://doi.org/10.1101/2020.03.18. 997981.
[27] JENJAROENPUN P, WONGSURAWAT T, PEREIRA R, PATUMCHAROENPOL P, USSERY D W, NIELSEN J, NOOKAEW I. Complete genomic and transcriptional landscape analysis using third-generation sequencing: A case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Research, 2018,46(7):e38.
[28] BOLDOGKOI Z, MOLDOVAN N, BALAZS Z, SNYDER M, TOMBACZ D. Long-read sequencing-A powerful tool in viral transcriptome research. Trends in Microbiology, 2019,27(7):578-592.
[29] 邓泱泱, 荔建琦, 吴松锋, 朱云平, 陈耀文, 贺福初. nr数据库分析及其本地化. 计算机工程, 2006,32(5):71-73, 76.
DENG Y Y, LI J Q, WU S F, ZHU Y P, CHEN Y W, HE F C. Integrated nr database in protein annotation system and its localization. Computer Engineering, 2006,32(5):71-73, 76. (in Chinese)
[30] The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Research, 2017,45(D1):D158-D169.
[31] KOONIN E V, FEDOROVA N D, JACKSON J D, JACOBS A R, KRYLOV D M, MAKAROVA K S, MAZUMDER R, MEKHEDOV S L, NIKOLSKAYA A N, RAO B S, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 2004,5(2):R7.
[32] POWELL S, FORSLUND K, SZKLARCZYK D, TRACHANA K, ROTH A, HUERTA-CEPAS J, GABALDÓN T, RATTEI T, CREEVEY C, KUHN M, JENSEN L J, VON MERING C, BORK P. eggNOG v4.0: Nested orthology inference across 3686 organisms. Nucleic Acids Research, 2014,42(Database issue):D231-D239.
[33] FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L L, TATE J, PUNTAM. Pfam: The protein families database. Nucleic Acids Research, 2014,42(Database issue):D222-D230.
[34] ASHBURNER M, BALL C A, BLAKE J A, BOTSTEIN D, BUTLER H, CHERRY J M, DAVIS A P, DOLINSKI K, DWIGHT S S, EPPIG J T, et al. Gene ontology: Tool for the unification of biology. Nature Genetics, 2000,25(1):25-29.
[35] KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004,32(Database issue):D277-D280.
[36] 熊翠玲, 耿四海, 王心蕊, 刘思亚, 陈大福, 郑燕珍, 付中民, 杜宇, 王海朋, 陈华枝, 周丁丁, 郭睿. 意大利蜜蜂工蜂中肠的长链非编码RNA的预测、分析及鉴定. 应用昆虫学报, 2018,55(6):1034-1044.
XIONG C L, GENG S H, WANG X R, LIU S Y, CHEN D F, ZHENG Y Z, FU Z M, DU Y, WANG H P, CHEN H Z, ZHOU D D, GUO R. Prediction, analysis and identification of long non-coding RNA in the midguts of Apis mellifera ligustica workers. Chinese Journal of Applied Entomology, 2018,55(6):1034-1044. (in Chinese)
[37] KONG L, ZHANG Y, YE Z Q, LIU X Q, ZHAO S Q, WEI L, GAO G. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 2007,35(Web Server issue):W345-W349.
[38] SUN L, LUO H T, BU D C, ZHAO G G, YU K T, ZHANG C H, LIU Y N, CHEN R S, ZHAO Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 2013,41(17):e166.
[39] WANG L, PARK H J, DASARI S, WANG S, KOCHER J P, LI W. CPAT: Coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Research, 2013,41(6):e74.
[40] CHEN D F, DU Y, FAN X X, ZHU Z W, JIANG H B, WANG J, FAN Y C, CHEN H Z, ZHOU D D, XIONG C L, ZHENG Y Z, XU X J, LUO Q, GUO R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome via PacBio single-molecule long-read sequencing. bioRxiv, 2019. doi: https://doi.org/10.1101/770040.
[41] MAGI A, SEMERARO R, MINGRINO A, GIUSTI B, D’AURIZIO R. Nanopore sequencing data analysis: State of the art, applications and challenges. Briefings in Bioinformatics, 2018,19(6):1256-1272.
[42] ARONSTEIN K A, MURRAY K D. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010,103(Suppl.1):S20-S29.
[43] 李江红, 郑志阳, 陈大福, 梁勤. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012,55(7):790-797.
LI J H, ZHENG Z Y, CHEN D F, LIANG Q. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012,55(7):790-797. (in Chinese)
[44] TAUBER J P, EINSPANIER R, EVANS J D, MCMAHON D P. Co-incubation of dsRNA reduces proportion of viable spores of Ascosphaera apis, a honey bee fungal pathogen. Journal of Apicultural Research, 2020,59(5):791-799.
[1] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[2] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[3] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[4] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[5] LI Zhen,LIU ZhiYong,JIANG WuJun,HE XuJiang,YAN WeiYu,ZHANG LiZhen,ZENG ZhiJiang. Effects of Natural Bee Bread on Blood Lipid, Antioxidation and Immune Function in Rats with Hyperlipidemia [J]. Scientia Agricultura Sinica, 2019, 52(16): 2912-2920.
[6] ZHANG Bo,WU XiaoBo,LIAO ChunHua,HE XuJiang,YAN WeiYu,ZENG ZhiJiang. Research and Application of Honeybee Non-Grafting Larvae Technology [J]. Scientia Agricultura Sinica, 2018, 51(22): 4387-4394.
[7] JIANG WuJun,WU XiaoBo, LIU GuangNan, HE XuJiang, YAN WeiYu, ZENG ZhiJiang. Research and Application of Production Technology of Natural Honeybee Bread [J]. Scientia Agricultura Sinica, 2017, 50(19): 3828-3836.
[8] FENG Qian-Qian, YANG Wei-Ren, XU Bao-Hua, LI Cheng-Cheng. Effect of Different Levels of Vitamin A on the Colony Development and Larvae Antioxidation of Apis mellifera ligustica During he Period of Spring Multiplication [J]. Scientia Agricultura Sinica, 2012, 45(17): 3584-3591.
[9] . Characteristics of Ascospheare apis Extracellular Proteinase
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1247-1254 .
[10] ZHANG Chun-Xiang, ZHANG Xue-Feng, CHEN Ting-Zhu, TENG Yue-Zhong, LIU Wen-Zhong, JIANG Yu-Suo. Analysis of Genetic Diversity in Twelve Honeybee Populations Based on AFLP Technique [J]. Scientia Agricultura Sinica, 2011, 44(18): 3877-3885.
[11] LI Jian-Ke, FENG Mao, ZHENG Ai-Juan. Advanced Research on Honeybee Proteome [J]. Scientia Agricultura Sinica, 2011, 44(17): 3649-3657.
[12] ZHENG Ai-juan,FANG Yu,FENG Mao,WU Jing,SONG Fei-fei,LI Jian-ke
. Proteome Comparison Between Worker Pupal Head of Native Italian Honeybee (Apis mellifera L.) and Higher Royal Jelly Producing Strain#br# [J]. Scientia Agricultura Sinica, 2010, 43(8): 1703-1715 .
[13] WU Jing,LI Jian-ke. Proteomic Analysis of the Honeybee (Apis mellifera L.) Caste Differentiation Between Worker and Queens Bees Larvae
[J]. Scientia Agricultura Sinica, 2010, 43(1): 176-184 .
[14] CHEN Xuan,YU Xiao-min,ZHENG Huo-qing,CAI Yi-mei,HU Fu-liang. Separation and Enrichment of sRNAs from Honeybee (Apis mellifera L.) and Its Quality Detection by Library Construction
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2943-2948 .
[15] Xian-Bing XIE Wen-Jun PENG Zhi-Jiang ZENG. Nutritional Crossbreed of Honeybee and Breeding of Resistibility on Mite [J]. Scientia Agricultura Sinica, 2008, 41(5): 1530-1535 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!